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Abstract: As the demand for underwater robots in complex environments continues to
grow, research on their agile motion capabilities becomes increasingly crucial. This paper
focuses on the design and agile motion control of autonomous underwater vehicles (AUVs)
operating in subsea environments, addressing key issues such as structural design, system
modeling, and control algorithm development. An optimization model for the arrangement
of propellers is formulated and solved using a Sequential Quadratic Programming (SQP)
algorithm. Computational Fluid Dynamics (CFD) software is employed for hydrodynamic
analysis and shape optimization. A novel adaptive event-triggered nonlinear model
predictive control (AET-NMPC) algorithm is proposed and compared with traditional
Cascaded Proportional-Integral-Derivative (PID) control and event-triggered cascaded PID
control algorithms. Simulation and experimental results demonstrate that the AET-NMPC
algorithm significantly enhances the response capability and control accuracy of underwater
robots in complex tasks, with the trajectory tracking error being reduced to 4.89%. This
study provides valuable insights into the design and control strategies for AUVs, paving
the way for more sophisticated underwater operations in challenging environments.

Keywords: autonomous underwater vehicle agility; thruster layout; event-triggered control;
nonlinear model predictive control

1. Introduction

Autonomous underwater vehicles (AUVs) have become indispensable tools in a wide
spectrum of underwater applications, including oceanographic exploration, environmental
monitoring, infrastructure inspection, and search-and-rescue missions [1-4]. AUV perfor-
mance is often constrained by the inherent trade-off between hydrodynamic efficiency and
maneuverability [5,0]. Traditional torpedo-shaped AUV designs (e.g., REMUS and Bluefin)
are optimized for endurance and low drag, enabling long-range missions. However, these
vehicles exhibit limited agility and control authority, especially in confined, cluttered, or
dynamically changing environments [7,8].

In contrast, AUVs designed for seabed operations prioritize compactness, stability,
and precise maneuverability over long-range efficiency. These vehicles often feature non-
streamlined, boxy configurations and multiple thrusters with 6-DOF actuation, offering
superior position control and agility in complex terrains (Figure 1). However, such de-
signs typically suffer from increased drag, reduced speed, and limited endurance, making
them less suitable for large-scale or high-speed missions. For seabed AUVs, stability, ma-
neuverability, and responsiveness are of paramount importance. While hydrodynamic
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optimization can improve endurance and speed to some extent, the nonlinear, time-varying
nature of underwater dynamics—combined with unpredictable environmental distur-
bances such as ocean currents and turbulence—poses significant challenges for motion
control [9,10].

P
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Figure 1. Typical subsea AUV configurations.

Classical control strategies, including PID and LQR, are widely used due to their
simplicity and ease of implementation. However, these methods often lack robustness to
model uncertainties, actuator nonlinearity, and external disturbances [11,12]. Advanced
nonlinear control strategies, such as sliding mode control (SMC) [13], backstepping [14],
and model predictive control (MPC) [15,16], have demonstrated improved tracking and
disturbance rejection. Nevertheless, their practical deployment is often hindered by high
computational costs and sensitivity to inaccurate hydrodynamic modeling. Moreover, many
existing control frameworks ignore practical constraints such as thruster saturation, dead
zones, and actuator faults, which can severely degrade control performance—particularly
during aggressive maneuvers like sharp turning, docking, or disturbance rejection [17-21].

To address these challenges, this study proposes a novel agile AUV platform tailored
for subsea operations, along with a hybrid control strategy that combines nonlinear model
predictive control (NMPC) with an event-triggered PID framework. The main objectives of
this research are to:

Enhance the agility and trajectory tracking accuracy of the AUV;
Accommodate real-world actuator constraints;
Maintain control robustness in uncertain and dynamic underwater environments.

1.1. Related Work

In recent years, a variety of control techniques and AUV platforms have been proposed
to tackle the issues of agility and robustness in underwater environments. Table 1 presents
a comparative overview of representative state-of-the-art approaches in terms of AUV
design, control strategy, thruster constraint handling, and application domain.

Table 1. Comparison of related work.

Method AUV Type Control Strategy Constraints
SMC-Based AUV Control [13] Torpedo shape Sliding Mode Control No
Backstepping for AUV [14] Box type Backstepping No
MPC-Based Control [15] Torpedo shape Linear MPC Limited (no dead-zone modeling)
Fault-Tolerant Control [18] Box type Adaptive + Fault Detection Partial (faults only)
Event-Triggered PID [22] Box type Event-Triggered PID No

As shown in Table 1, most existing studies have either focused on simplified control
models that ignore actuator nonlinearities or applied computationally intensive algorithms
unsuitable for real-time deployment. Very few studies have effectively combined advanced
nonlinear control with practical constraint handling, especially in the context of agile seabed
AUVs navigating in uncertain environments.
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1.2. Innovation and Contributions

This research addresses the above limitations by integrating hydrodynamic optimization
and a computationally efficient hybrid control framework with the following capabilities:

e Combines event-triggered PID for low-level fast response with nonlinear MPC for
high-level prediction and constraint handling;

e  Explicitly models thruster dead zones, saturation, and potential actuator faults;

e Isimplemented on a custom-designed agile AUV platform with 6-DOF control and
multi-thruster configuration for seabed operation;

e Isvalidated through both simulation and physical pool experiments, demonstrating
enhanced agility, trajectory tracking accuracy, and robustness under disturbances.

By bridging the gap between advanced control theory and real-world underwater
application, this study contributes a novel, practical, and robust control solution for agile
AUVs operating in complex seabed environments. The rest of this paper is arranged as
follows: The methodology part begins with the design and implementation of a subsea
AUV, including thruster configuration, hardware integration, and software architecture to
support agile motion control. Following this, a comprehensive hydrodynamic performance
analysis is conducted to optimize the vehicle’s underwater behavior. To further enhance
control performance, an adaptive event-triggered predictive control strategy is proposed,
combining an event-triggered PID controller with a nonlinear model predictive control
(NMPC) algorithm. The effectiveness of the proposed design and control methods is vali-
dated through a series of simulations and pool experiments. This study concludes that the
integration of hydrodynamic optimization and advanced control algorithms significantly
enhances the AUV’s agility and precision, making it well suited for underwater exploration
and operational tasks in challenging terrain.

2. Design and Implementation of a Subsea AUV

This chapter provides a detailed overview of the design and implementation of the
AUV, including the thruster layout, structural design, hardware platform configuration,
and software system. By optimizing each design module, the AUV’s mobility, control
accuracy, and efficiency are enhanced, ensuring its capability to perform complex tasks
such as ocean exploration.

The mechanical design of the underwater AUV is formulated under the following key
assumptions and constraints:

(1) The AUV operates in a fully submerged condition with negligible wave effects;

(2) Structural deformation is considered negligible under operational pressure;

(3) Buoyancy and gravity centers remain constant during steady-state operation;

(4) Fluid-structure interaction follows potential flow theory for added mass calculations.

The overall 3D model of the AUV is shown in Figure 2a. The structure of the entire
underwater robot is made of HDPE material, with a hydrodynamic outer shell fabricated
using photosensitive resin through 3D printing, and the sealed cabin is constructed from
acrylic material. The outer shell primarily serves to protect the internal components of
the underwater robot from the impact of ocean currents and debris, while also providing
a streamlined shape that enhances hydrodynamic performance, reduces fluid resistance
during operation, and thereby lowers power consumption.
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Figure 2. (a) Overall 3D model; (b) internal framework.

The internal framework (Figure 2b) is a crucial structural component that supports
and secures various parts inside the robot, such as the pressure-resistant cabin. During
underwater maneuvers, it provides sufficient strength to keep all components tightly inte-
grated, overcoming inertial forces and fluid resistance to maintain coordinated movement.
The pressure-resistant cabin is designed to protect critical equipment such as batteries and
control system hardware, and the designed working depth is 100 m. The parameters and
constraints of the subsea AUV are given in Table 2a,b.

Table 2. Parameters and constraints of the subsea AUV.

(@)
Parameter Value Unit
Size 500 x 385 x 200 mm
Weight 8.5 kg
Thruster setting 4 horizontal, 4 vertical /
Cruising speed 3 knot
(b)
Constraint Content Note
Maximum operational depth 100m 1 MPa pressure
Material yield strength >9.6 MPa PMMA acrylic
Neutral buoyancy tolerance +0.05 kg

2.1. Thruster Configuration

The underwater robot designed in this study utilizes four horizontal thrusters and
four vertical thrusters. The horizontal thrusters are responsible for generating thrust for
horizontal movement and enable horizontal maneuvers such as zero turning radius rotation
through differential control. The vertical thrusters provide thrust in the vertical direction,
which is used to maintain the robot’s attitude during hovering, ensure a stable angle of at-
tack during horizontal motion, and offer driving force for small-range vertical movements.

When designing the layout of the thrusters, the selection of the angle « is of critical
importance. Firstly, the thrusters in the X-Y plane are related to three degrees of freedom
of the underwater robot: surge, sway, and yaw. Secondly, the proportion of the robot’s
travel distance or motion time in each of these three directions during a typical mission
needs to be estimated. In addition, special consideration is given to the robot’s acceleration
capability in these three degrees of freedom, as higher acceleration contributes to greater
agility and responsiveness of the underwater robot. F is the propulsion force and h; is the
arm of force. The angle a represents the angle between the force F and the X-axis, as shown
in Figure 3. Based on these factors, the optimal value of « can be determined through
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an optimization approach. L and W are the absolute distances from the point of force
application to the X and Y axes, respectively. Assume that the desired length proportions
in the three directions are a: b: ¢, where a + b + ¢ = 1. Based on geometric relationships, an
analytical expression of a function with respect to « can be derived as follows:

f(a) = aF cos(«) + bF sin(«) 4 cFhy 1)

h; = Lsin(a) + W cos(a) )

\\‘\ hl

@ (b)
Figure 3. (a)Thruster layout parameters; (b) top view of thruster layout.

The problem was modeled and converted into a standard optimization form:

min | = —f(«)

Fcos(a) — may >0
Fsin(a) —may, >0
Fhy — I, >0 ®)
a>0
F7—a>0
F_Fminzo

s.t.

Here, ay, &, and &, represent the minimum linear accelerations in the X and Y di-
rections and the minimum angular acceleration about the Z-axis, respectively. Fniy, is the
minimum thrust required for the underwater robot to operate. I denotes the moment
of inertia, and m is the mass of the AUV. The optimization problem is solved using the
Sequential Quadratic Programming (SQP) algorithm. SQP is an iterative method that is
particularly well suited for constrained optimization problems. It approximates the global
optimum by successively solving quadratic sub-problems.

The constraint parameters in Equation (3) are designed as follows:

ax =05m/s?,a, =05m/s? a; = 0.5m/s?
ab:c=1:1:1, F;, =035N,m = 8kg 4)
hy = 0.23311m, I = 0.179023258 kg -m?

Since the thrust F generated by the thrusters does not affect the solution of the objective
function, it is set to a constant value of 10. Solving the standard optimization problem
described in Equation (3), the optimal solution is found to be & = 77/4.
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2.2. Hardware Design

The hardware of the underwater robot uses STM32F411 as the main control unit.
An MPU9250 nine-axis gyroscope is employed to continuously acquire attitude data for
controlling the robot’s orientation, while an MS5837 pressure sensor is used to obtain depth
information, enabling precise control of the robot’s diving depth. The MCU must reserve
12C interfaces to communicate with both MPU9250 and MS5837. A Raspberry Pi is used
for executing complex algorithms and computational tasks, communicating with the MCU
via a TTL serial interface. The overall system structure is shown in Figure 4.

Power module —> Thruster MPU9520
~ t 7
Photodiode <+— MCU «— Rasberry Pi
P RN
RS485 Temperature MS5837
sensor

Figure 4. Hardware platform.

2.3. Software Design

The overall software architecture, illustrated in Figure 5, plays a central role in the inte-
grated design and agile motion control of the underwater robot. At the core of the system is
a control board built around the STM32F411CEU6 microcontroller, which is interfaced with
peripheral sensors, driver circuits, voltage regulation modules, and network communica-
tion ports. The software running on this embedded platform is responsible for acquiring
real-time data on the robot’s attitude and depth and executing control algorithms to realize
key functionalities such as self-stabilization, depth holding, and GPS-guided navigation.
Through a TTL serial interface, the onboard software also enables seamless data exchange
with the host computer, supporting higher-level mission planning and monitoring.

Host PC

Control Interface TTL Serial MCU UART
GUI STM32F411CEU6

H

Control Board

Attitude Control MPU Attitude
Module Sensor(12C)

!

Depth Control
Module

$

Cruising Control
Module

§

Control Algorithm
Module

N ed [ Pwm/Gpio |
Module PWM/GPIO

Voltage Regulating _

Module '—_Battery

Figure 5. Software architecture.
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To ensure precise attitude estimation and rapid response to dynamic underwater
conditions, the software integrates a high-performance inertial measurement unit (IMU),
MPU9250, as the primary attitude sensor. MPU9250 delivers fused orientation data—
including rotation matrices, quaternions, and Euler angles—via an I>C interface. The
microcontroller communicates with the sensor through the SCL and SDA pins, enabling
efficient data retrieval.

Internally, the MPU9250 uses seven ADC channels to convert physical motion param-
eters such as gravitational acceleration and angular velocity into electrical signals, storing
them in internal registers. The software reads these registers to obtain real-time attitude in-
formation and configures the IMU’s operating modes by writing to its control registers. This
tightly integrated hardware-software architecture enables the underwater robot to perform
responsive, stable, and precise motion control in complex underwater environments.

3. Hydrodynamic Performance Analysis

Underwater robots are subjected to various forces during navigation, primarily includ-
ing radiation forces, external forces from the marine environment, and thrust from actuators.
Due to the complex structure of underwater robots, it is difficult to obtain accurate data
models using traditional empirical formulas. Therefore, this paper employs numerical
simulation methods to conduct hydrodynamic simulations of an underwater AUV.

In this study, the software STAR-CCM+ was used to simulate and calculate the drag
force. The SST k-w turbulence model was selected for the simulation. A three-dimensional
rectangular water body was chosen as the computational domain. The underwater vehicle
was placed in an infinite seawater environment. The front face in the longitudinal direction
was defined as a velocity inlet, where a prescribed inflow velocity was applied. The rear face
was set as a pressure outlet, with the reference pressure taken as the standard atmospheric
pressure, corresponding to a gauge pressure of zero. The surfaces of the underwater vehicle
and the lateral boundaries of the domain were defined as no-slip walls.

The computational domain was meshed using a trimmed mesh approach, and a three-
layer mesh transition zone was established to ensure the accuracy of the simulation results.
The total number of mesh cells in the domain was 2,482,359. Figure 6a,b shows the surface
mesh and the longitudinal section mesh of the computational domain, respectively.

(a)

Figure 6. (a) Mesh generation of underwater AUV; (b) mesh generation of calculation region.

The Grid Convergence Index (GCI) method was employed in this study to verify
the mesh convergence. Three sets of grids with different resolutions—coarse, medium,
and fine—were generated to calculate the longitudinal hydrodynamic resistance of the
underwater vehicle. The mesh sizes are listed in Table 3. @1, ®,, and @3 represent the
numerical results obtained from the coarse, medium, and fine grids, respectively. D2t
denotes the extrapolated value based on the medium- and fine-grid results. The relative
error between the medium- and fine-grid results is denoted as ex21, while the relative error



J. Mar. Sci. Eng. 2025, 13,1072

8of 19

between the fine-grid result and the extrapolated value is denoted as eoxt?t. As the grid
was continuously refined, the computational results exhibit a convergent trend, with a
grid uncertainty less than 3.0%, as shown in Table 4. Therefore, considering the factors of
computation time and resource, the medium grid was adopted for subsequent calculations.

Table 3. Three sets of computational grids of different sizes.

No. Mesh Quality Minimum Mesh Size/m Total Mesh Number
1 Fine 0.003 5,343,711
2 Medium 0.004 2,482,359
3 Coarse 0.005 1,382,596

Table 4. Calculation results of grid convergence.

$1 $2 $3 2 e2! e GCIy

37.85 38.25 38.31 37.72 0.011 0.003 0.42%

In the motion control equations, it was necessary to obtain the drag coefficients of the
AUV. To determine the drag characteristics at different speeds, we selected three classic
operating velocities—1, 2.5, and 3 knots—as test cases. The average simulation values after
stabilization are presented in Table 1. The velocity distributions of the underwater robot
at cruising speeds of 1 knot, 2.5 knots, and 3 knots are shown in Figure 7. A stagnation
point was observed at the front, where the fluid velocity decreased. As the cruising speed
increased, the low-velocity region at the rear became significantly larger, indicating an
increase in wake length. For hydrodynamic drag reduction, we optimized the original rect-
angular hull into a streamlined, turtle-shell-shaped design with curved surfaces. Through
hydrodynamic simulation analysis, we found that the turtle-shell-shaped outer casing
reduced drag by 22% compared to a rectangular form, as shown in Table 5. The derived
drag coefficients were incorporated into the motion control model, enhancing real-time
responsiveness. This work demonstrates a seamless integration of simulation and control,
advancing the design of agile and efficient underwater robots.

(@ (b) ©

Figure 7. Speed distribution of underwater robot’s forward motion: (a) 1.0 knot, (b) 2.5 knots, and (c)
3.0 knots.

Table 5. Comparison of resistance under different speeds.

Turtle Shell Shape Rectangular Shape
Speed/Knot Resistance/N Resistance/N
1.0 6.40 7.80
2.5 38.25 45.90

3.0 54.61 66.62
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4. Adaptive Event-Triggered Predictive Control Algorithm

The core idea of event-triggered control (ETC) is to update control inputs only when
specific triggering conditions are met—such as when system state changes exceed a prede-
fined threshold—rather than relying on continuous sampling and actuation. This study
uniquely integrates ETC with the agile motion control of underwater robots, addressing key
challenges in resource efficiency and performance under dynamic marine conditions. Un-
like traditional periodic control, ETC significantly reduces communication bandwidth and
energy consumption by transmitting data only when necessary. Moreover, it enhances re-
sponsiveness in complex underwater environments by enabling real-time, condition-based
adjustments. To further explore its potential, this research implements both event-triggered
PID control and nonlinear model predictive control (NMPC), offering a novel framework
for improving underwater robot agility and robustness in uncertain conditions.

The primary motivation for employing an event-triggered approach lies in its efficiency
in resource utilization and its capability to handle the computational constraints often
encountered in embedded systems for underwater robotics.

In traditional time-triggered control, the controller updates its actions at fixed time
intervals, regardless of whether the system state has significantly changed. While simple
and predictable, this can lead to unnecessary computations and communications, especially
in systems with limited bandwidth or power constraints, as is often the case in underwater
environments. In contrast, an event-triggered control scheme updates the control input
only when a predefined condition or “event” is satisfied. Compared with the state of the art,
it helps to reduce computational load and energy consumption. It may increase complexity
in triggering condition design and potential for Zeno behavior, which can be avoided by
incorporating a minimum inter-event time.

4.1. Event-Triggered PID Algorithm

The cascade PID control algorithm is a feedback control strategy in which multiple
control loops work in coordination. It is widely used in complex systems that require
multi-level control. Compared to the traditional single PID control, cascade PID employs
an inner loop and an outer loop to optimize different dynamic characteristics separately,
enhancing both control accuracy and system stability. The outer PID loop is responsible for
controlling slower-varying variables (such as position or attitude), while the inner PID loop
handles faster dynamic changes (such as speed or acceleration). The advantage of cascade
PID lies in its ability to decouple control tasks across different time scales, reduce delay
and cumulative error, and improve both control precision and response speed.

The structural model of the control system based on the event-triggered cascade
PID (ET-CPID) algorithm studied in this section is shown in Figure 8. In this system,
a PID controller is used to adjust the AUV’s control inputs, ensuring that the system
follows the desired trajectory or velocity according to the given target. Within this control
system, the state variable x(t;) and the reference value x, interact with the PID controller
through a feedback loop. The change in velocity is used as part of the control input, which
directly influences the motion of the AUV. The system also incorporates an event-triggered
mechanism, which monitors changes in the system state in real time based on predefined
trigger conditions. This mechanism evaluates the feedback state variable information to
determine whether the trigger condition is satisfied, thereby deciding whether to update
the control output.
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Speed variable

PID AUV X

Zero-order
holder

Event
generator

Figure 8. Event-triggered PID algorithm control architecture.

The key to event triggering lies in the design of the trigger condition. The condition
adopted in this paper is shown in Equation (5).

le(tr) —e(ts)| > eimOr Tact > Tmax (5)

A new control signal is computed either when the absolute difference between the
current error e(f;) and the error at the last control update e(t;) exceeds a predefined threshold
elim or when the elapsed time, T, since the last sampling exceeds the maximum allowable
interval, Tmax. The latter condition serves as a simple safety mechanism, ensuring that
under transient conditions (such as setpoint changes or load disturbances), the controller
operates at the nominal sampling time, while under steady-state conditions, it operates at
the maximum sampling interval.

4.2. Nonlinear Model Predictive Control

The desired trajectory of the underwater robot is defined as shown in Equation (6),
Xier i the six-degree-of-freedom reference state value of the underwater AUV.

T
Xref = [xrefr YrefrZrefs Prefs Grefr lprefr Oxrefr Oyrefr Uzrefr Wxref r Wyref r Wzref (6)

The objective of trajectory tracking control is to minimize the error between the actual
state of the AUV and the desired state as much as possible. The discrete system model of
the control objective is defined as x; 1 = f (X, uy). The tracking error at the (k)-th discrete
time step is defined as xj, = x;—x}, and the penalty function of the NMPC controller can
thus be expressed as

N-1
T
T 1) = X7 QenaXie + Y (Xiﬂ Qyq + “IzﬂR”kH) )
i=0

Q is the state penalty matrix, Q. is the terminal state penalty matrix, and R is the
orthogonal identity matrix. By computing the full set of desired states at different time steps
along the reference trajectory and inputting them into the NMPC controller as reference
states, the control output at the current time step can be obtained, thereby enabling the
tracking of the desired trajectory.

The proposed control strategy, based on an adaptive event-triggered mechanism, is
illustrated in Figure 9. This strategy employs an independently designed event-triggering
scheme that intelligently evaluates the system state to dynamically determine the com-
munication schedule across the sensor—controller-actuator loop, significantly reducing
redundant data transmission between components.
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Compared to traditional periodic sampling or tightly coupled triggering schemes, the
modular architecture of the proposed mechanism separates communication scheduling
from control law design. This not only enhances system flexibility but also introduces an
adaptive, dynamically tuned gain based on tracking error, which effectively compensates
for the effects of uncertain disturbances, sampling quantization errors, and actuation delays.

Adaptive control
xref
ActuatorH System X Sensor 1 L

3

u

Zero-order

y

holder
Event-trigger R
mechanism 7

Controller

Figure 9. Event-triggered NMPC algorithm control architecture.

The event-triggered error is typically defined as the deviation between the current
system state, x;, and the desired state, %, i.e.,

e(t) = x(t + At) — £(t) (8)

where x(f 4+ At) denotes the system state at the next time step, and £; represents the value
held in the zero-order hold at time (t). The corresponding event-triggering condition is
given by:

le(®)]] < er 9)

where et is a predefined threshold. In this work, the computation error under the event-
triggered mechanism is expressed as

(1-w?)

1
T MQIKOI+ il (10)

&2 =
where A(Q) denotes the minimum eigenvalue of matrix Q, r is a lower triangular matrix
with positive real diagonal entries satisfying R = 7T, « € (0,1) is a design parameter,
and 1" represents the optimal control input obtained from the NMPC at each sampling
instant. To adaptively regulate the event-triggering threshold, an adaptive dynamic gain
is introduced:

L = max{ Hx(t) = X(8)e¢ [, 0.01} (11)

where L denotes the adaptive dynamic gain, initialized at zero. Since its derivative is always
positive, L is monotonically increasing and can grow sufficiently large. This gain adjusts its
value based on the error between the current state and the reference state, thereby enabling
a more effective regulation of the event-triggering threshold.
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5. Simulation and Experimental Results

In this section, we first propose a unified evaluation coefficient to normalize dif-
ferent physical dimensions and quantitatively assess the motion performance of subsea
autonomous underwater vehicles (AUVs). Using the subsea AUV designed in this study
as a prototype, we then conducted both MATLAB R2022b simulations and controlled
pool experiments. The performance of the motion control algorithm is evaluated through
point-to-point trajectory tracking tasks, focusing on its accuracy, stability, and robustness
under realistic operating conditions.

In this part of this study, we carried out a test to evaluate the AUV’s ability to move
from an initial position (0, 0, 0) to a target (5 m, 10 m, 15 m) while maintaining fixed attitude
angles (roll = 20°, pitch = 30°, yaw = 45°). The goal is to assess positioning accuracy and
attitude stability under different control strategies (CPID, ET-CPID, AET-NMPC). The test
parameters and results are shown in Table 6.

Table 6. Experiment setup.

Item Parameters
Reference Trajectory (0,0,0) - (5m, 10 m, 15 m)
Attitude Reference Roll = 20°, Pitch = 30°, Yaw = 45°
Control Algorithms CPID, ET-CPID, AET-NMPC
Performance Metric RMSE (Position and Attitude)

5.1. Evaluation Index of Control Algorithm

In this study, the underwater robot exhibits six degrees of freedom (6-DOF) in its
motion characteristics. When evaluating control algorithmes, it is not sufficient to assess
each degree of freedom in isolation. To facilitate a more objective and comprehensive
evaluation of the relative performance of different algorithms, a composite performance
index is introduced. This index simultaneously considers the motion states across all six
degrees of freedom, enabling a more scientific comparison of various control strategies and
providing a reliable basis for subsequent optimization and improvement.

X

—_— 12
o (12)

Xnorm =

Given that the experimental data involve variables with different units and magni-
tudes, a normalization process is applied to ensure dimensionless data representation.
This standardization ensures consistency across different motion axes during computa-
tion. Specifically, the state values are divided by their corresponding reference values to
eliminate dimensional discrepancies, as shown in Equation (12):

RMSE = | 13 |e;]?
= -_— é;

Mo (13)
e=1-X__ i=1...M

normrs

5.2. Simulation Results

In the design of NMPC, several key parameters need to be configured, including
velocity constraints, position constraints, a state penalty matrix, and a control penalty
matrix. In this study, a commonly used linear quadratic cost function is adopted, in which
the state penalty matrix and the terminal state penalty matrix are set as follows:

Q = diag(6,6,6,0.1,0.1,0.1)

14
Qena = diag(30,30,30,1,1,1) (14
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The control penalty matrix is defined as
R =diag(1,1,1,1,1,1) (15)

Both the prediction horizon and control horizon are set to 5. The constraints of the
thrusters are defined as
Tmin = —30N, Tmax = 30N (16)

The constraints applied in the NMPC design—on thruster output, velocity, position,
and attitude angles—were chosen to reflect realistic the physical and operational limits of
the AUV system. These constraints ensure that the control commands generated by the
NMPC remain feasible and safe during execution. The constraints are aligned with those
used in real-world tests.

The velocity constraints are set as

—-35m/s < v, <35m/s
—3.5m/s < v, <3.5m/s
—35m/s < v, <35m/s
—7m/2rad < wy < 71/2rad
—7t/2rad < wy < 7t/2rad
—m/2rad < w, < 7 /2rad

(17)

The position and attitude angle constraints are set as

—1000m < x < 1000m
—1000m < y < 1000m
Om < z < 2000m
—nrad < ¢ < mrrad
—rmrad < 0 < ;rrad
—nrad < ¢ < mrrad

(18)

Among them, the yaw angle is constrained within the range of — 7 to 7. Values beyond
this range indicate the number of full rotations (in the positive or negative direction) the
ROV has made relative to its initial orientation. Since the current NMPC prediction model
cannot handle sudden transitions within the —7 to 7t range, this method is used to address
the issue.

Initially, the AUV is at rest, and its starting position is considered the origin. The initial
values of its state variables are

T T
qozoooooo],soz[oooooo (19)

in which gy is the velocity initial state, and sy is the state initial state. Due to the highly
complex terrain of the seabed, the underwater robot must be capable of maintaining a fixed
attitude when navigating through challenging environments (e.g., passing through narrow
openings). Therefore, the objective of this task was for the underwater robot to maintain a
roll angle of 20 degrees, a pitch angle of 30 degrees, and a yaw angle of 45 degrees while
moving from its initial position to the target position of (5, 10, 15). A simulation was
conducted using the traditional cascaded PID control algorithm, and the PID parameters
were tuned as much as possible within the simulation. The resulting position and attitude
simulation outcomes are shown in Figure 10.
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Figure 10. Simulation results of position and attitude of cascade PID algorithm.

The simulation was conducted using an event-triggered cascade PID (ET-CPID) algo-
rithm, with the trigger conditions set to e}y, = 0.1 and Tmax = 10. The position and attitude

simulation results are shown in Figures 10 and 11.
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Figure 11. Simulation results of position and attitude of event = triggered cascade PID algorithm.

A simulation was also conducted using an adaptive event-triggered nonlinear model
predictive control (AET-NMPC) algorithm, with the design parameter a set to 0.3. The
position and attitude simulation results are shown in Figure 12, and the event trigger times

and intervals between adjacent events are shown in Figure 13.



J. Mar. Sci. Eng. 2025, 13,1072 15 of 19

16 50

40

= —
c [
£ B El
17} =]
£ Z
6
10
m, —Desired Roll
— Desired y —Desired Pitch
Desired z 0 Desired Yaw
—X —Roll
y —Pitch
—— -10 | CYaw
0 10 20 30 40 50 0 10 20 30 40 50
Time(s) Time(s)

Figure 12. Simulation results of position and attitude of NMPC algorithm based on adaptive
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Figure 13. Point-to-point trajectory diagram.

The trajectory plots of the three algorithms are shown in Figure 13, and the six-
degree-of-freedom tracking errors are shown in Figure 14. It can be seen that all three
algorithms successfully achieved point-to-point position tracking from the starting point to
the endpoint, following a fixed desired attitude—namely, a desired roll angle of 20 degrees,
a desired pitch angle of 30 degrees, and a desired yaw angle of 45 degrees—thus meeting
the expected experimental objectives. Using the evaluation method described in Section 4.1,
the simulation results were analyzed. Since the AUV’s state variables include both position
(meters) and attitude angles (degrees), directly comparing their errors would be problematic
due to the different units. To address this, the authors normalize the errors to make them
dimensionless, ensuring a fair comparison. The formula is shown in (20)-(22).

X
Xnorm = X7f
re

(20)
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Figure 14. Trajectory error diagram.
The dimensionless error values for each algorithm are shown in Table 7.

Table 7. Non-dimensional error values of different algorithms.

CPID (%)
15.6966

ET-CPID (%)
5.7583

AET-NMPC (%)
4.8928

Algorithm

In the point-to-point tracking task, the AET-NMPC algorithm performed the best, with
a dimensionless error value of 4.89%. In comparison, the ET-CPID had an error of 5.76%,
while the CPID showed an error of 15.70%. In terms of error, AET-NMPC outperformed
ET-CPID by 0.87 percentage points and surpassed CPID by 10.81 percentage points. These
results indicate that AET-NMPC offers superior path tracking accuracy in point-to-point
tasks. AET-NMPC could accurately predict the future trajectory and dynamically adjust
control parameters based on the error, significantly reducing deviations. Leveraging its
model predictive capabilities, AET-NMPC responded more rapidly to path changes, achiev-
ing higher precision. Although ET-CPID’s error was slightly higher than that of AET-NMPC,
it still demonstrated adequate performance in simple point-to-point tasks. However, it
lacks the precise path adjustment capabilities of AET-NMPC. The CPID algorithm exhibited
significantly larger errors, indicating that it is less effective at handling dynamic changes
during control in point-to-point tasks, which leads to accumulating deviations.

5.3. Experimental Validation

The experiments were conducted in an indoor water tank equipped with glass observa-
tion windows, measuring 10 m in length, 6 m in width, and 4 m in depth. The experimental
setup and conditions are illustrated in Figure 15.
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Figure 15. Indoor experimental conditions.

We conducted trajectory tracking experiments in the pool under the same conditions
as the simulation, with the comparative results shown in Figure 16. Figure 16 presents the
trajectory tracking points using both the adaptive event-triggered AET-NMPC algorithm
and the event-triggered cascade PID algorithm. And the trajectory tracking error chart is
shown in Figure 17. Experimental results reveal that the AET-NMPC algorithm, which
is based on adaptive event-triggered mechanisms, offers higher accuracy and stability
compared to the event-triggered cascade PID algorithm. The AET-NMPC approach demon-
strates greater robustness in handling complex and dynamic environments. Although it
imposes a higher computational load, the event-triggered mechanism effectively mitigates
this by reducing the frequency of computations and communications, enhancing its practi-
cality in real-world applications. Moreover, the predictive capability of the AET-NMPC
algorithm allows for more precise adjustment of control inputs under external disturbances,
significantly improving overall control accuracy.

m  CPID
ET-CPID
A AET-NMPC

Z(m)

Y(m) S (] X(m)

Figure 16. Trajectory tracking curves of different algorithms.
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Figure 17. Trajectory tracking error chart.

In conclusion, the AET-NMPC algorithm with adaptive event-triggering outperforms
the event-triggered cascade PID algorithm in complex environments, particularly in scenar-
ios involving nonlinear dynamics and external disturbances. Despite its relatively higher
computational demands, the AET-NMPC algorithm’s optimized control strategy delivers
notable advantages in terms of accuracy and robustness, making it a promising solution for
complex control tasks.

6. Conclusions

This paper presented the design and development of an autonomous underwater
vehicle (AUV) aimed at navigating complex seafloor terrains with enhanced agility and
trajectory tracking accuracy. To address this objective, a comprehensive approach was im-
plemented, covering hydrodynamic optimization, mechanical structure design, and control
algorithm development. Hydrodynamic simulations and shape optimization improved the
vehicle’s stability and maneuverability, laying a solid foundation for precise motion control.
A novel adaptive event-triggered model predictive control (AET-NMPC) algorithm was pro-
posed to enhance control performance in dynamic and uncertain underwater environments.
Through Simulink-based simulations and comparative analysis with conventional PID
and event-triggered PID controllers, the AET-NMPC algorithm demonstrated significantly
improved control accuracy and responsiveness. A small-scale AUV prototype was devel-
oped to validate the feasibility of the proposed system. Experimental results confirmed
the effectiveness of the integrated hardware and software platform as well as the superior
performance of the AET-NMPC algorithm, with the trajectory tracking error being reduced
to 4.89%. Overall, this research successfully fulfilled its objective by achieving agile motion
control and accurate trajectory tracking through the synergy of hydrodynamic optimization
and advanced control strategies. These findings contribute to the advancement of AUV
technologies, particularly for applications requiring high-precision navigation in complex
underwater environments.
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