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Abstract: Reinforcement learning has made significant progress in single-agent applica-
tions, but it still faces various challenges in multi-agent scenarios. This study investigates
the application of reinforcement learning algorithms in a competitive game scenario of
multi-autonomous underwater vehicle (multi-AUV) hunting the evaders. We introduce
an optimality operator and redefine the objective function of multi-agent reinforcement
learning (MARL), transforming the uncertain states of other agents into solvable inference
problems, namely the Regularized Competitor Model (RCM). Leveraging RCM, multi-agent
systems can optimize strategies in competitive game training more efficiently. We verify
and analyze the performance of the proposed algorithm in a multi-AUV hunting scenario.
Simulation results demonstrate that the proposed algorithm exhibits strong adaptability
and a higher success rate than the baseline in hunting the evaders.

Keywords: multi-agent reinforcement learning; soft actor–critic; multiple autonomous
underwater vehicle hunting

1. Introduction
Deep Reinforcement Learning (DRL) allows agents to have independent exploration

and learning capabilities, which enable them to interact continuously with the environment
and enhance their behavior through trial and error [1]. Leveraging this, DRL algorithms
can assist multiple Autonomous Underwater Vehicles (AUVs) in making independent
decisions in complex underwater environments. AUVs are capable of learning optimal
behavioral strategies to accomplish specific tasks, such as searching [2,3], tracking [4–6],
detecting [7], or hunting [8,9]. This ability allows AUVs to make intelligent decisions based
on the current context without the need for strict manual control [10]. Given the dynamic
nature of underwater environments, DRL algorithms contribute to improving the efficiency
of multi-AUV systems by optimizing resource utilization, reducing energy consumption,
and shortening task completion time, thereby enhancing overall performance [11].

Unfortunately, traditional reinforcement learning approaches such as Q-Learning or
policy gradient are poorly suited to multi-agent environments [12]. One major challenge
is that the strategy of each agent evolves during training, making the environment non-
stationary from the perspective of any individual agent [13]. This poses learning stability
challenges and prevents the direct use of past experience replay [14]. The presence of
multiple agents introduces additional uncertainty to the environment. Therefore, the ca-
pability to deduce the characteristics of other agents, such as beliefs, private information,
behaviors, and strategies, is crucial [15]. Moreover, the actual operational environment
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of AUVs is inherently complex and poses higher risks. Consequently, it is necessary to
perform pre-training to ensure the adaptability and effectiveness of AUVs in challenging
conditions. The diversity of the pre-training environment significantly impacts the overall
performance of the trained policies [16].

To address these challenges and difficulties, researchers have proposed numerous
Multi-Agent Reinforcement Learning (MARL) algorithms. Rashid et al. [17] proposed
the QMIX method, which employs a hybrid network to estimate joint action-values as a
monotonic combination of per-agent values. By leveraging a hybrid network to combine
single-agent local value functions and incorporating global state information during train-
ing, the performance of the algorithm is improved. Additionally, this ensures consistency
between centralized and decentralized policies. MADDPG [14], an extension of the DDPG
algorithm proposed by OpenAI, adopts a centralized training and decentralized execution
approach. Its structure mirrors that of DDPG, with each agent utilizing an independent
actor network to observe state outputs and determine actions. However, it faces challenges
in large-scale MARL with numerous agents due to the need to train separate actor networks
for each agent, which potentially leads to increased computational burden and suboptimal
performance. Foerster et al. [18] proposed a Bayesian Action Decoder (BAD) in 2019. BAD
uses neural networks to allow each agent to infer information about their teammates. To
avoid infinite recursive thinking, a public belief system is established by the system [19],
which represents all publicly available information about the game state, previous actions,
and inferred perspectives of other agents without direct observation. Each agent takes
action based on their own observations under the guidance of public belief. Throughout the
process, the action space consists of deterministic local strategies that can be sampled for
a given common state. In multi-agent training methods, inference related to other agents
generally involves strategic interactions among intelligent agents.

Opponent modeling has recently emerged as a crucial component within MARL,
enabling agents to effectively anticipate and adapt to the behaviors of other learning agents.
Recent studies have framed opponent modeling as a probabilistic inference problem. Wen
et al. [20] introduced Probabilistic Recursive Reasoning (PR2), which models each agent’s
policy as a conditional distribution, recursively considering the potential future actions
of other agents. Another significant contribution is ROMMEO (Regularized Opponent
Model with Maximum Entropy Objective) [15], which introduces regularization based on
maximum entropy principles to stabilize the learning process and jointly optimize both
the agent’s policy and its beliefs about opponents. Additionally, Davies [21] proposed
Learning to Model Opponent Learning (LeMOL), which develops a structured model
of opponents’ learning dynamics. This structured opponent model is shown to be more
accurate and stable than naive behavior cloning baselines and can enhance the performance
of algorithmic agents in multi-agent settings.

Game-theoretic approaches facilitate decision-making and strategic interactions across
multiple application domains by considering model complexity, decision support capabili-
ties, and employing strategy analysis tools. In the context of MARL, competitive games
that incorporate multiple factors, such as the number of participants and the diversity of
strategies, facilitate the analysis of the consequences and potential outcomes associated
with different strategic choices [22]. This enhances the understanding of the complexity
and uncertainty inherent in real-world scenarios, thereby assisting decision-makers in
formulating strategies and counterstrategies.

This paper combines game training methods with MARL, and proposes a Regularized
Competitor Model-based Algorithm (RCM) to enhance the performance of multi-AUV
systems in hunting tasks. The main contributions are as follows:
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(i) Integrating the Competitor Model into the Objective Function. By introducing a binary
stochastic variable, denoted as ‘optimality’ (o), this study transforms the strategy
modeling of a single agent interacting with other agents into a probabilistic inference
problem. The likelihood variational lower bound for achieving optimality is derived
as a new objective function for MARL, while the strategies of competitors are modeled
using a regularization approach. The competitor model can more accurately learn
the strategies of other agents, improve the training efficiency of MARL, and achieve
faster convergence.

(ii) Training within a Competitive Game Framework. When converging to a Nash equi-
librium, each intelligent agent selects its optimal strategy given a fixed competitor
strategy to maximize its own gains. Applying the same reinforcement learning model
to both competing sides enables diverse simulation experiments and improves the
generalization ability of training.

The rest of this paper is organized as follows: Section 2 introduces the proposed
algorithm framework and outlines the basic model and concepts. It incorporates the com-
petitor model into MARL, enabling the inference of other agents’ strategies by optimizing
an optimality variable. This leads to the proposal of a Maximum Entropy Reinforcement
Learning Algorithm based on Regularized Competitor Model (RCMAC). Section 3 presents
a case study on the application of the algorithm in an underwater multi-AUV hunting
scenario involving intelligent evaders. Specific configurations for state, action, and reward
functions for this scenario are outlined. Section 4 demonstrates the performance of the
algorithm in various hunting scenarios and evaluates RCMAC. Finally, Section 5 presents
the conclusions.

2. Maximum Entropy Reinforcement Learning Algorithm Based on
Regularized Competitor Model
2.1. The Proposed Framework

This study adopts the centralized training and decentralized execution (CTDE) frame-
work similar to MADDPG. Thus, policies may utilize additional information to simplify
training, provided such information is not used during testing. This approach is unsuitable
for Q-learning since the Q-function typically cannot incorporate different information
between training and testing. Consequently, distinct from MADDPG, a competitor model
ρ is introduced to explicitly learn additional information about other agents’ strategies
during both training and testing.

As shown in Figure 1, within the CTDE framework, the observation restricts the
learned policies to use only local information during execution (i.e., their own observation
data). The policy network πi of agent i makes decisions based on its own observations, and
the improved critic target function comprises two parts. During training, it can optimize
the information from other agents. Here, Qi, similar to conventional methods, is used to
evaluate the action-state value of the agent itself in the current multi-agent scenario, while
ρi is used to quantify the impact of other agents’ current optimal policies on the agent itself.
Figure 1 illustrates the process of distributed execution for each intelligent agent within the
framework. It is important to note that the policy network relies not only on the current
observation state oi

t of the agent but also makes decisions based on competitor actions â−i
t

inferred through the competitor model. This iterative process is followed to complete the
planning strategy for each agent.
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Figure 1. The framework of the proposed algorithm.

2.2. Competitive Games

For the n-agent competitive game, a tuple
(
S ,A1, . . . ,An, R1, . . . , Rn, p, T , γ

)
is de-

fined, where S represents the state space, p denotes the initial state distribution, and γ

refers to the discount factor, For each agent i ∈ {1, . . . , n}, the action set and reward func-
tion are given by Ai and Ri = Ri(s, ai, a−i), respectively. The state transitions are given
by the transition function T : S ×A → S , where A =

{
A1, · · · ,An} is the combined

action space.
Agent i selects an action ai ∈ Ai based on its policy πi

θi

(
ai | s

)
, which is parameterized

by θi given the state s ∈ S . We define the joint policy across all agents as πθ , with θ

representing the joint parameters. For convenience, this joint policy can be viewed from
agent i’s perspective as πθ =

(
πi

θi

(
ai | s

)
, π−i

θ−i

(
a−i | s

))
, where a−i =

(
aj)

j ̸=i, θ−i =
(
θ j)

j ̸=i

and π−i
θ−i

(
a−i | s

)
denotes the joint policy of all agents other than i. In each step of the game,

agents choose their actions simultaneously. The goal of each agent is assumed to maximize
its expected cumulative reward, formulated as

maxηi(πθ) = E
[

∞

∑
t=1

γtRi
(

st, ai
t, a−i

t

)]
(1)

with
(

ai
t, a−i

t

)
sample from

(
πi

θi , π−i
θ−i

)
. For fully cooperative scenarios, it is presumed

that at least one joint policy πθ exists, enabling all agents to attain the highest possible
cumulative reward together.

2.3. Regularized Competitor Model

By introducing a binary random variable oi
t, which signifies the “optimality” of agent

i at time t, we convert the decision-making process into an inference task. In single-agent
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scenarios, the reward R(st, at) has a finite bound, but the exact probability of achieving
the highest reward for a given action at remains uncertain. Hence, ot can be viewed as a
stochastic variable, and its probability distribution can be described as P(ot = 1 | st, at),
satisfying P(ot = 1 | st, at) ∝ exp(R(st, at)). According to this equation, higher rewards
imply greater probabilities of optimality (ot = 1). However, the concept of “optimality” in
multi-agent settings differs slightly from its interpretation in single-agent problems.

P
(

oi
t = 1 | o−i

t = 1, st, ai
t, a−i

t

)
∝ exp

(
R
(

st, ai
t, a−i

t

))
(2)

Here, we define the symbol J as a general representation of an objective function.
JX(Y) denotes the objective function of the variable X with respect to parameter Y. In
particular, J without subscripts refers to the general form of the reinforcement learning
objective; that is, the maximization of expected cumulative rewards.

In the context of cooperative–competitive games, the optimal solution is achieved
when all intelligent agents act according to their optimal strategies, namely obtaining the
maximum rewards. Thus, assuming that other agents are following their optimal strategies
(i.e., oi

t=1), the probability P
(
oi = 1 | o−i = 1

)
of the likelihood of intelligent agent i also

adheres to its optimal strategy and, consequently, obtains the maximum reward.

maxJ ≜ logP
(

oi
1:T = 1 | o−i

1:T = 1
)

(3)

Since optimal strategies and environmental models are presumed unknown before-
hand, they are considered as latent variables. To optimize the samples observed as defined
in Equation (3), following the derivations in reference [23–27], we employ the method of
Variational Inference (VI). These latent variables are represented by an auxiliary distribution,
denoted as q

(
ai

1:T , a−i
1:T , s1:T | oi

1:T = 1, o−i
1:T = 1

)
. By decomposing the above expression ac-

cording to the modeling assumptions, we obtain

q
(

ai
1:T , a−i

1:T , s1:T | oi
1:T = 1, o−i

1:T = 1
)

= P(s1)∏
t

P(st+1 | st, at)q
(

ai
t | a−i

t , st, oi
t = o−i

t = 1
)

× q
(

a−i
t | st, oi

t = o−i
t = 1

)
= P(s1)∏ P(st+1 | st, at)π

(
ai

t | st, a−i
t

)
ρ
(

a−i
t | st

) (4)

In this decomposition, a lower bound on the probability density of the optimality
for the intelligent agent i can be obtained by utilizing the initial state and state transition
probabilities as the prior distribution

log P
(

oi
1:T = 1 | o−i

1:T = 1
)

≥ J (π, ρ)

≜ ∑
t
E(st ,ai

t ,a
−i
t )∼q

[
Ri
(

st, ai
t, a−i

t

)
+H

(
π
(

ai
t | st, a−i

t

))
− DKL

(
ρ
(

a−i
t | st

)
∥ P
(

a−i
t | st

))] (5)

log P
(

oi
1:T = 1 | o−i

1:T = 1
)

≥ ∑
t
Est [Eai

t∼π,a−i
t ∼ρ

[
Ri
(

st, ai
t, a−i

t

)
+ H

(
π
(

ai
t | st, a−i

t

))]
︸ ︷︷ ︸

MEO

−Ea−i
t ∼ρ

[
DKL

(
ρ
(

a−i
t | st

)
∥ P
(

a−i
t | st

))]
︸ ︷︷ ︸

Regularizer of ρ

(6)

where ρ
(

a−i
t | st, o−i

t = 1
)

represents the competitor model for intelligent agent i and is used

to estimate the optimal strategy of its competitor. π
(

ai
t | st, a−i

t , oi
t = 1, o−i

t = 1
)

is the condi-

tional strategy of agent i under optimal conditions
(

oi
t = o−i

t = 1
)

. P
(

a−i
t | st, o−i

t = 1
)

de-
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notes the prior probability of the competitor’s optimal strategy. The prior P
(

a−i
t | st, o−i

t = 1
)

is set as an empirical distribution of competitor actions in a given state. Since the optimization
of the objective function is only concerned with the case

(
oi

t = 1, o−i
t = 1

)
, this term can be

eliminated from π, ρ and P
(

a−i
t | st

)
. Equation (5) provides a variational lower bound on

logP
(

oi
1:T = 1 | o−i

1:T = 1
)

.
Equation (5) can be expanded further into Equation (6), where the first portion corre-

sponds to the maximum entropy formulation used in the SAC algorithm. It is necessary
to clarify which component is associated with reward maximization and which relates to
entropy maximization, along with a comparative discussion relative to the SAC formula-
tion. For agent i, we enhance the standard expected reward by adding the entropy term of
its conditional policy, H

(
π
(
ai | s, a−i)). This combined expression serves as the Maximum

Entropy Objective (MEO) for agent i. It should be emphasized that optimizing the MEO
simultaneously contributes to optimizing the competitor model ρ.

2.4. Regularized Competitor Model with Maximum Entropy Objective Actor-Critic (RCMAC)

In this section, we propose an extension of the Soft Q-iteration algorithm [23] to multi-
agent scenarios. Although our derivation follows a similar reasoning as that presented
in reference [23], generalizing Soft Q-learning to a MARL context introduces additional
complexity. To accommodate this, we slightly adjust the objective presented in Equation (6)
by introducing an entropy weighting factor, α. Setting α = 1 recovers the original objec-
tive formulation.

The multi-agent soft Q-function and V-function are defined, respectively, as below.
The conditional policies and competitor models defined in Equations (9) and (10) are the
optimal solutions with respect to the objectives defined in Equation (6):

The soft state-action value function of agent i is

Qπ*,ρ*

so f t

(
st, ai

t, a−i
t

)
= rt +E

(st+l ,ai
t+l ,a

−i
t+l ,...)∼q

[
∞
∑

l=1
γl(rt+l

+αH
(

π*
(

ai
t+l | a−i

t+l , st+l

))
− DKL

(
ρ*
(

a−i
t+l | st+l

)
∥ P
(

a−i
t+l | st+l

))] (7)

and the soft state value function is

V*(s) = log ∑
a−i

P
(

a−i | s
)(

∑
ai

exp
(

1
α

Q*
soft

(
s, ai, a−i

)))α

(8)

Then, the optimal conditional policy and competitor models for Equation (6) are

π*
(

ai | s, a−i
)
=

exp
(

1
α Qπ*,ρ*

soft

(
s, ai, a−i))

∑ai exp
(

1
α Qπ*,ρ*

soft

(
s, ai, a−i

)) (9)

and

ρ*
(

a−i | s
)
=

P
(
a−i | s

)(
∑ai exp

(
1
α Q*

soft
(
s, ai, a−i)))α

exp(V*(s))
(10)

Similar to the derivation of gradient updates in SAC, we define parameterized Q-
networks, conditional policy networks, and competitor models as follows: Qω

(
s, ai, a−i),

πθ

(
ai

t | st, a−i
t

)
, ρϕ

(
a−i

t | st

)
. Here, the trainable parameters are ω, θ, and ϕ with the objec-

tive of minimizing the target function:

JQ(ω) = E
(st ,ai

t ,a
−i
t )∼D

[
1
2

(
Qω

(
st, ai

t, a−i
t

)
−R
(

st, ai
t, a−i

t

)
− γEst+1∼ps

[
V(st+1)

])2
] (11)
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where

V(st+1) = Qω

(
st+1, ai

t+1, â−i
t+1

)
− log ρϕ

(
â−i

t+1 | st+1

)
−α log πθ

(
ai

t+1 | st+1, â−i
t+1

)
+ log P

(
â−i

t+1 | st+1

) (12)

Adopting the update mechanism of the twin Q-networks, Qω represents the target
action-value function to ensure a relatively stable target value. â−i

t denotes the action
sampled from the competitor model of intelligent agent i, ρ

(
a−i | s

)
. It is essential to

distinguish this from the actual action taken by the competitor ai
t.

Solving the optimal conditional policy and competitor models in Equations (9) and (10)
has proven to be challenging in complex unknown environments. Following the approach
outlined in reference [24], we constructed an objective function and train parameters θ and
φ to minimize the KL divergence:

Jπ(θ) = Est∼D,a−i
t ∼ρ[

DKL

(
πθ

(
· | st, â−i

t

)
∥ exp( 1

α Qω(st ,·,â−i
t ))

Zω(st ,â−i
t )

)] (13)

Jρ(ϕ) = E(st ,ai
t)∼D

[DKL(ρ(· | st) ∥
P(·|st)

(
exp( 1

α Q(st ,ai
t ,·))

πθ(ai
t |st ,·)

)α

Zω(st)
)]

(14)

where â−i
t = gϕ

(
ϵ−i

t ; st

)
, ai

t = fθ

(
ϵi

t; st, â−i
t

)
, therefore Jπ(θ) and Jρ(ϕ) can be derived as

Jπ(θ) = Est∼D,ϵi
t∼N,â−i

t ∼ρ

[
αlogπθ

(
fθ

(
ϵi

t; st, â−i
t

))
−Qω

(
st, fθ

(
ϵi

t; st, â−i
t

)
, â−i

t

)] (15)

Jρ(ϕ) =| E
(st ,at)∼D,ϵ−i

t ∼N

[
logρϕ

(
gϕ

(
ϵ−i

t ; st

)
| st

)
− log P

(
â−i

t | st

)
−Q

(
st, ai

t, gϕ

(
ϵ−i

t ; st

))
+αlogπθ

(
ai

t | st, gϕ

(
ϵ−i

t ; st

))] (16)

The gradients of Qω

(
s, ai, a−i), πθ

(
ai

t | st, a−i
t

)
, ρϕ

(
a−i

t | st

)
are

∇ωJQ(ω) = ∇ωQω

(
st, ai

t, a−i
t

)(
Qω

(
st, ai

t, a−i
t

)
−R
(

st, ai
t, a−i

t

)
− γV(st+1)

) (17)

∇θJπ(θ) = ∇θα log πθ

(
ai

t | st, â−i
t

)
+∇θ fθ

(
ϵi

t; st, â−i
t

)(
∇ai

t
αlogπθ

(
ai

t | st, â−i
t

)
−∇ai

t
Qω

(
st, ai

t, â−i
t

)) (18)

∇ϕJρ(ϕ) = ∇ϕ log ρϕ

(
â−i

t | st

)
+
(
∇â−i

t
logρϕi

(
â−i

t | st

)
−∇â−i

t
log P

(
â−i

t | st

)
−∇â−i

t
Qωi

(
st, ai

t, â−i
t

)
+∇â−i

t
αlogπθ

(
ai | st, â−i

t

))
∇ϕgϕ

(
ϵ−i

t ; st

) (19)

3. Multi-AUV Hunting with RCMAC
3.1. Environmental State Description
3.1.1. AUV Motion Model

To facilitate the description of the state and action of an AUV, this section initially
presents the motion model of the AUV. It is assumed that the underactuated AUV is
controlled by horizontal thrusters, fore and aft symmetrical vertical thrusters, and vertical
rudders in a 3-dimensional underwater environment.
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Figure 2 illustrates that φ, θ, and ψ represent the heeling angle, trim angle, and slant
angle within the AUV’s inertial coordinate system (positive values indicate counterclock-
wise rotation). The velocity components of the AUV in the carrier coordinate frame are
denoted by u, v, and w. Additionally, p, q, and r represent the angular velocity compo-
nents in the same carrier coordinate frame. Typically, the AUV’s state is described using
six degrees of freedom within the inertial coordinate system, represented as the vector
ηp = [x, y, z, φ, ψ, θ] [28]. To simplify calculations, this study assumes a simplified AUV
model with vertical thrusters enabling movement along the Z-axis. Since lateral shifts
and rolling movements are generally restricted under normal operational conditions, the
inertial coordinate system’s attitude reduces to ηp = [x, y, z, ψ].
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Furthermore, the AUV’s motion within the carrier coordinate frame is represented
using the velocity vector ηd = (u, w, r). Here, ψ indicates the angle between the forward
velocity component u and the X-axis, w denotes vertical velocity along the Z-axis, and r
corresponds to the rate of change of ψ (r =

.
ψ). Therefore, the simplified motion model for

the AUV can be described as follows:
.
x = u× cos ψ
.
y = u× sin ψ
.
z = w
.
ψ = r

(20)

The velocity change of the AUV is defined as the action, and represented as

a = (∆u, ∆w, ∆ψ) (21)

Based on the above formulas, the self-state of the AUV can be described by ηp and ηd,
and expressed as

η =
[
ηp, ηd

]
= [x, y, z, ψ, u, w, r] (22)

3.1.2. State of the Competitors (Including Cooperators and the Evader)

The position information of cooperators and evader is necessary for the AUV group
to encircle the evader [29]. As shown in Figure 3, the relative positions of the cooperating
agents and the evader in a three-dimensional environment are indicated by the coordinates
Cij =

(
ϕij, dij

p , dij
z

)
. N − 1 vectors extend from the current location of the AUV i toward

competitor j (either cooperators or the evader). Where, dij
p denotes the projected length of

vector onto the horizontal (XOY) plane, ϕij represents the angle formed between vector
and the positive X-axis, and dij

z specifies the vertical projection length along the Z-axis.
Consequently, the relative state between the AUV, its cooperators, and the evader can be
expressed by the following equation:
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Ci =
N−1⋃
j=1

(
ϕij, dij

p , dij
z

)
(23)
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coordinate axes).

During the training process of the reinforcement learning algorithm, the state of each
AUV is comprised of the pose η and the relative positions C with respect to the competitors.
Therefore, st can be described as st = {ηt, Ct}.

3.2. Criteria for a Successful Hunting Progress

In the hunting scenario presented in this paper, a group of AUVs are tasked with
hunting an intelligent evader. Assuming there are n AUVs (AUV1, AUV2, . . ., AUVn),
and each AUV is equipped with a special device capable of disrupting the mobility of the
evader. It is assumed that the mobility of the evader will be restricted when any hunting
AUV successfully approaches it within a range of 1 m. The process of hunting involves the
movement of hunting AUVs towards the evader within the hunting cluster. The hunting
AUVs need to surround the evader as closely as possible and evenly distribute around them
around the evader to restrict their escape direction. At least one hunting AUV attempting
to approach the evader to limit its mobility is considered a successful hunting progress.

The multi-AUV hunting of an evader in a three-dimensional underwater environment
is depicted in Figure 4. AUV1 to AUVn represent the hunting target points within the
encircling circle range, and T denotes the evader. The success of the hunting primarily relies
on the following three criteria:
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1. The distance between the center of the hunting formation and the evader is less than
a threshold (5 m);

2. The distance between the hunting AUVs and the evader is less than a threshold (10 m);
3. There exists at least one hunting AUV with a distance of less than 1 m from the evader.

3.3. Reward Functions of the Hunters

For effective multi-AUV hunting, it is essential to maintain a specific formation so the
AUVs can cooperatively surround the evader from multiple directions. Additionally, since
the evader will actively try to break through the encirclement, the navigation goals for the
AUVs must be updated continuously in response. Considering these complexities, estab-
lishing a suitable reward function is critical. In this section, we propose a continuous and
modular reward function to enhance the efficiency of training. The reward structure is orga-
nized into the following three categories, corresponding to various scenarios encountered
during the hunting process.

3.3.1. Cooperating Rewards

To effectively utilize cooperation among AUVs during target detection and pursuit
initiation, it is important for the vehicles to maintain a suitable surrounding formation.
Ideally, the distance between each AUV and the centroid of the group should remain within
a controlled range, and a safe minimum separation must be maintained among individual
vehicles to prevent collisions.

The cooperating reward function is therefore defined as follows:

rencircle =

{
1 if dcenter ∈ [0, 10]
0 else

(24)

rholdingrange =


0 if mindother > 15
−0.5 if mindother ∈ [10, 15]
−1 if dother < 10

(25)

where dcenter denotes the distance between each hunter and the geometric center of the
hunter group, while dother represents the set of distances between each hunter and the
other hunters.

3.3.2. Hunting Rewards

During the training phase, it is assumed that when an AUV detects an evader, it alerts
the other hunters, prompting the entire team to initiate pursuit. Hunters are thus motivated
to track and move closer to the evader. Additionally, we account for scenarios where the
overall group moves closer, but an individual hunter drifts further from the evader. Under
such circumstances, the respective AUV receives a positive reward to guide its actions
toward fulfilling the group’s collective goal.

rhunting =


0 if mindevader > 20
2 if dt+1

evader < dt
evader

−1 if dt+1
evader ≥ dt

evader
1 if dt+1

center to evader < dt
center to evader

(26)

where devader denotes the distance between each hunter and the evader, while dt
center to evader

represents he distance between the evader and the geometric center of the hunter group.

3.3.3. Finishing Rewards

An episode terminates under three possible scenarios: (a) any AUV reaches the
maximum allowed number of steps for its mission, (b) collision between two or more
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AUVs, or (c) successful encirclement of the evader by hunter AUVs, effectively restricting
its potential escape routes. In each of these scenarios, the hunters receive a final reward
rfinishing , which signals the end of the current episode. The final rewards are specifically
defined as follows:

rfinish =

{
100 if situation (c)
−100 if situation (a) or (b)

(27)

Each AUV receives total rewards based on the following factors:

rhunter = rencircle + rholdingrange + rhunting + rfinish (28)

3.4. Reward Functions of the Evader

In the hunting–evading game scenario presented in this study, the evader’s action
and state spaces are configured to be consistent with those of the hunters, and the evader
employs the same algorithmic architecture. The key difference lies in the reward function
designed for the evader. Specifically, a target point located outside the designated area is
assigned to the evader to guide its escape direction. The evader receives rewards when
approaching this target point and successfully exiting the boundary of the scene. Moreover,
the hunting–evading interaction is formulated as a zero-sum game, meaning that from the
evader’s perspective, it additionally receives a reward signal opposite to that of the hunters’
reward. These rewards are defined as follows:

revading =

{
2 if dt+1

T < dt
T

−1 if dt+1
T ≥ dt

T
(29)

revader = revading − rhunter (30)

where dT refers to the distance between the evader and the target point.

3.5. Competitive Training Process

The training process of RCMAC employs a centralized training with a distributed
execution approach following the procedure below.

Initialize the replay pool and neural network parameters for all AUVs, including the
joint policy network πθi , competitor model network ρϕi , and Q-network Qω.

Repeat the following steps until convergence or the maximum iteration count is
reached: (a) Each agent predicts the optimal actions of competitors based on the current
competitor model. (b) Each agent calculates and selects actions based on the local obser-
vations of current state (excluding competitor states) and the competitor actions. (c) All
AUVs compute the global environmental state and rewards after executing actions. (d) Each
AUV updates the actual competitor actions and stores them in the experience replay buffer.
(e) Each AUV samples competitor action samples from the replay pool and updates the com-
petitor model. (f) Calculate target Q-value using the target network, and update the local
and target Q-network parameters, as well as the policy network parameters for each agent.
Algorithm 1 provides a step-by-step overview of the training process described above.
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Algorithm 1 RCMAC in Multi-AUV Hunting

• Initialization:
Initialize replay bufferM and its capacity M
Initialize parameters θi, ϕi, ωi, ψi for each AUV i and the random process
N = [N(0, 1)]3 for action space
Initialize learning rates λV , λQ, λπ , λϕ, α and set γ as the discount factor.
For each iteration do
Initialize random process N for action exploration.

For each time step t do
For the current state st, sample an action and competitor’s action using
â−i

t ← gϕ−i
(
ϵ−i; st

)
, where ϵ−i

t ∼ N ,

ai
t ← fθi

(
ϵi; st, â−i

t

)
, where ϵi

t ∼ N .

Observe next state st+1, competitor action a−i
t and reward r−i

t , save the
new experience in the replay buffer:

Di ← Di ∪
{(

st, ai
t, a−i

t , â−i
t , st+1, ri

t

)}
Update the prior from the replay buffer:

ψi = argmaxEDi

[
−P
(

a−i | s
)

logPψi

(
a−i | s

)]
Sample a mini-batch from the reply buffer:{

s(n)t , ai,(n)
t , a−i,(n)

t , â−i,(n)
t , s(n)t+1, r(n)t

}N

n=1
∼M.

For the state s(n)t+1, sample an action and competitor’s action using

â−i,(n)
t+(n) ← gϕ−i

(
ϵ−i; s(n)t+1

)
, where ϵ−i

t+1 ∼ N ,

ai,(n)
t+1 ← fθ̄i

(
ϵi; s(n)t+1, â−i)

t+(1)

)
, where ϵi

t+1 ∼ N .

Vi
(

s(n)t+1

)
= Qω

(
s(n)t+1, ai,(n)

t+1 , â−i,(n)
t+1

)
− αlogπθi

(
ai,(n)

t+1 | s(n)t+1, â−i,(n)
t+1

)
−logρϕi

(
â−i,(n)

t+1 | s(n)t+1

)
+ logPψi

(
â−i,(n)

t+1 | s(n)t+1

)
.

Set:

y(n) =

r(n)t for terminal s(n)t+1

r(n)t + γV̄i
(

s(n)t+1

)
for non− terminal s(n)t+1

Calculate : ∇ωiJQ
(
ωi), ∇θiJπ

(
θi), ∇ϕiJρ

(
ϕi)

Update parameters:

ωi = ωi − λQ∇ωiJQ
(
ωi)

θi = θi − λπ∇θiJπ

(
θi)

ϕi = ϕi − λϕi∇ϕiJρ

(
ϕi)

End for
End for
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4. Simulation Results
In this section, multiple unbalanced game scenarios are demonstrated to validate the

efficacy of the proposed algorithm. Comparisons with the MADDPG algorithm are also
presented to showcase the superiority of the proposed algorithm.

4.1. Experimental Environment and Training Parameters

The RCMAC algorithm was implemented on a training workstation equipped with
an Intel Core i9 11900K processor (8 cores, 5.1 GHz, Intel Corporation, Santa Clara, CA,
USA) and a GPU with 24 GB memory (RTX 3090, NVIDIA Corporation, Santa Clara, CA,
USA). The deep neural network models were built using Pytorch (Version 1.13.0) and
trained using GPU acceleration. Initially, the RCMAC hyperparameters were set based
on reference [15], while the parameters for Maximum Entropy Reinforcement Learning
in the hunting scenario mainly followed those outlined in our earlier study [29]. Table 1
summarizes the hyperparameter settings.

Table 1. Hyperparameters of RCMAC.

Hyperparameter Value

Learning rate of all networks 0.0003
Discount factor γ 0.97
Mini batch size 256

Replay buffer size M 1024
Training episode num 5000
Testing episode num 500

Max step num 1024

Discount factor γ

4.2. Performance and Analysis

To demonstrate the performance of the proposed algorithm in the pursuit–evasion
competitive game, there are three scenarios including 1, 4, and 6 hunters hunting a single
evader, respectively. I

(
Ix, Iy, Iz

)
denotes the initial position of the hunters and the evader.

In each scenario, the evader starts from the initial position IT(350, 55, 65) and sails towards
outer boundary T(100, 502, 175) to escape from the hunting area.

4.2.1. Scenario A: One Hunter–One Evader Game

In scenario A, only one hunter is deployed to pursue the evader. The maximum
speeds of the hunter and the evader are 2.7 m/s and 2.5 m/s, respectively. The initial
position of the AUV is IA(200, 100, 80). Following the definition of successful hunting
mentioned in Section 3.2, the hunter needs to chase the evader, and the hunting is deemed
successful when its distance from the evader is less than 1 m. In the test scenario spanning
500 episodes, the trajectories of the hunter and the evader are depicted in Figure 5, where the
pink line represents the trajectory of the evader, and the green line indicate the trajectories
of the hunter.

Figure 5a illustrates the trajectory of the hunter’s first successful hunting within the
500-episode experimental scenario, approaching the evader within a range of 1 m. The
evader is observed to be hunted as it nears the designated escape boundary, with relatively
long pursuit and evasion paths. As the training iterations increase, the pursuit and evasion
paths gradually shorten, and the time required for successful hunting decreases, as depicted
in Figure 5b,c. The increase in training iterations leads the competitive game training process
toward a strategic equilibrium between the pursuer and the evader. The inherent speed
advantage of the hunter has been demonstrated to facilitate earlier successful capture
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of the evader. Figure 6 illustrates the relevant curves of this process, where Figure 6a
shows the cumulative hunting success rate and escape success rate for both the hunter
and the evader as the number of training iterations increases. Figure 6b–d, respectively,
show the conclusion steps, total rewards per episode, and the average rewards per step
for both the hunter and the evader. These curves demonstrate that with the progression
of the adversarial training, the hunter gradually finds shorter paths to hunt the evader,
maximizing the potential for higher rewards.

J. Mar. Sci. Eng. 2025, 13, 901 13 of 21 
 

 

hunting scenario mainly followed those outlined in our earlier study [29]. Table 1 
summarizes the hyperparameter settings. 

Table 1. Hyperparameters of RCMAC. 

Hyperparameter Value 
Learning rate of all networks 0.0003 

Discount factor 𝛾 0.97 
Mini batch size 256 

Replay buffer size M 1024 
Training episode num 5000 
Testing episode num 500 

Max step num 1024 

4.2. Performance and Analysis 

To demonstrate the performance of the proposed algorithm in the pursuit–evasion 
competitive game, there are three scenarios including 1, 4, and 6 hunters hunting a single 
evader, respectively. 𝐼(𝐼௫, 𝐼௬, 𝐼௭) denotes the initial position of the hunters and the evader. 
In each scenario, the evader starts from the initial position 𝐼்(350,55,65)  and sails 
towards outer boundary 𝑇(100,502,175) to escape from the hunting area. 

4.2.1. Scenario A: One Hunter–One Evader Game 

In scenario A, only one hunter is deployed to pursue the evader. The maximum 
speeds of the hunter and the evader are 2.7 m/s and 2.5 m/s, respectively. The initial 
position of the AUV is 𝐼஺(200,100,80) . Following the definition of successful hunting 
mentioned in Section 3.2, the hunter needs to chase the evader, and the hunting is deemed 
successful when its distance from the evader is less than 1 m. In the test scenario spanning 
500 episodes, the trajectories of the hunter and the evader are depicted in Figure 5, where 
the pink line represents the trajectory of the evader, and the green line indicate the 
trajectories of the hunter. 

   

   
(a) episode 60 (b) episode 200 (c) episode 400 

Figure 5. Training process of Scenario A: (a) Trajectories of episode 60; (b) Trajectories of episode 
200; (c) Trajectories of episode 400. 
Figure 5. Training process of Scenario A: (a) Trajectories of episode 60; (b) Trajectories of episode 200;
(c) Trajectories of episode 400.

J. Mar. Sci. Eng. 2025, 13, 901 14 of 21 
 

 

Figure 5a illustrates the trajectory of the hunter’s first successful hunting within the 
500-episode experimental scenario, approaching the evader within a range of 1 m. The 
evader is observed to be hunted as it nears the designated escape boundary, with 
relatively long pursuit and evasion paths. As the training iterations increase, the pursuit 
and evasion paths gradually shorten, and the time required for successful hunting 
decreases, as depicted in Figure 5b,c. The increase in training iterations leads the 
competitive game training process toward a strategic equilibrium between the pursuer 
and the evader. The inherent speed advantage of the hunter has been demonstrated to 
facilitate earlier successful capture of the evader. Figure 6 illustrates the relevant curves 
of this process, where Figure 6a shows the cumulative hunting success rate and escape 
success rate for both the hunter and the evader as the number of training iterations 
increases. Figure 6b–d, respectively, show the conclusion steps, total rewards per episode, 
and the average rewards per step for both the hunter and the evader. These curves 
demonstrate that with the progression of the adversarial training, the hunter gradually 
finds shorter paths to hunt the evader, maximizing the potential for higher rewards. 

 
(a) (b) 

  
(c) (d) 

Figure 6. The curves of Scenario A: (a) Success rate; (b) Steps; (c) Total Rewards; (d) Average 
Rewards per step. 

4.2.2. Scenario B: Four Hunters–One Evader Game 

In this scenario, four hunters are deployed to pursue the evader, and are strategically 
positioned in the designated environment. The initial position of the AUV is 𝐼஺(200,100,80), 𝐼஻(50,200,80), 𝐼஼(100,450,60), 𝐼஽(450,450,40) . The maximum speed of 
each hunter is reduced to 2.6 m/s, while the evader maintains a maximum speed of 2.5 
m/s. Similarly, following the defined criteria for successful hunting in Section 3.2, four 
hunters progressively approach and encircle the evader during their navigation. The 
pursuit culminates as the closest hunter attempting to approach and hunt the evader in 
real-time. In the 500-episode test scenario, the trajectories of the hunters and the evader 
are depicted in Figure 7, where the pink line represents the trajectory of the evader, and 
the other lines indicate the trajectories of the hunters. 

Figure 6. The curves of Scenario A: (a) Success rate; (b) Steps; (c) Total Rewards; (d) Average Rewards
per step.



J. Mar. Sci. Eng. 2025, 13, 901 15 of 21

4.2.2. Scenario B: Four Hunters–One Evader Game

In this scenario, four hunters are deployed to pursue the evader, and are strate-
gically positioned in the designated environment. The initial position of the AUV is
IA(200, 100, 80), IB(50, 200, 80), IC(100, 450, 60), ID(450, 450, 40). The maximum speed of
each hunter is reduced to 2.6 m/s, while the evader maintains a maximum speed of
2.5 m/s. Similarly, following the defined criteria for successful hunting in Section 3.2,
four hunters progressively approach and encircle the evader during their navigation. The
pursuit culminates as the closest hunter attempting to approach and hunt the evader in
real-time. In the 500-episode test scenario, the trajectories of the hunters and the evader are
depicted in Figure 7, where the pink line represents the trajectory of the evader, and the
other lines indicate the trajectories of the hunters.
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Figure 7a illustrates the trajectory of the hunter’s first successful hunting in the
500-episode experimental scenario, approaching the evader within a range of 1 m. Similar
to the 1v1 pursuit–evasion scenario, the evader is hunted before it approaches the desig-
nated escape boundary, resulting in a relatively long pursuit and evasion path. However,
the speed advantage of the hunters over the evader is intentionally weakened in this sce-
nario. Under this premise, the hunters achieve their first successful hunting with fewer
episodes (21 episodes) than in Scenario A. As training iterations increase, the pursuit and
evasion paths gradually shorten, and the time required for successful hunting decreases, as
shown in Figure 7b,c. The increase in training iterations determines that the hunters tend
to employ shorter paths to achieve faster hunting. Figure 8 presents the relevant curves of
this process, and Figure 8a displays the cumulative hunting and escape success rates for
both the hunter and the evader as training iterations increase. Figure 8b–d, respectively,
show the conclusion steps, total rewards per episode, and the average rewards per step for
both the hunter and the evader. In the three curves of Scenario A, due to the weak speed
advantage of hunters and the lack of multiple AUVs to restrict the escape of the evader,
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the reward curves of the evader in Figure 8c,d exhibit a relatively slow declining trend.
However, in this scenario, a significant numerical advantage of hunters enables them to
better constrain the escape of evader. Compared to the curves in Scenario A, the reward
curve of the evader exhibits a more pronounced declining trend.
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4.2.3. Scenario C: Six Hunters–One Evader Game

In this scenario, six hunters are deployed to pursue the evader, and strategically posi-
tioned in the designated environment. The initial position of the AUV is IA(200, 100, 80),
IB(50, 200, 80), IC(450, 450, 40), ID(100, 450, 60), IE(100, 100, 100), IF(300, 450, 140). The maxi-
mum speed of each hunter is reduced to 2.6 m/s, while the evader maintains a maximum
speed of 2.5 m/s. Other configurations are identical to those in Scenario B. In the 500-episode
test scenario, the trajectories of the hunters and the evader are depicted in Figure 9, where the
pink line represents the trajectory of the evader, and the other lines indicate the trajectories of
the hunters.

In comparison to Scenario B, scenario C aims to explore the algorithm’s capability to
support a larger-scale hunting group and whether the performance satisfies expectations.
Intuitively, six hunters should hunt the evader faster and easier. Figure 9a indicates that
Scenario C successfully hunted for the first time in only three episodes under similar
initial conditions. Similarly, as training iterations increase, the pursuit and evasion paths
gradually shorten, and the time required for successful hunting decreases, as shown in
Figure 9b,c. Figure 10 presents the relevant curves of this process. Compared to the curves
in Scenario B, the reward curve of the evader in Scenario C exhibits faster decline, and
earlier convergence. This indicates that six hunters impose stronger constraints on the
evader’s escape; that is, the algorithm maintains good performance as the number of
hunters in the hunting group increases.
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4.2.4. Performance Comparison with MADDPG

In the same simulated experimental setting as Scenario C, the training curves of
MADDPG and RCMAC are represented as the average rewards obtained by six hunters.
Figure 11 illustrates that the average reward obtained by hunters in the RCMAC algorithm
is higher than that of the MADDPG algorithm, and the number of steps required for the
successful hunting is fewer than that of MADDPG algorithm. This suggests that RCMAC
tends to capture the evader faster through more efficient paths. Figure 12 presents the
success rate curves of hunting using RCMAC and MADDPG in the aforementioned three
scenarios, and it can be observed that MADDPG also exhibits a similar trend. The increase
in the number of captors results in earlier detection and successful hunt of the evader.
However, RCMAC consistently demonstrates a higher hunting success rate than MADDPG
in each scenario.
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As shown in Figure 13, the learning curves of policy mean of RCMAC and MAD-
DPG are compared over 500 episodes. It can be observed that RCMAC achieves faster
convergence in competitor policy modeling (µρ1) compared to MADDPG. Specifically, the
competitor model in RCMAC reaches its optimal value earlier than its corresponding actual
policy (µπe), indicating that RCMAC can accurately anticipate competitor strategies in
advance during training. In contrast, although MADDPG also converges to the optimal
policy ultimately, its competitor model exhibits slower convergence and only catches up
with the actual policy at later training stages. This implies that RCMAC can establish a
more reliable competitor model earlier, providing stronger strategic guidance during policy
optimization. Overall, these results validate the effectiveness of the proposed algorithm in
enhancing learning efficiency compared to baseline methods.
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5. Conclusions
This paper investigates a competitive game process among agents in MARL. An opti-

mality operator is introduced to establish a competitor model during the training process
and to reconstruct the objective function. Based on this approach, the RCMAC algorithm
is proposed and applied to a scenario involving multiple AUVs hunting evading targets
in a 3D underwater environment. The evader is treated as an intelligent agent with learn-
ing capabilities; its escape ability is optimized through training, thereby enhancing the
randomness of its actions and simulating more complex hunting scenarios. This training
strategy enriches the complexity and diversity of the simulated environment, enabling
the hunting AUVs’ policies to achieve greater adaptability. In the simulation experiments,
RCMAC demonstrated superior convergence and performance across multiple competi-
tive game scenarios. Specifically, as shown in Figure 11, the average cumulative rewards
obtained by RCMAC are consistently higher than those achieved by MADDPG across
different test scenarios. Figure 12 further shows that RCMAC achieved a higher hunting
success rate compared to the baseline MADDPG algorithm. Moreover, the learning curves
presented in Figure 13 illustrate that RCMAC converges faster in both policy optimization
and competitor modeling.

Overall, these results validate the effectiveness of the proposed RCMAC algorithm in
improving learning efficiency and task performance in multi-agent competitive environ-
ments. For future work, we plan to address the challenges encountered in larger-scale AUV
hunting scenarios, where the computational burden and training time significantly increase
due to the expansion of the action and state spaces. Reducing computational complexity
and improving training efficiency to enhance the scalability of MARL algorithms in larger
team settings will be an important focus of our future research.
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Abbreviations

AUV Autonomous Underwater Vehicle
RCM Regularized Competitor Model
RCMAC Regularized Competitor Model with Maximum Entropy Objective Actor-Critic
DRL Deep Reinforcement Learning
MARL Multi-Agent Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
MADDPG Multi-Agent Deep Deterministic Policy Gradient
CTDE centralized training and decentralized execution
SAC Soft Actor-Critic
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