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Abstract: Effective path planning in complex underwater environments serves as a critical
determinant of autonomous underwater vehicle (AUVs) energy efficiency, while simultane-
ously influencing sensor operational demands and battery state-of-charge (SOC) dynamics.
Systematic trajectory tracking emerges as a pivotal methodology for SOC optimization,
enabling enhanced energy management through precision navigation control. This pa-
per proposes a path planning and trajectory tracking control framework for autonomous
underwater vehicles (AUVs) combined with battery state of charge (SOC) optimization.
The framework incorporates the Grasshopper Optimization Algorithm (GOA) with the
Artificial Potential Field Algorithm (APF) to achieve global path planning and local path
optimization while minimizing energy consumption as an objective. Specifically, GOA
is used for global path planning. APF further optimizes the path by introducing a SOC
optimization strategy, in which high SOC consumption points are regarded as repulsive
points and low SOC consumption points are regarded as attractive points. In addition, the
trajectory tracking control adopts the model predictive control (MPC) method to ensure the
accurate tracking of the planned path and dynamically manage the SOC states. Simulation
results show that the proposed framework outperforms traditional methods in obstacle
avoidance capability and SOC consumption, effectively improving energy efficiency and
trajectory tracking accuracy.

Keywords: path planning and trajectory tracking; SOC optimization; autonomous
underwater vehicle (AUV); grasshopper optimization algorithm (GOA); artificial potential
field algorithm (APF); model predictive control (MPC); energy management

1. Introduction
Autonomous underwater vehicles (AUVs), as an advanced underwater exploration

and operation tool, have been widely used in marine science, resource exploration, and mil-
itary applications in recent years [1]. The AUV’s practical autonomy and adaptable agility
allow it to execute many duties in intricate underwater settings, such as marine surveying
and mapping, ecological environment monitoring, and seabed geological exploration [2].
As technology advances, the usage of AUVs broadens, and their significance in scientific
research and engineering is growing more evident [3]. However, the energy consumption
of AUVs has always been one of the bottlenecks restricting their wide application due to
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the increase in size, weight, and sensor functions of AUVs when developing and designing
AUVs [4] , all of which limit the durability and driving range of the AUV to a certain extent.
During the AUV mission, the battery’s state of charge (SOC) directly determines its sailing
time and mission efficiency. Due to the difficulty of underwater energy replenishment,
how to reasonably optimize the SOC in path planning and control and ensure the effective
distribution of power on the path is one of the core issues to improve the endurance of
AUV missions [5].

The majority of current AUV path planning techniques emphasize shortest path
determination, obstacle evasion, or path optimization [6], and do not fully consider the
impact of changes in battery SOC on energy consumption. This neglect leads to the fact
that in actual tasks, AUVs may find it difficult to complete them due to the rapid drop in
battery power during execution, so they cannot effectively extend the cruising time [7]. The
path planning without SOC management not only affects the efficiency of task execution,
but also may lead to task failure in complex environments, so integrating SOC optimization
into path planning is the key to solving this problem [8].

Path planning algorithms aim to determine the most efficient path from an origin
location to a destination. These algorithms can be broadly classified into three categories:
traditional path planning methods, biologically inspired swarm intelligence methods, and
machine learning methods [9,10]. Typically, traditional path planning algorithms rely on
precise models of the problem or detailed information about the environment for their
calculations. Commonly used traditional methods are the Dijkstra algorithm [11], Artificial
Potential Field (APF) [12], A* algorithm, etc. [13]. Among them, the Dijkstra algorithm
gradually determines the shortest path by traversing the global map and expanding the
known shortest path set, but the discretization of the map will lead to a lack of smoothness
in the planned path; the APF technique is a path planning algorithm that utilizes a virtual
potential field, incorporating gravitational and repulsive forces to guide the intelligent
agent in identifying the ideal route within the environment. Compared to the Dijkstra
algorithm, the path determined by this method is more differentiable. Yet, it is susceptible
to local optima, potentially resulting in the inability to identify the globally optimal path
in intricate environments. In summary, these conventional approaches possess several
significant shortcomings, including being time-consuming, having inadequate real-time
performance, and a propensity to converge on local optima.

Due to the shortcomings of traditional methods, path planning is gradually develop-
ing towards artificial intelligence. Reference [14] introduces a multi-trajectory planning
(MTP) problem for an autonomous underwater vehicle (AUV), considering the intricate
underwater environment, the efficacy of each trajectory, and the variability among distinct
trajectories, and formulates a comprehensive MTP model. By adopting a nesting strategy,
attenuated alarm pheromones, and a diverse heuristic metric, an ant colony-based trajec-
tory optimizer, MTrajPlanner, is developed to identify and maintain a set of high-quality
solutions. Reference [15] amalgamates the genetic algorithm (GA), ant colony optimization
(ACO) algorithm, and simulated annealing (SA) algorithm, enhancing GA through the
introduction of novel energy consumption mutation operators, adaptive genetic operation
probabilities, path self-smoothing, and trial crossover mechanisms, while also accounting
for the impact of ocean currents. A novel heuristic algorithm fusion method is introduced
to address the path-planning challenge for autonomous underwater vehicles (AUVs) in
intricate underwater settings. Ref. [16] proposed a swarm intelligence optimization algo-
rithm for locust optimization in 2017 and applied it to parameter optimization problems.
GOA has a simple structure, few parameters, and strong stability. It is very competitive in
terms of optimization accuracy and solution speed [17]; the algorithm’s unique adaptive
mechanism effectively balances the global and local search processes [18].
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In actual missions, AUVs not only need to plan a reasonable path but also need to
track the path accurately [19]. However, the path tracking process will also be affected by
external factors such as ocean current interference, causing the trajectory to deviate from the
planned path and increasing additional energy consumption [20]. Existing path-tracking
control methods mostly take stability and trajectory accuracy as the main goals without
considering the real-time optimization of SOC and ignore the impact of energy consumption
on trajectory adjustment. This control strategy, lacking SOC management, may cause the
AUV to consume excessive battery power during path tracking, thereby shortening the
vehicle’s endurance and affecting its stability and durability in complex missions.

Numerous control methodologies have attained elevated tracking precision, including
sliding mode control [21], neural network control [22], and fuzzy control [23]. Furthermore,
several published articles have enhanced the energy optimization of AUVs through the re-
finement of control methodologies. Reference [24] proposed an energy optimization control
method based on economic model predictive control (EMPC) by considering the dynamic
characteristics of AUV and the influence of ocean circulation. The EMPC controller opti-
mizes two objective functions: one is the control energy consumption in the prediction time
domain, and the other is the remaining energy consumption from the end of the prediction
time domain to the target waypoint (energy-to-reach). Reference [25] proposed a new
position error-constrained line tracking (PECLOS) control strategy based on the controller
design of feedback linearization and the position error constraint mechanism. Reference [26]
proposed an underwater communication system that combines time-division synchronous
OFDM (TDS-OFDM) and non-orthogonal multiple access (NOMA), and uses energy re-
covery techniques to improve the energy efficiency of the system. Reference [27] proposed
a hybrid energy-efficient routing protocol (HEERP) to optimize the energy consumption
and data transmission efficiency of underwater wireless sensor networks (UWSNs) by
combining DFS and BFS strategies. Experimental results show that HEERP outperforms
conventional routing protocols in terms of energy consumption, network throughput and
transmission delay.

Thanks to its benefits of rolling optimization and the explicit management of con-
straints, Model Predictive Control (MPC) has established itself as a well-developed technol-
ogy in modern industry, as noted in [28]. Numerous scholars have explored the application
of MPC in controlling Autonomous Underwater Vehicles (AUVs) [29]. The literature [30]
presented an innovative hybrid agent-based MPC control method regarding resource ef-
ficiency. This method’s cost function takes into account fuel expenses, exergy loss costs,
and primary exergy loss costs to minimize energy usage in maintaining indoor air tempera-
ture. In [31], a novel energy consumption cost function was introduced that incorporates
controlled heating and cooling power parameters, demonstrating its efficiency through
various test scenarios. However, there is a dearth of literature on the topic of optimizing
AUV battery management systems utilizing Model Predictive Control (MPC) techniques.
The design of the MPC control law hinges on the minimization of this cost function, which
encompasses elements aimed at achieving specific control targets. Generally, this involves
minimizing the discrepancy between the projected outcome and the original trajectory,
along with the expected fluctuations in the input vector [32]. The Model Predictive Control
(MPC) methodology has been prominent in the regulation of Autonomous Underwater
Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) due to its advantageous rolling
horizon technique and its proficiency in constraint management. Simulations detailed
in [33] demonstrated the practicality of MPC. Trials utilizing MPC controllers for AUVs
and ROVs have yielded compelling results, showcasing MPC’s ability to maintain impres-
sive control precision [34]. Nonetheless, the optimization of State of Charge (SOC) is not
currently incorporated into the cost function of MPC.
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This paper proposes a unified SOC optimization architecture based on AUV. In the
path planning stage, a new GOA-PF method is proposed, in which the locust algorithm
is used for global path planning, and the artificial potential field algorithm is used for
local SOC optimization. The SOC reference is introduced, and the path points with large
SOC changes are regarded as repulsive points, and the path points with small changes are
regarded as attractive points so as to effectively allocate the energy consumption on the
path. Secondly, the trajectory tracking control adopts the model predictive control (MPC)
method to ensure the accurate tracking of the planned path and dynamically manage the
SOC states.

This paper’s primary contributions are as follows:

1. In view of the fact that AUVs cannot replenish energy underwater, a new GOA-PF
path planning method for optimizing SOC is proposed.

2. In view of the anti-interference ability of AUV path tracking and avoiding excessive
energy loss, a SOC-optimized NMPC control method is proposed.

3. An integrated framework of path planning and tracking control based on SOC op-
timization is proposed. By combining path planning with SOC optimization and
continuing to pay attention to the dynamic management of SOC in the path tracking
stage, the unified optimization of path selection and energy management during the
AUV mission execution is achieved.

The remainder of this article is structured as follows:
Section 2 presents the mathematical model of the AUV, the three-dimensional envi-

ronmental model, energy consumption, and the battery model. Section 3 delineates the
comprehensive design process of the GOA-PF path planning algorithm. Section 4 presents
the comprehensive design block diagram of the system and elaborates on the MPC con-
troller design with a focus on SOC optimization. The simulation outcomes and conclusions
are presented in Sections 5 and 6, respectively.

2. AUV System Description and Modeling
2.1. Kinematic and Dynamic Models

The Society of Naval Architects and Ocean Engineers (SNAME) [35] recommends that
the origin of the inertial coordinate system I be positioned at the ocean surface’s beginning
point, with the Eζ axis aligned with the reference heading. The stationary coordinate
system B is affixed to the AUV, with its origin located at the center of gravity of the AUV
and its principal axis aligned with that of the AUV. Figure 1 illustrates the corresponding
system of coordinates.

Figure 1. AUV coordinate system.
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The rotation matrix of the 6-DOF underwater robot is composed of three-axis basic
rotation matrices. In geometric analysis, the basic rotation matrices of the X-axis, Y-axis,
and Z-axis are as follows:

Rx(ϕ) =

1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (1)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (2)

Rz(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

Combining these basic rotation matrices, the rotation matrix R is as follows:

R = Rz(ψ)Ry(θ)Rx(ϕ) (4)

The relationship between direction and angular velocity is as follows:

J =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)/cos(θ) cos(ϕ)/cos(θ)

 (5)

Therefore, the kinematics of the AUV in 6-DOF is

η̇ =

[
R 03×3

03×3 J

]
ν (6)

Keep in mind that the following matrices stand in for the position vector and the
generalized velocity vector, respectively:

η =
[

X, Y, Z, ϕ, θ, ψ
]T

(7)

Referring [35] to the maneuvering model, the nonlinear equations of motion for the
AUV kinetics have the following general form:

M(ν̇) + C(ν)ν + Dν + g(η) = τ (8)

where M stands for the inertia matrix, C for the centripetal and Coriolis terms, and D
for the hydrodynamic damping matrix in this context. To control the AUV’s motion, the
control input variable τ = B f is converted into force and torque via the matrix B, while the
vector g represents the combined effects of buoyant and gravitational forces. Here is how
the control input variable f is defined:

f =
[

Tu, Tq, Tr

]T
(9)

where Tu symbolize the thrust generated by propeller rotation, Tq represent the vertical
motion control force exerted by the left and right rudders, and Tr signify the horizontal
motion control force produced by the up and down rudders.
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Assuming the AUV’s center of gravity (xg, yg, zg) and buoyancy remain in one place,
its six-DOF translational and rotational motion will be the following:

m[u̇ − νr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)] = Xtotal

m[v̇ − wp + ur − yg(r2 + p2) + zg(qr + ṗ) + xg(qp + ṙ)] = Ytotal

m[ẇ − uq + vp − zg(p2 + q2) + xg(rq − q̇) + yg(rp + ṗ)] = Ztotal

Ix ṗ + (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+ m[yg(ẇ − uq + vp)− zg(v̇ − wp + ur)] = Ktotal

Iy q̇ + (Ix − Iz)rp − ( ṗ + qr)Ixy + (p2 − r2)Izx + (qp − ṙ)Iyz

+ m[zg(u̇ − vr + wq)− xg(v̇ − uq + vp)] = Mtotal

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rp − ṗ)Izx

+ m[xg(ν̇ − wp + ur)− yg(u̇ − wr + wq)] = Ntotal ,

(10)

where m represents the vehicle’s mass, I denotes the moment of inertia in a particular
axial or lateral direction, and (Xtotal , Ytotal , Ztotal) and (Ktotal , Mtotal , Ntotal) signify the total
external forces corresponding to each degree of freedom.

2.2. Underwater Environment Model

Complex physical elements in the underwater environment, including ocean currents,
eddies, and impediments, significantly influence the course planning and trajectory track-
ing of autonomous underwater vehicles. The underwater environment model is used to
simulate the actual operating environment of AUVs under different water currents and ob-
stacle distributions so that the path planning process can take into account the interference
caused by environmental factors such as ocean currents.

In the context of elevated natural mountains within the navigation environment, an
exponential function is employed for their characterization, and the theoretical framework
can be articulated as follows:

z(x, y) =
n

∑
i=1

hi exp[−(
x − xi

xsi
)2 − (

y − yi
ysi

)2] (11)

where, x and y denote the horizontal and vertical positional components of the seafloor
topography, respectively; (xi, yi) indicates the central coordinates of the ith peak; n signifies
the total number of peaks; hi is the terrain parameter that affects the height; xsi and ysi are
the attenuation and control slopes of the ith peak along the x-axis and y-axis, respectively.
Figure 2 shows the seafloor topography, which represents the real environment of the
seafloor by establishing seafloor topographic constraints.

Figure 2. Seafloor terrain reference.
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By analyzing the movement of ocean currents in reality, multiple single-point Lamb
vortices are superimposed to simulate the movement state of real ocean currents. The
mathematical expression formula is as follows:

Vx(r) = −λ × y − y0

2π(r − r0)
×
(

1 − e−
(

r−r0
ζ

)2
)

Vy(r) = λ × x − x0

2π(r − r0)
×
(

1 − e−
(

r−r0
ζ

)2
)

Vz(r) =
λ

πζ2 × e−
(

r−r0
ζ

)2

(12)

where r is the position state variable, x and y represent the horizontal and vertical position
components of the ocean current, Vi(r) are the velocity components of the ocean current in
the horizontal, vertical, and vertical directions, x0, and y0 are the horizontal and vertical
position constants of the ocean current, respectively, and λ, ζ, and r0 are the coordinates of
the eddy intensity, eddy radius, and eddy center position, respectively. Figure 3 shows
the generated random eddy field, with the red pentagram as the eddy centre and the blue
symbols as the random eddy field. If λ is greater than 0, the eddy is counterclockwise; if λ

is less than 0, the eddy is clockwise.

Figure 3. Ocean current model reference.

2.3. Energy Consumption Model

The energy consumption of AUVs in underwater missions directly affects their en-
durance and the effectiveness of mission execution. Establishing an energy consumption
model can quantify the power consumption of AUVs at different speeds and attitude
adjustments and help evaluate the impact of path selection and control strategies on energy
utilization. During the execution of tasks by the AUV, the main energy consumption
comes from the computing energy consumption of control system equipment, the energy
consumption of AUV navigation resistance, and the energy consumption of actuators.

The energy consumption of navigation resistance generally includes the change in
navigation resistance caused by the change in AUV longitudinal inclination angle and the
resistance caused by the change in the rudder angle [4]. For the cross-shaped rudder of
an underwater vehicle, the rotation of each rudder will generate forces and moments in
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all directions of the AUV. The lift Li and longitudinal resistance XR of the rudder can be
expressed by Equations (13) and (14):

Li =
1
2

CLi(λ, δi)u2ρA (13)

XR =
4

∑
i=1

1
2

CD(λ, δi)ρAu2 (14)

where u is the longitudinal speed of the AUV, i is the number of the rudder, A is the rudder
area, and the lift coefficient CLi and the drag coefficient CD are obtained by interpolating
the rudder angle of the i rudder, and ρ is the seawater density.

The control quantity of the AUV steering system is the rudder angle, so the energy
consumption modeling analysis is carried out based on the rudder angle. The energy
consumption of the motor driving the rudder surface is shown in Formula (15):

Pδ =
W
η

=
Mδ × δ̇

η
(15)

where Pδ denotes the power consumption of the servo system, W denotes the output power
of the servo system, η indicates the operational efficiency of the servo system, Mδ signifies
the total load torque of the rudder surface, and δ refers to the angular velocity of the rudder.
The overall load torque on the rudder surface comprises the torque Ml generated by the
hydrodynamic force and the system’s friction torque, expressed as follows:

Mδ = Ml + M f (16)

where Ml is linearly positively related to the product of the square of the AUV’s forward
velocity u0 and the steering angle δ, which can be expressed as follows:

Ml = εu2
0δ (17)

where ε is the torque coefficient, which is 0.0274 through relevant calculation. Compared
with the hydrodynamic torque Ml , the friction torque M f is very small and can be approxi-
mated as tiny, so it can be ignored. The work required for the rudder angle to change from
the initial rudder angle δ0 to δ is as follows:

Wr =
∫ ∣∣∣ δ−δ0

δ

∣∣∣
0

Mδu0
2δ(t)δ̇dt (18)

For the modeling of propeller thrusters, we need to express the propeller thrust Tp

and torque Qp according to the following equations:

Tp = ρ · D4 · KT(J0) · n · |n| (19)

Qp = ρ · D5 · KQ(J0) · n · |n| (20)

where D is the propeller diameter, KT and KQ are dimensionless thrust and torque coeffi-
cients, n is the propeller speed, and we consider KT and KQ as polynomial forms as follows:

KT = kt1 · J2
0 + kt2 · J0 + kt3

KQ = kq1 · J2
0 + kq2 · J0 + kq3

(21)

where J0 = u
n×D is the advance coefficient, kt1 to kt3 and kq1 to kq3 are the coefficients

suitable for propeller design, and the propeller parameters are listed in the table.
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The effective thrust Tp of the propeller is the longitudinal resistance overcome by the
AUV during navigation, so the propeller energy consumption is

PThrust = αP(TP)
2 (22)

where αp = 1
D

√
1

2πρ is the propeller power coefficient.
In summary, the total energy consumption of an autonomous underwater vehicle

throughout the movement is indicated in Formula (23):

JP = WRS + WP + Wr + Wcs (23)

where WRS =
∫ t

t0
(FD + XR)udt, WP =

∫ t
t0

Pthrustdt, Wr represents the energy consumption
of resistance, propeller and steering gear in a certain action time domain, and Wcs represents
the power resource consumption of the control system.

2.4. Battery Model

A 32-cell lithium iron phosphate battery pack with a nominal energy capacity of 3 kWh
is used as the energy storage unit of the AUV power system. This study omits the influence
of temperature on the battery [8] and employs a rudimentary internal resistance model
to delineate the dynamic characteristics of the battery, wherein Voc−bat denotes the open
circuit voltage, Rbat signifies the total internal resistance of the battery pack, Vbat indicates
the battery output voltage, and Ibat represents the battery current. The correlation among
Ibat, Pbat (denoting battery output power), Ebat (indicating remaining battery energy), Vbat,
and SOC (representing the state of charge of the battery) can be articulated as follows:

Pbat = Vbat · Ibat (24)

Pbat = Voc−bat · Ibat − Rbat · I2
bat (25)

SOC(t) = SOC(t0)−
ηbat

∫ t
t0

Ibatdt

Cbat
(26)

SOC = −ηbat
Ibat
Cbat

(27)

where SOC(t0) represents the initial SOC of the battery pack, Cbat denotes the capacity of
the pack of batteries (unit: Ah), ηbat represents the coulombic efficiency of the battery, and
for lithium-ion batteries, ηbat is assumed to be 1.

3. GOA-PF Path Planning Combined with SOC
3.1. Traditional GOA Algorithm

The Grasshopper Optimization Algorithm (GOA) [16] is an optimization algorithm
that simulates the migration and predation behavior of locusts in nature and searches
for the optimal food source through the interaction between individuals. In GOA, the
location of a locust individual represents a candidate solution to the optimization problem.
Locust individuals are mainly affected by three factors: the interaction force between locust
populations, wind force, and gravity. The computational framework used for modeling
locust flocking behavior is as follows:

Xi = Si + Gi + Ai (28)
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where Xi defines the location of the ith locust, Si signals social interaction, Gi denotes the
gravitational force acting over the ith locust and Ai represents a wind force influencing a
ith locust.

By substituting each component into the Formula (28), we can obtain the following:

Xi =
N

∑
j=1
j ̸=i

s(dij)dij − geg − pew (29)

This mathematical model is not immediately applicable to solving the optimization
problem, primarily because locusts rapidly attain their comfort zone, preventing the swarm
from converging to the designated site. The optimization problem is reformulated as follows:

Xd
i = c

N

∑
j=1
j ̸=i

(
c

ubd − lbd
2

s(dij)dij

)
+ Td (30)

where N represents the population size, ubd specifies the upper limit of the target’s d-th
depth, lbd signifies the smaller limit of the d-th depth, and Td indicates the optimal value
of the d-th dimension for the destination; c is the coefficient for the linear reduction of the
soothing zone, repulsion zone, and attractiveness zone. This formula disregards the impact
of gravity and presumes that the wind direction consistently aligns with the ideal solution.
The representation of c is as follows:

C = Cmax − n
Cmax − Cmin

L
(31)

where n is the current number of repetitions, L represents the maximum permitted amount
of repetitions, as well as the parameters cmax and cmin are 1 and 0.0004, respectively.

During the entire algorithm iteration process, the evaluation index of the quality of
each locust position is the fitness function. For mobile robot path planning, the fitness
function is usually adopted to satisfy the shortest moving path. The ideal solution to the
problem is achieved by iteratively applying Formula (36) during the solution process. The
ideal solution for the current problem is documented as the highest fitness value achieved
after each iteration, continuing until the maximum iteration limit is attained.

3.2. GOA-PF Path Planning Algorithm Combined with SOC

The efficacy of the GOA, being a heuristic algorithm, is significantly influenced by
the initial population value. In GOA, the initialization of the population is determined
randomly. This method is prone to the uneven distribution of the population in the solution
space, and there may be a phenomenon of population aggregation, which may affect the
convergence of the next step. In order to prevent the population from being too dense
and causing unnecessary energy loss, the APF algorithm is introduced to optimize the
local energy of the SOC. The APF algorithm is a widely utilized local route planning
technique characterized by its straightforward mathematical formulation, low computer
cost, rapid response time, and smooth trajectory generation. The flowchart of the path
planning algorithm is illustrated in Figure 4. Improvements have been implemented in the
APF algorithm based on the research. In the local optimization stage, the SOC change of
each path point on the global path is calculated based on the energy consumption model.
The path points with large SOC changes are regarded as high energy consumption points
(repulsive force points), and the path points with small SOC changes are regarded as
low energy consumption points (attractive points). The gravitational and repulsive fields
are constructed in combination with the APF algorithm, and the global path is locally
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adjusted to optimize the energy consumption distribution. Figure 5 shows a schematic of
the algorithm. The pseudo-code of the algorithm is shown in Algorithm 1.

Figure 4. Flowchart of GOA-PF path planning algorithm.

Figure 5. Schematic diagram of the algorithm.

The SOC reference trajectory is introduced and defined as SOCre f (t) to guide path
selection and maintain SOC in the ideal range. The trajectory is designed to gradually
decrease with the path length in order to balance the SOC consumption during the en-
tire mission:

SOCre f (t) = SOCmax −
(

SOCmax − SOCmin
Ltotal

)
· D(t) (32)

where SOCmax and SOCmin are the initial SOC rating and the lowest permissible SOC value
of the battery; Ltotal is the projected total path length; D(t) represents the length of the
traveled path at the present instant.
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The formulas for attracting and repulsive forces are as follows:

Uatt(x) =
1
2

ζ
(

1 + k ·
(

SOC(t)− SOCre f

))∥∥∥x − xgoal

∥∥∥2
(33)

Urep(x) =


1
2 η

(
1+m·(SOC−SOCre f )

∥x−xobs∥
− 1

dsafe

)2

if ∥ x − xobs ∥≤ dsafe

0 if ∥ x − xobs ∥> dsafe

(34)

In the formula, ζ and η are the basic attraction coefficient and repulsion gain coefficient
of the AUV’s position, and k is the SOC attraction factor. When the SOC deviates from
the reference value, the attraction is increased to reduce the additional path consumption;
m is the repulsion influence factor. When the SOC is low, the repulsion force increases,
enhancing the obstacle avoidance ability and thereby reducing emergency acceleration and
high-energy maneuvers. By solving the gradients of the attraction and repulsion potential
fields, the equation of the total potential field force is formulated as follows:

U(x) =
m

∑
i=1

Uatt(xi) +
n

∑
j=1

Urep(xj) (35)

Fatt(x) = −∇Uatt(x) = −ζ(1 + k · (SOC − SOCre f ))(x − xgoal) (36)

Frep(x) = ∇Urep(x) (37)

F = Fatt(x) + Frep(x) (38)

where F represents the total potential field derived from the summation of the repulsive
and attractive fields, followed by the computation of the gradient of the resultant field to
ascertain the vehicle’s direction of travel.

In order to ensure that the proposed GOA-PF path planning algorithm and SOC-
optimized MPC trajectory tracking controller can be practically applied in real-time control
tasks, this section provides an analysis of the computational complexity and real-time
performance of both algorithms. The GOA-PF path planning algorithm combines the GOA
with the APF method to achieve global path planning and local path optimization. The
time complexity of the GOA-PF algorithm can be derived from the following components:

Global Path Planning: The GOA algorithm uses a population for global search, and
assuming the population size is n and the number of iterations is T, and the time complexity
is O(n · T).

Local Path Optimization: The APF algorithm optimizes the path locally. Its complexity
depends on the number of path nodes m and the number of local iterations k, so the time
complexity is O(m · k).

Thus, the overall time complexity of the GOA-PF algorithm is O(n · T + m · k). As the
complexity of the environment increases (e.g., more obstacles, longer paths), the complexity
of the algorithm will increase, but it still maintains an acceptable performance under
reasonable task scales.

In terms of space complexity, the GOA algorithm requires memory to store the popu-
lation, where each individual requires storage for p parameters (e.g., position, velocity), so
the space complexity is O(n · p).
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Algorithm 1: Pseudocode of GOA-PF algorithm combined with SOC optimiza-
tion

Input: Pstart, Pgoal, Environment data, Initial SOC
Output: Pfinal

1: Initialize population Xi (i = 1, 2, . . . , N) in search space
2: for t = 1 to MaxIterations do
3: Evaluate Fpath(Xi) for all individuals
4: Update Xi using GOA rules
5: Update global best path Pglobal

6: end for
7: Compute ∆SOCi for all points in Pglobal

8: for each point in Pglobal do
9: if ∆SOCi > thresholdhigh then
10: Mark as repulsion point
11: else if ∆SOCi < thresholdlow then
12: Mark as attraction point
13: end if
14: end for
15: Adjust Pglobal using artificial potential field to obtain
Poptimized

16: Return Pfinal = Poptimized

4. Design of MPC Controller Based on SOC Optimization
This part mainly investigates the three-dimensional path tracking problem of AUV in

challenging marine environments [36]. According to the reference path planned in the pre-
vious chapter, the dynamic characteristics of the underwater robot are controlled to keep its
position consistent. As shown in Figure 6, MPC control is employed to facilitate the gradual
convergence of the AUV’s driving position to the specified command while minimizing
SOC consumption, guaranteeing that the AUV position tracking error converges and the
SOC is managed to decrease appropriately. Taking into account the relevant limitations
during the design of each controller can more efficiently identify the ideal solution within
the control set.

Figure 6. AUV control framework diagram based on SOC optimization
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4.1. MPC Controller Design

In this study, the complete AUV model is formulated by combining the nonlinear six-
degree-of-freedom (6-DOF) dynamic equations of motion with the corresponding kinematic
equations (as given in Equation (8)). Because AUV missions are typically executed around a
balanced attitude (trim condition) and at moderate speeds, the nonlinear state-space model
can be linearized about a suitable equilibrium operating point to simplify controller design.
In this linearization process, the restoring force term g(η) is set to zero (assuming the AUV
is neutrally buoyant in a level posture) and the ocean current disturbance is neglected. As
a result, a continuous-time linear time-invariant state-space model is obtained, which is
then discretized to serve as the predictive model for the MPC controller design.

The vector x =
[
ηT νT

]T
∈ R12 is defined as a state vector, including the starting

point component η and the vector of velocity ν. A complex status space description for an
underwater robot is built by merging kinematics and dynamics.

ẋ = Ac(x) + Bcτ + Dcτw

y = Gx
(39)

where

Ac(x) =

[
0 J(η)
0 −M−1(C(νr) + D(νr))

]
x −

[
0

M−1(g(η))

]

Dc = Bc =

[
0

M−1

]

G =
[
I 0

]
and y = η ∈ R6 be the result column. τw depicts the forces and moments caused by ocean
currents that influence the motion of the AUV. Constraints are imposed around the location
vector η to prevent exceptional conversion matrices J(η). Furthermore, considering that
the bulk of missions are conducted at very moderate velocities, it is preferable to impose an
upper limit on the linear speed of the underwater vehicle. Consequently, the restriction
collection for the condition vector X is demarcated as follows:

X =
{

x ∈ R12 :| x |≤ xmax

}
(40)

The constantly changing linear model in (39) is streamlined by establishing g(η) = 0,
neglecting unidentified currents and waves, and discretized using the backward Euler
method to obtain a model of state space for controller construction.

x(κ + 1) = Axx(κ) + Bτ(κ)

y(κ) = Cxx(κ)
(41)

where

Ax =

[
I J(η)Ts

0 (I − M−1(C(ν) + D(ν)))Ts

]

B =

[
0

M−1Ts

]
Cx =

[
I 0

]
where Ts denotes the sample period and κ represents the duration number. For clarity, the
duration indices from η and ν are removed for the equation of Ax since they pertain to the
time indices of x(κ).
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Assume that all states are measurable. Let Np be the prediction time domain, Nc be
the control time domain, and Nc ≤ Np. Define Yv as the output vector predicted in Np

steps, and define ∆U as the input vector in Nc steps:

Y =


y(κ + 1 | κ)

y(κ + 2 | κ)
...

y(κ + Np | κ)

 (42)

∆U =


τ(κ)

τ(κ + 1)
...

τ(κ + Nc − 1)

 (43)

In accordance with the model predictive control concept, the prediction equation
expression could be generated as follows:

Y = Sxx(κ) + Su∆U (44)

where
Sx =

[
Cx Ax Cx A2

x · · · Cx A
Np
x

]T

Su =


CxB 0 ... 0

Cx AxB CxBx ... 0
...

...
. . .

...

Cx A
Np−1
x B Cx A

Np−2
x B ... Cx A

Np−Nc
x B


In controller design, the system status x(κ) with the control input τ(κ) serve as

constraints. The system state x(κ) is confined by an upward and downward bound, and
the control system input τ(κ) is likewise finite.

x(κ)min ≤ x(κ) ≤ x(κ)max (45)

τ(κ)min ≤ τ(κ) ≤ τ(κ)max (46)

where x(κ)min, τ(κ)min are predefined lower limits, and x(κ)max, τ(κ)max are predefined
upper limits. The present state of the system’s x(κ) constraints is converted into con-
trol input increment ∆u(κ) constraints and expressed as the following compact linear
constraint forms:

M∆U≤γ (47)

where

M =

[
I
B

]
γ =

[
∆Umax − ∆Umin

Xmax − Ax(κ)− Xmin + Ax(κ)

]
Choose a particular objective function:

min
∆U(κ)

J(y(κ), ∆U, Np, Nc) =∥ Γy(Y(κ))− ν(κ) ∥2 + ∥ Γu∆U(κ) ∥2 (48)

where Γy and Γu indicate the weighting coefficient of the output signal and the weighting
factor of the control signal, respectively.
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4.2. Design of MPC Controller Combined with SOC Optimization

For AUVs with limited energy resources, their path tracking control needs to take
into account both trajectory accuracy and energy consumption optimization. The objective
function of traditional MPC controllers usually only focuses on the output error and the
change of control input, ignoring the importance of battery state of charge (SOC) to system
energy management. Therefore, in order to extend the endurance of AUVs, this section
introduces the SOC optimization strategy in the MPC controller design, incorporates the
SOC consumption into the objective function, and imposes energy consumption constraints
on the control input.

∆SOC(κ + i) = SOC(κ)− ηbat
JP(κ + i) · Ts

V · Cbat
(49)

where JP(κ + i) is the total power consumption predicted in the i step, including propul-
sion power consumption, attitude adjustment power consumption, and power resource
consumption, and V and Qtotal are the battery voltage and total battery capacity.

To further optimize energy consumption, we add the following constraints in the
MPC controller:

∆SOCmin ≤ ∆SOC(κ + i) ≤ ∆SOCmax

τmin ≤ τ(κ + i) ≤ τmax
(50)

∆SOCmin was introduced as a lower limit for the energy consumption of a single step,
with the aim of ensuring that the energy consumption of each control step is not too low,
thus avoiding unstable values or invalid solutions. Consequently, the goal function may be
reformulated as follows:

min
∆U(κ)

J =∥ Γy2(Y(κ))− ν(κ) ∥2 + ∥ Γu2∆U(κ) ∥2 +λ ∥ ∆SOC(κ + i) ∥2 (51)

where ∆SOC(κ + i) is the SOC change predicted in the i step, and λ is the weight factor
of the SOC optimization term, which controls the balance between energy consumption
optimization and trajectory accuracy.

Taking Y as the objective function, we can obtain the quadratic equation about τ(κ).
The final standard convex quadratic programming form can be written as follows:

τ(κ) = argmin
τ(κ)

(
1
2

τ(κ)⊤H(κ)τ(κ) + f⊤(κ)τ(κ)
)

s.t. M∆U ≤ γ

(52)

where
H(κ) = −

(
ST

u ΓT
y ΓySu + ΓT

u Γu

)
(53)

f (κ) =
(

ST
u ΓT

y Γy(Sxx(κ)− ν(κ))
)

(54)

The converted quadratic programming problem can be calculated online. Then, the
optimal input vector τ∗(κ) for prediction can be obtained.

At each sample period κ, τ∗(κ) is computed to facilitate the rolling horizon optimiza-
tion. The anticipated state x(κ + 1) and the ideal input τ∗(κ) are ascertained from the
current state x(κ). Therefore, MPC can compensate for the system uncertainty caused
by model mismatch and external disturbances. The rolling optimization process is con-
tinuously iterated until the AUV trajectory tracking task is completed. It can be seen
that MPC can reduce the impact of model uncertainty. This paper focuses on practical
engineering applications, such as the impact of external disturbances and energy states on
AUV trajectory tracking.
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4.3. Stability Analysis

Theorem: For the MPC-based controller (41), consider the cost function (46) with
constraint (47). Select the positive definite matrix Γy, the positive definite matrix Γu, the
prediction horizon Np, and the control horizon Nc and ensure that the optimal solution of
the cost function (46) exists. Designate the ideal price function J∗(κ) to be the Lyapunov
function V∗(κ). If V∗(κ + 1) ≤ V∗(κ) holds, then the optimum approach τ∗(κ) assures the
theoretical equilibrium of the system (41).

Proof: In the most effective approach ∆U∗(κ) of the cost function (46) subject to
the constraint (47), τ∗(κ + i|κ) is selected as the ideal increment for the control input.
Thus, x∗(κ + i|κ) represents the optimal control input associated with the optimal control
signal increase τ∗(κ + i|κ). The ideal cost function J∗(κ) is identified as the Lyapunov
function V∗(κ).

V∗(κ) = min J(κ)

= min

[ Np

∑
i=1

∥∥∥Γy
(
yη(κ + i|κ)

)
− yd(κ + i|κ)

∥∥∥2

+
Nc−1

∑
i=0

∥∥∥Γuτ(κ + i|κ)
∥∥∥2

+ λ

Np

∑
i=1

∥∥∥∆SOC(κ + i)
∥∥∥2
] (55)

The optimal function (52) clearly fulfills V∗(0) = 0, where κ = 0, and V∗(κ) > 0
for any k ̸= 0. For the system (41) subject to external disturbance, the optimal control
input increment τ(κ + 1 + i|κ + 1) and the control input x(κ + 1 + i|κ + 1) are computed
as follows:

τ(κ + 1 + i | κ + 1) = [τ(κ + 1 | κ + 1), τ(κ + 2 | k + 1), . . . , τ(κ + Nc1 | κ + 1)]

= [τ∗(κ + 1 | κ + 1), τ∗(κ + 2 | κ + 1), . . . , τ∗(κ + Nc | κ + 1)]
(56)

x(κ + 1 + i | κ + 1) = [x(κ + 1 | κ + 1), x(κ + 2 | κ + 1), . . . , x(κ + Nc1 | κ + 1)]

= [x∗(κ + 1 | κ + 1), x∗(κ + 2 | κ + 1), . . . , x∗(κ + Nc | κ + 1)]
(57)

It is straightforward to demonstrate that (53) and (54) constitute feasible solutions to
the quadratic programming problem (49). The control increment τ(κ + 1 + i|κ + 1) and
the controller x(κ + 1 + i|κ + 1) adhere to the restrictions (45), (46), and (50), respectively.
Furthermore, owing to the optimality of the cost function (27), the function J(κ + 1) is not
inferior to V∗(κ + 1).

V∗(κ + 1) ≤ V∗(κ) (58)

Consequently, the correlation among V∗(κ) with J(κ + 1) is demarcated in the follow-
ing manner:

V∗(κ + 1) ≤ J(κ + 1)

≤ V∗(κ)− ∥Γy(y∗η(κ))− yd(κ)∥2 − ∥Γuτ∗(κ)∥2 + λ∥∆SOC(κ + i)∥2 (59)

For κ = 0, the Lyapunov function (61) fulfills V∗(0) = 0, whereas for any κ ̸=
0, V∗(κ) > 0. The Lyapunov function (61) is monotonically non-increasing, namely,
V∗(κ + 1) ≤ V∗(κ). Consequently, the system (47) exhibits nominal stability.
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5. Simulation Results Analysis
This section validates the efficacy of the SOC-optimized path planning and trajectory

tracking framework through extensive simulations. The experiments demonstrate the col-
laborative optimization of path planning and tracking, analyze the dynamic management of
SOC consumption, and test the framework’s robustness under complex environments. The
GOA-PF algorithm with SOC optimization is employed for path planning, while an SOC-
optimized MPC controller ensures precise tracking of the planned path. By comparing with
traditional methods, key metrics such as path length, tracking error, and SOC consumption
are analyzed to highlight the advantages of the proposed framework in energy efficiency.

5.1. Path Planning and Tracking Control Results

In this experiment, we used a standard simulation platform for testing. The hardware
platform used for the experiment is a laptop computer with an Intel i7 processor, and the
runtime environment is the standard MATLAB 2024a simulation environment. We tested
the computational performance of the whole system (including path planning, control
optimization and SOC estimation) in a typical AUV task scenario. The simulation task
contains path planning, trajectory tracking, and battery SOC monitoring.

In our experiments, we measured the total computation time for each control loop.
Below is the average computation time for each part of the algorithm:

GOA-PF path planning: using a population size of 50 and an iteration number of
100 setup, the average computation time is 40 ms.

SOC-MPC control: the average computation time to solve the quadratic optimization
problem is 45 ms with a prediction time domain of 20 steps.

Based on these results, the total computation time for each control cycle of the whole
system is about 85 ms. Considering that the control frequency of the AUV is 10 Hz (i.e., the
control command is updated every 0.1 s), this computation time fully satisfies the real-time
control requirements.

Tables 1 and 2 give the parameters related to the studied AUVs and the design of the
control algorithm, respectively. The initial state defined is by the simulation is (0, 0, 0). The
end point is (100, 100, 100). AUV geopotential avoidance and current perturbations are
randomly generated according to (11) and (12). The initial state of AUV trajectory tracking
is [6, 3, 0, 0, 0, 0]T . In this Section 5.1, the simulation results of the AUV apply the proposed
framework by presetting various parameters of the AUV, Figure 7a demonstrates the effect
of planning the path and tracking control in the SOC-optimized seafloor terrain and current
environment, which bypasses the mountain while searching for the SOC-optimal path
as much as possible, and finally arrives at the preset target point from the starting point.
Figure 7b shows the fitness value of the GOA-PF algorithm with the traditional GOA
algorithm, Particle Swarm Algorithm (PSO), Whale Optimization Algorithm (WOA) at
100 iterations; the GOA-PF optimization algorithm has obtained the best fitness value after
weighing the shortest path with SOC reasonable descent. Compared to other algorithms,
although the convergence speed is not the fastest, the convergence accuracy is also the
best, which indicates that the GOA-PF optimization algorithm has a stronger patrolling
optimization ability for path and SOC descent as well as overall stability.
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Table 1. AUV Related Parameters.

Parameters Value Parameters Value

m 185 kg Yv 100 kg/s
Xu̇ −30 kg Y|v|v 200 kg/m
Yv̇ −80 kg Zw 100 kg/s
Zẇ −80 kg Z|w|w 200 kg/m
Iy 40 kgm2 Mq 50 kgm2/(s·rad)

Mq̇ −40 kgm2 M|q|q 100 kgm2/rad2

Iz 40 kgm2 Nr 50 kgm2/(s·rad)
Nṙ −40 kgm2 N|r|r 100 kgm2/rad2

Xu 70 kg/s X|u|u 100 kg/m
kt1 −0.2896 kq1 0.0084
kt2 −0.1114 kq2 0.0283
kt3 0.5420 kq3 0.0947
ε 0.0274 D 10 N·s/m

Table 2. Path planning and trajectory control parameters.

Parameters Value

Ts 0.2 s
Np 50
Nc 5
Γy2 diag[0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
Γu2 diag[1, 1, 1, 1, 1, 1]
cmax 1
cmin 0.004

l 1.5
f 0.5

(a) (b)

Figure 7. (a) Simulation results of 3D trajectory planning and tracking of AUV without current
disturbance; (b) Convergence curves for the fitness values of the two algorithms.

5.2. Comparative Analysis Without Perturbation

In order to verify the reasonableness of the established model and the effectiveness of
the GOA-PF algorithm as well as the overall optimization capability, the GOA-PF algorithm
is compared with the classical particle swarm optimization algorithm (PSO), the traditional
locust optimization algorithm (GOA), and the whale optimization algorithm (WOA) for the
planning of paths. For each algorithm, the control parameters are representative empirical
values and are derived from the original article. The GOA-PF algorithm searches for the
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global optimal path based on the locust optimization algorithm to find the lowest local
SOC consumption with the APF to construct the gravitational and repulsive fields in order
to optimize the energy consumption. The four optimization algorithms paths are shown in
Figure 8a. Figure 8b shows the path planning and trajectory tracking results of the seafloor
topography in the absence of current perturbation. As shown, the yellow and red solid
lines indicate the paths planned by the conventional GOA algorithm and the GOA-PF
algorithm, respectively, while the two dashed lines indicate the trajectory tracking paths
traveled by the conventional MPC as well as the SOC-optimized MPC controller. In the
absence of current perturbations, the traditional algorithm and the algorithm designed
in the article yield roughly the same results, and due to the absence of perturbations, the
algorithms both travel the shortest path possible to minimize SOC consumption.

(a) (b)

Figure 8. (a) Comparison results of path planning without ocean current interference; (b) Results of
trajectory tracking without current interference.

Figure 9 shows the position tracking error comparison results of different algorithms,
using the traditional planning and trajectory control algorithms, respectively, with the path
planning algorithm of the SOC optimization framework and trajectory tracking algorithms for
variable-by-variable comparisons; the three graphs show that there is a small magnitude of
overshooting error at the initial stage of tracking, and then the error tends to zero. Figure 10
shows the SOC under different algorithms degradation. Also, using the variable-by-variable
method for comparative analysis, the SOC optimization framework consumes roughly the
same SOC as the traditional algorithm in the absence of current interference.

(a) (b) (c)

Figure 9. Comparison of tracking errors in the absence of current disturbances. (a) Comparison
of GOA algorithm and GOA-PF algorithm; (b) Comparison of Traditional MPC control and SOC-
optimised MPC control; (c) Traditional versus SOC optimisation frameworks.
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(a) (b) (c)

Figure 10. Comparison of SOC consumption without current disturbance. (a) Comparison of GOA
algorithm and GOA-PF algorithm; (b) Comparison of Traditional MPC control and SOC-optimised
MPC control; (c) Traditional versus SOC optimisation frameworks.

5.3. Comparative Analysis with Perturbation

In the environment with random current disturbance, the path planning from the
starting point to the end point as well as the path tracking control should not only avoid
the obstacles of the seabed terrain, but also consider the impact of random currents on
the SOC consumption, which is introduced into the stochastic current model according
to Equation (12), and similarly, the GOA-PF algorithm will be compared to the classical
particle swarm optimization algorithm (PSO), the traditional locust optimization algorithm
(GOA), as well as the whale optimization algorithms for planning paths, as shown in
Figure 11a. Figure 11b shows the path planning and trajectory tracking results of the
traditional method and the method in the presence of current disturbances it can be found
that the traditional GOA algorithm and the proposed algorithm plan different paths, and
the two tracking algorithms also converge to the planned paths in a very short time to
achieve an accurate trajectory tracking. Figures 12 and 13 show the position tracking
error and SOC consumption under current disturbances. Combined with the path lengths
traveled under the different planning algorithms given in Table 3. Compared with the
traditional algorithm, the proposed SOC energy optimization framework travels 7.6 percent
more, but achieves an energy trade-off by deliberately bypassing the countercurrent area
and taking advantage of favorable fluid dynamic conditions. This targeted flow avoidance
mechanism reduces SOC consumption by 8.04 percent by optimizing propulsion efficiency,
thus offsetting the extended sailing distance with stronger energy savings.

Table 3. Different path planning algorithms and path lengths in different environments.

Algorithm Path Lengths Under Different Algorithms Without
Ocean Currents (m)

Path Lengths Under Different Algorithms for
the Ocean Current Case (m)

GOA 205.14 206.32
PSO 206.89 207.51

WOA 210.13 209.86
GOA-PF 208.11 221.83
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(a) (b)

Figure 11. (a) Comparison results of path planning under ocean current disturbances; (b) Comparison
results of trajectory tracking under ocean current interference.

(a) (b) (c)

Figure 12. Comparison of tracking errors during ocean current disturbances. (a) Comparison of GOA
algorithm and GOA-PF algorithm; (b) Comparison of Traditional MPC control and SOC-optimised
MPC control; (c) Traditional versus SOC optimisation frameworks.

(a) (b) (c)

Figure 13. Comparison of SOC consumption curves during current disturbances. (a) Comparison
of GOA algorithm and GOA-PF algorithm; (b) Comparison of Traditional MPC control and SOC-
optimised MPC control; (c) Traditional versus SOC optimisation frameworks.

6. Conclusions
In this paper, a new control framework combined with SOC optimization is proposed

to address the problem of energy management in the planning and tracking of the paths of
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autonomous underwater vehicles (AUVs). The efficacy of path planning in AUV missions
inside intricate underwater settings directly influences the vehicle’s energy efficiency, while
the precision of trajectory tracking impacts mission reliability and the rationality of energy
consumption. However, traditional path planning and control methods mostly aim at the
shortest path length or the strongest obstacle avoidance capability, with less consideration
of energy management, especially under real working conditions, ignoring the dual effects
of current interference, kinetic constraints, and battery SOC status on path selection and
trajectory control. To this end, this paper firstly establishes a six-degree-of-freedom model
of an underdriven AUV based on kinematics and dynamics, establishes an ocean current
model as well as a seafloor geopotential model in order to characterize the dynamics
constraints, and establishes a SOC state estimation model based on the ansatz-integral
method. Then, the GPA-PF path planning algorithm based on the overall SOC optimization
framework and the MPC trajectory tracking controller combined with SOC optimization
is designed, respectively. On the basis of the GOA global path planning algorithm, the
local paths are optimized based on SOC by combining with the APF algorithm, and
the precision and energy efficiency of path execution are further improved by the MPC
trajectory tracking controller, which realizes the deep coupling of path planning and
energy management. Simulation results show that the GOA-PF framework proposed
in this paper exhibits significant advantages in terms of path length, obstacle avoidance
capability, and SOC optimization, and compared with the traditional GOA algorithm, the
energy distribution of the planned path is more uniform, and the total SOC consumption
is significantly reduced, while the trajectory tracking error is effectively suppressed. The
research in this paper provides an effective solution for energy-efficient navigation of AUVs
in complex underwater environments and also expands the research field of path planning
and trajectory tracking based on SOC optimization. Future research efforts will focus on the
following aspects: first, validating the engineering applicability of the framework through
real-world underwater experiments; second, introducing real-time SOC feedback into
the controller design to improve the real-time performance of energy optimization; third,
exploring the application in multi-AUV collaborative tasks and investigating its scalability
in group coordination and energy management; fourth, combining more advanced energy
management systems, such as the hybrid energy model, to further optimize the range of AUVs.
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