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Abstract: Autonomous Underwater Vehicle (AUV) navigation relies on bottom-tracking
velocity from Doppler Velocity Log (DVL) for positioning through dead-reckoning or
aiding Strapdown Inertial Navigation System (SINS). In mid-water environments, the
distance between the AUV and the seafloor exceeds the detection range of DVL, causing
failure of bottom-tracking and leaving only water-relative velocity available. This makes
unknown ocean currents a significant error source that leads to substantial cumulative
positioning errors. This paper proposes a method for mid-water ocean current estimation
using multibeam bathymetric survey data. First, the method models the regional unknown
current field using radius basis functions (RBFs) and establishes an AUV dead-reckoning
model incorporating the current field. The RBF model inherently satisfies ocean current
incompressibility. Subsequently, by dividing the multibeam bathymetric point cloud data
surveyed by the AUV into submaps and performing a terrain-matching algorithm, relative
position observations among different AUV positions can be constructed. These obser-
vations are then utilized to estimate the RBF parameters of the current field within the
navigation model. Numerical simulations and experiments based on real-world bathymet-
ric and ocean current data demonstrate that the proposed method can effectively capture
the complex spatial variations in ocean currents, contributing to the accurate reconstruction
of the mid-water current field and significant improvement in positioning accuracy.

Keywords: autonomous underwater vehicle (AUV); mid-water ocean current; underwater
navigation; radial basis function (RBF); multibeam bathymetry

1. Introduction
Autonomous Underwater Vehicles (AUVs) are important tools in oceanographic

research, underwater exploration, and environmental monitoring, enabling data collection
in regions inaccessible to traditional methods [1,2]. Robust navigation and positioning are
essential for AUVs to follow designated trajectories, gather valid scientific data, and return
to docking stations.

A fundamental obstacle to underwater AUV navigation is the inaccessibility of Global
Navigation Satellite System (GNSS) signals due to the rapid attenuation of electromagnetic
waves in water. Consequently, Inertial Navigation Systems (INS), based on dead-reckoning
principles, have become the cornerstone of underwater navigation. INS offers the advan-
tage of providing continuous, high-frequency navigation data without reliance on external
signals [3]. However, a critical limitation of INS lies in the inherent nature of the Inertial
Measurement Unit (IMU). These sensors, while highly sensitive, are susceptible to biases
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and random errors. These errors, even if initially small, accumulate over time through the
integration process inherent in dead-reckoning, leading to a progressive degradation of
positional accuracy. This error propagation becomes particularly pronounced during ex-
tended underwater missions, significantly impacting the reliability of INS-based navigation
alone [4].

Currently, AUV underwater navigation primarily relies on integrated INS/DVL/PS
navigation systems. Pressure sensors (PSs) offer high accuracy without cumulative errors,
simplifying the three-dimensional navigation problem to a two-dimensional space [5].
Doppler Velocity Logs (DVLs) in the bottom-tracking mode provide accurate absolute ve-
locity measurements without cumulative errors, helping to correct exponentially divergent
errors of the INS to a linear divergence state [6]. The core limitation of this integrated navi-
gation approach is that AUV requires continuous DVL bottom-tracking capability, which
typically has a maximum effective range of approximately 200 m from the seafloor. When
AUVs operate beyond this range, bottom-tracking becomes invalid, making it impossible
to obtain absolute velocity information. In such cases, only the velocity relative to the water
of the AUV can be measured. When ocean currents are present with unknown velocities,
this water-relative velocity becomes insufficient for navigation assistance.

The challenge of AUV navigation in the presence of unknown ocean currents has been
addressed through various approaches. Early approaches employed simplified models that
treat ocean currents as constant and irrotational. Hegrenaes and Hallingstad [7] presented
a state-of-the-art model-aided inertial navigation system (MA-INS) for underwater vehicles
under this assumption. Similarly, Wang et al. [8] proposed a SINS/DVL integrated naviga-
tion method, with the use of an improved VBAKF algorithm to reduce noise interference,
assuming that currents remain constant over short intervals. However, these simplified
models inadequately represent the dynamic nature of marine environments, where currents
rarely remain static [9].

To better capture current dynamics, Gauss–Markov models have been implemented to
characterize spatial and temporal variations in ocean currents [10]. Li et al. [11] proposed an
ocean current coefficient estimation method for GNSS/EML/SINS integrated navigation,
modeling ocean current velocity as a first-order Gaussian Markov process and using
Kalman filter corrections to accurately estimate the current coefficient. Ben et al. [12]
introduced an integrated navigation algorithm based on an improved Expected-Mode
Augmentation (IEMA) technique for INS/WT-DVL systems, addressing the limitations of
using a single ocean current model.

Furthermore, Medagoda et al. [13,14] introduced a layer-based current model that
divides the water column into discrete depth layers with constant current velocities within
each layer. This approach acknowledges the vertical stratification of ocean currents but
neglects horizontal spatial variations. Wang et al. [15] further refined this concept by
implementing a hierarchical water velocity estimation method. Yao et al. [16] introduced a
staggered grid-based water current-aided SINS/DVL integration solution that improves
mid-water navigation by accounting for spatial variations, later enhancing this with a
modified smoothing scheme [17].

Recent advancements have focused on more comprehensive current field modeling.
Wu et al. [18] developed a cooperative current estimation method using multiple AUVs to
collectively map flow fields. Shi et al. [19,20] proposed a framework for cooperative flow
field estimation that leverages both relative and absolute motion-integration errors across
multiple vehicles. A tree-based distributed method for cooperative flow field estimation, as
proposed by He et al. [21], uses a tree structure to allow AUVs to solve nonlinear equations
for flow field estimation, requiring only a connected communication network among
vehicles. While effective, these multi-vehicle approaches increase operational complexity
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and cost. For single-AUV operations, Klein et al. [22] proposed a novel approach to estimate
platform velocity during complete DVL outages based on past DVL measurements and a
motion model. Liu et al. [23] proposed a current compensation technique for SINS/DVL
integrated navigation using a radial basis function (RBF) neural network, which predicts
ground-relative velocity in real time but requires pre-training.

The radial basis function (RBF) approach has emerged as a powerful mathematical tool
for the interpolation and approximation of complex functions across various scientific and
engineering domains [24]. Unlike traditional mesh-based methods, RBF offers a meshless
framework that can handle scattered data points and complex geometries without requiring
structured grids. Kong et al. [25] introduced the use of RBF in combination with Tikhonov-
Gaussian regularization to solve the ill-posed problem of reconstructing velocity fields in
industrial furnaces. Ng and Leung [26] introduced a method that uses RBFs to reconstruct
flow fields and subsequently estimate the Finite-Time Lyapunov Exponent (FTLE) from
limited Lagrangian trajectory data.

To address the limitations of existing methods, this paper introduces a novel approach
for mid-water ocean current field estimation using an RBF model. Our method uniquely
integrates terrain-based relative position constraints, derived from multibeam bathymetric
survey data, with the RBF current model. These constraints are obtained through terrain
matching techniques, providing observed information about the navigation drift due
to ocean currents. By embedding the property of incompressibility into the RBF, our
approach better captures spatial variations in current velocity and direction. The RBF model
parameters are then optimized using the Levenberg–Marquardt algorithm to minimize the
discrepancy between predicted and observed drift, effectively estimating the underlying
current field.

The rest of this paper is structured as follows: Section 2 details the methodology,
encompassing the problem formulation, the RBF-based ocean current field modeling, the
derivation of terrain-based relative position constraints using multibeam bathymetry, and
the Levenberg–Marquardt optimization process for RBF parameter estimation. Section 3
presents the results of numerical simulations and experiments based on real-world oceano-
graphic data, validating the effectiveness of the proposed method and comparing its
performance against conventional approaches. Section 4 concludes the paper by summariz-
ing the key findings, discussing the limitations of the current study, and outlining directions
for future research.

2. Methods
2.1. Problem Formulation

The navigation dynamics of an AUV operating in an underwater environment can
be described by a state-space model. The AUV state vector typically includes position,
velocity, and attitude information,

X(t) = [x(t), y(t), u(t), v(t), ψ(t)]T (1)

where (x, y) represents the AUV position in the north–east coordinate frame, (u, v) denotes
the surge and sway velocities in the body frame, and ψ is the heading angle. It should be
noted that we define this state vector only in planar ordinate since depth can be accurately
obtained with the pressure sensor, and the positions of an AUV are the main concerns in
this paper.

The continuous-time kinematic equations governing AUV motion can be expressed as,

.
x(t) = vx = u(t)cos ψ(t) + v(t)sin ψ(t) (2)
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.
y(t) = vy = u(t)sin ψ(t)− v(t)cos ψ(t) (3)

The DVL is a critical sensor for underwater navigation that measures velocity using
the Doppler effect of acoustic signals. The velocity measurement accuracy of a DVL is
directly proportional to its operating frequency. Higher operating frequencies provide
more precise velocity measurements but result in limited operational range.

In mid-water environments, the altitude of AUV above the seafloor exceeds the DVL
maximum detection depth and bottom-tracking capability is lost, as illustrated in Figure 1.
The DVL will no longer provide reliable ground-relative velocity information to assist
AUV navigation.
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Figure 1. Diagram of DVL bottom-tracking mode and water-tracking mode.

When the bottom-tracking mode is unavailable, the DVL will automatically switch
to the water-tracking mode. As illustrated in Figure 2, the ground-relative velocity of the
AUV, vg(t), is the vector sum of the water-relative velocity, vw(t), and the ocean current
velocity, vc(t), as follows:

vg(t) = vw(t) + vc(t) (4)

where vg(t), vw(t), and vc(t) are the vectors in the navigation frame, vw(t) =
[
vw,x(t), vw,y(t)

]T
= [uw(t)cos ψ(t) + vw(t)sin ψ(t), uw(t)sin ψ(t)− vw(t)cos ψ(t)]T, and uw(t) and vw(t) are the
measured velocities in the DVL water-tracking mode, respectively.
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Without loss of generality, the system state is assumed to be observable at initial time
instant t = 0 , that is, p(t0) is known. The position of AUV, p(t) = [x(t), y(t))]T , is ideally
computed via dead-reckoning as

p(t) = p(t0) +
∫ t

0
vg(τ)dτ (5)
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However, in practice, since vc(t) is unknown, the navigation system approximates
positions by integrating only the measured water-relative velocity vw(t)

p̂(t) = p(t0) +
∫ t

0
vw(τ)dτ (6)

This discrepancy between the estimated position p̂(t) and the true position p(t) repre-
sents the positioning error due to uncompensated ocean currents as

e(t) = p(t)− p̂(t) =
∫ t

0
vc(τ)dτ (7)

This error accumulates over time and can significantly impact navigation accuracy
during long-endurance underwater missions.

2.2. Ocean Current Field Modeling with RBF

To accurately model the ocean current field, we start with the Navier–Stokes equa-
tions from computational fluid dynamics, coupled with the mass conservation law. The
mathematical expression of the ocean current dynamic model is shown as

∂ρ

∂t
+∇·(ρV) = 0 (8)

where V represents the ocean current velocity field, ∇ denotes the gradient operator, ρ

represents fluid density, and t represents time. This equation indicates that within a unit
time, the net inflow and outflow in a fluid motion region are equal.

In the study of dynamic oceanography, ocean currents can be modeled as incompress-
ible flows, meaning that density variations are negligible. While density in the ocean does
depend on temperature and salinity, these variations are sufficiently small in mid-to-deep
ocean currents. This simplification allows us to treat ρ as a constant, i.e., dρ/dt = 0 .
Furthermore, considering that the mid-to-deep ocean currents of interest are primarily
dominated by geostrophic flow, which exhibits relatively slow variations within the spa-
tiotemporal scales of AUV operations, we can reasonably assume a time-invariant flow
field. Consequently, Equation (8) simplifies to

∇·V =
∂u
∂x

+
∂v
∂y

= 0 (9)

Based on the potential flow theory [27,28] and the associated assumption of the Laplace
equation [29], the velocity field is expressed as the gradient of a velocity potential function
ϕ(x, y), as

vc =

[
vc,x

vc,y

]
=

[
∂ϕ(x,y)

∂y

− ∂ϕ(x,y)
∂x

]
(10)

Radial basis functions (RBFs) offer a versatile, mesh-free approach for representing
complex, spatially varying functions [30]. RBFs have properties of universal approximation
and best approximation, which also are widely used for function approximation. Common
RBF types include Gaussian, multiquadric, and thin-plate spline functions, each offering
different interpolation characteristics suitable for various applications [31]. In this study,
we use the Gaussian RBF as the potential function to model the ocean current field. The
general form of RBF can be written as follows:

ϕ(p) =
N

∑
i=1

ωi φ(∥p − ci∥) =
N

∑
i=1

ωiexp

(
−∥p − ci∥2

2(σi)
2

)
(11)
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where p = [x, y]T denotes the position in the ocean current field; φ(∥p − ci∥) denotes RBF;
N denotes the number of RBFs; the subscript i denotes the i-th basis function; and ωi,
ci =

[
ci,x, ci,y

]T , and σi are the weight, center, and width of the i-th RBF, respectively.
Physically, the RBF model works by placing center points in the ocean current field and

combining their local effects, φ(∥p − ci∥), to describe the velocity distribution. Each term
ωi φ(∥p − ci∥) represents a velocity effect starting from ci, with ωi controlling its strength
of the effect, ci setting the location, and σi determining the width of the effect reaches.

By substituting Equation (11) into Equation (10), we derive the ocean current as

vc(p,α) =

[
vc,x

vc,y

]
=


−

N
∑

i=1

ωi
(
y − ci,y

)
σi

2 exp

(
−∥p − ci∥2

2σi
2

)
N
∑

i=1

ωi(x − ci,x)

σi
2 exp

(
−∥p − ci∥2

2σi
2

)
 (12)

We define each RBF parameter as αi =
[
ωi, ci,x, ci,y, σi

]
, and the parameters of the

ocean current field model as α = [α1, . . . ,αi, . . . ,αN ]
T . Equation (10) means that once the

parameters α are determined, the ocean current field can be reconstructed. Furthermore,
the ocean current field consistently satisfies the incompressible flow property expressed in
Equation (9), namely,

∇·V =
∂2ϕ(p)
∂y∂x

− ∂2ϕ(p)
∂x∂y

= 0 (13)

Therefore, the central problem addressed in this study is the estimation and opti-
mization of all the RBF parameters α to accurately capture the characteristics of a given
ocean current field. This parameter estimation problem can be framed as an optimization
problem, where the objective is to find the set of parameters that minimizes the discrepancy
between the predicted velocity field from the RBF model and the measured velocity.

2.3. Terrain-Based Relative Position Constraints Based on MBES

In underwater environments, the AUV equipped with multibeam echo sounders
(MBESs) collects bathymetric data along survey lines, generating submaps of the seafloor
to determine their relative positions based on terrain matching. The spatial arrangement
of survey lines is a critical factor in ensuring both complete seafloor coverage and the
robustness of navigation adjustments. Line spacing is designed to achieve a minimum of
25% overlap between adjacent MBES swaths, with an optimal target of 50% overlap [32].
This deliberate overlap provides numerous opportunities for detecting relative position
constraints between submaps collected at different times during the mission, as illustrated
in Figure 3.

The MBES collects bathymetric data in the form of point clouds, with each ping
producing a line-shaped terrain profile perpendicular to the AUV trajectory. For a single
ping, the bathymetric point cloud can be expressed as

P = {(xi, yi, zi)|i = 1, 2, . . . , NP} (14)

where NP is the number of depth points in the ping, (xi, yi) denotes the horizontal coordi-
nates of the i-th point, and zi corresponds to the measured depth value.

Assuming M consecutive pings are used to construct a submap, the point cloud model
can be expressed as

S =
M⋃

k=1

Pk =
{(

xj, yj, zj
)∣∣j = 1, 2, . . . , Ns

}
(15)

where Ns = M × NP represents the total number of depth points in the submap S.
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To detect relative position constraints between overlapping submaps in underwater
terrain matching, the point-to-plane Iterative Closest Point (ICP) algorithm is used to
align bathymetric point clouds obtained from the MBES. Different from the conventional
point-to-point ICP, this method minimizes the perpendicular distance from source points
to the tangent planes of the target surface, aligning more effectively with the geometric
constraints of continuous seafloor topography.

Given a source submap Sp and a target submap Sq with potential overlap, the point-
to-plane ICP algorithm iteratively computes the rigid transformation matrix T = [R|t]
to align Sp and Sq, where R is the rotation matrix and t is the translation vector. The
ICP algorithm begins by establishing point correspondences between Sp and Sq via a
nearest-neighbor search. The alignment is optimized by minimizing the following objective
function iteratively, as

E(R, t) =
Ns

∑
i=1

∥(Rpi + t − qi)·ni∥2 (16)

where pi ∈ Sp, qi ∈ Sq, ni represents the normal vector at target qi.
Iterations continue until convergence, determined by a predefined threshold or max-

imum iteration limit. Once the optimal transformation T* =
[
R*
∣∣t*] is obtained, Sp is

transformed to S′
p, computed as

S′
p = R*Sp + t* (17)

As illustrated in Figure 4, a relative position constraint based on terrain matching can
be formulated as,

zij = g
(
Sp, Sq

)
= (Z − Xi) +

(
Xj − Z

)
(18)

where g(·) denotes the ICP algorithm; Xi and Xj are the centroids of submaps S′
p and Sq,

respectively; and Z is the centroid of the overlapped region of S′
p and Sq.

2.4. Levenberg–Marquardt Optimization for RBF Parameter Estimation

Building upon the terrain-based relative position constraints established in Section 2.3,
this section describes the optimization process for estimating RBF parameters that charac-
terize the ocean current field affecting AUV navigation.

The estimation of RBF parameters, denoted as α, is formulated as a nonlinear least-
squares problem. The objective is to minimize the discrepancy between the predicted
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AUV drift due to the estimated ocean current field and the observed drift inferred from
terrain-based relative position constraints.
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For a relative position constraint between AUV poses at times ti and tj, the measured
relative position displacement is denoted as

∆pij = pj − pi = zij (19)

The predicted relative displacement based on the ocean current model is expressed as

∆p̂ij = p̂j − p̂i =
∫ tj

ti

(vw(t) + vc(p(t),α))dt (20)

where vc(p,α) represents the ocean current velocity at position p parameterized by α.
The cost function is defined to quantify the discrepancy between the measured dis-

placement ∆pij and the predicted displacement ∆p̂ij across all the NL relative position
constraints identified in the terrain matching algorithm, as

E(α) =
NL

∑
l=1

∥∥∥∆pij − ∆p̂ij

∥∥∥2
=

NL

∑
l=1

∥∥∥∥zij −
∫ tj

ti

(vw(t) + vc(p(t),α))dt
∥∥∥∥2

(21)

where α represents the RBF parameters set to be optimized, and l indexes each terrain-based
relative position constraint.

The Levenberg–Marquardt (LM) algorithm is employed to minimize the cost function
E(α) by iteratively adjusting the RBF parameters α. The LM method combines the steepest
descent and Gauss–Newton approaches, offering both stability and efficiency for nonlinear
optimization problems.

The LM algorithm iteratively updates the parameters, starting with an initial estimate
α0. At each iteration k, α is updated as follows:

αk+1 = αk + ∆αk (22)

where ∆αk is the update increment which is obtained by solving the following system of
linear equations: (

JT
k Jk + λkI

)
∆αk = −JT

k r(αk) (23)

where r = ∆pij − ∆p̂ij is the residual vector representing the error between observed and
predicted relative displacements, r(αk) is the residual vector evaluated at αk, Jk is the
Jacobian matrix of r(αk) which contains the partial derivatives of the residuals with respect
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to each parameter in α, and λk is the adaptive damping factor that controls the balance
between the steepest descent and Gauss–Newton methods during optimization.

A diagram of the proposed ocean current estimation algorithm based on the RBF
model is shown in Figure 5.
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3. Results and Discussion
3.1. Simulation Setup

The pre-planned AUV trajectory is depicted in Figure 6, which is a lawn-mower
trajectory widely adopted in ocean bathymetric missions. The AUV navigates along this
pre-planned trajectory by employing dead-reckoning techniques for position estimation,
using the water-track velocity measurement from DVL and the heading angles from the
attitude and heading reference system (AHRS).
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The motion of an AUV includes straight-line travel, turning, acceleration, and decelera-
tion, with a maximum velocity of 3.0 m/s. The navigation duration is around 1.5 h. Figure 7
illustrates the dynamic process of the AUV throughout the simulation. To simulate realistic
measurement errors in the DVL water-tracking mode, Gaussian velocity noise is intro-
duced with distributions of N

(
0 m/s, (vw × 0.3% m/s)2

)
and N

(
0 m/s, (0.003 m/s)2

)
,

where vw represents the water-relative velocity. These noise models account for velocity-
dependent and constant-error components, respectively, ensuring a robust evaluation of
the proposed method under realistic conditions.

We utilized bathymetric data derived from an open-access dataset supplied by the
West Coast National Marine Sanctuaries Mapping project. This project was executed by the
National Oceanic and Atmospheric Administration (NOAA) over a period spanning 8 May
to 4 June 2017. The data were gathered using the Kongsberg EM302 multibeam echosounder,
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which was installed aboard the NOAA research vessel Nautilus. The resulting dataset
provides a bathymetric point cloud with a spatial resolution of approximately 5 m. Figure 8
shows the bathymetric maps of two areas, Area 1 and Area 2, which are the operational
regions for the AUV multibeam terrain surveys in Sections 3.2 and 3.3, respectively.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 10 of 26 
 

 

 

Figure 6. The pre-planned lawn-mower trajectory of the simulation test. 

(a) 

(b) 

Figure 7. The motion process of AUV: (a) attitude angles of AUV (yaw, pitch, and roll); (b) velocity 
components of AUV (east, north, and up). 

We utilized bathymetric data derived from an open-access dataset supplied by the 
West Coast National Marine Sanctuaries Mapping project. This project was executed by 
the National Oceanic and Atmospheric Administration (NOAA) over a period spanning 
8 May to 4 June 2017. The data were gathered using the Kongsberg EM302 multibeam 
echosounder, which was installed aboard the NOAA research vessel Nautilus. The result-
ing dataset provides a bathymetric point cloud with a spatial resolution of approximately 
5 m. Figure 8 shows the bathymetric maps of two areas, Area 1 and Area 2, which are the 
operational regions for the AUV multibeam terrain surveys in Sections 3.2 and 3.3, respec-
tively. 

Figure 7. The motion process of AUV: (a) attitude angles of AUV (yaw, pitch, and roll); (b) velocity
components of AUV (east, north, and up).

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 11 of 26 
 

 

  
(a) (b) 

Figure 8. Bathymetric maps: (a) bathymetric map of Area 1; (b) bathymetric map of Area 2. 

3.2. Numerical Simulation and Results 

In this section, the proposed RBF ocean current field estimation method is validated 
by numerical simulation. The first part is to obtain terrain-based relative position con-
straints when the AUV navigates in the simulated ocean current field. The second part is 
to solve the nonlinear optimization problem for RBF estimation using the relative position 
constraints. 

3.2.1. Terrain-Based Relative Position Constraint Generation 

To rigorously evaluate the robustness of the RBF method, we designed two distinct 
vortex flow models, illustrated by streamlines in Figure 9. In each subplot, the red dashed 
line represents the dead-reckoning trajectory of AUV, which is the estimated path based 
on the DVL water-tracking mode without accounting for ocean currents, abbreviated as 
DR-WT. The green solid line represents the true trajectory of AUV as it is influenced by 
the surrounding ocean current field, abbreviated as true. The origin of the coordinate sys-
tem is set at the starting position of AUV. Case 1 describes a biased single vortex, repre-
senting an asymmetry flow field. Case 2 is a more complex flow field with two vortexes. 
The vortical flow field with double vortexes can be obtained by overlapping two opposite 
single flow fields. The parameters setting for each case are listed in Table 1, providing the 
vortex strength 𝜔, center coordinates ൫𝑐௫, 𝑐௬൯, and spatial scale parameter 𝜎. 

  
(a) (b) 

Figure 8. Bathymetric maps: (a) bathymetric map of Area 1; (b) bathymetric map of Area 2.

3.2. Numerical Simulation and Results

In this section, the proposed RBF ocean current field estimation method is validated by
numerical simulation. The first part is to obtain terrain-based relative position constraints
when the AUV navigates in the simulated ocean current field. The second part is to solve the
nonlinear optimization problem for RBF estimation using the relative position constraints.
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3.2.1. Terrain-Based Relative Position Constraint Generation

To rigorously evaluate the robustness of the RBF method, we designed two distinct
vortex flow models, illustrated by streamlines in Figure 9. In each subplot, the red dashed
line represents the dead-reckoning trajectory of AUV, which is the estimated path based
on the DVL water-tracking mode without accounting for ocean currents, abbreviated as
DR-WT. The green solid line represents the true trajectory of AUV as it is influenced by the
surrounding ocean current field, abbreviated as true. The origin of the coordinate system is
set at the starting position of AUV. Case 1 describes a biased single vortex, representing
an asymmetry flow field. Case 2 is a more complex flow field with two vortexes. The
vortical flow field with double vortexes can be obtained by overlapping two opposite single
flow fields. The parameters setting for each case are listed in Table 1, providing the vortex
strength ω, center coordinates

(
cx, cy

)
, and spatial scale parameter σ.
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Table 1. Parameters of the vortical flow models used in numerical simulations.

Ocean Current Field ω
(
cx,cy

)
σ

Case 1
−600 (−2000, 1000) 5000
−600 (2000, −1000) 5000

Case 2
400 (1000, −2000) 2500
−400 (2000, −1000) 2500

To establish terrain-based relative position constraints for the DR-WT path, we utilized
multibeam bathymetric survey data collected during the mission in Area 1 of Figure 8.
Figures 10a and 11a illustrate the multibeam swaths corresponding to the true path for
Case 1 and Case 2, respectively. Then, we applied an ICP algorithm proposed by Zhang
et al. [33] and obtained a set of relative position constraints between the submaps. The
total 43 terrain-based relative position constraints in Case 1 are shown in Figure 10b, with
average errors of 0.7175 m in the x-direction and 0.9322 m in the y-direction. And, the total
39 terrain-based constraints in Case 2 are shown in Figure 11b, with the average errors of
0.6988 m in the x-direction and 0.9213 m in the y-direction.
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3.2.2. Analysis of Ocean Current Estimation

To further validate the effectiveness of the proposed RBF-based ocean current field
estimation method, we compare its performance against two commonly employed methods.
For convenience, the two methods are called the constant current assumption (CCA) and
the first-order polynomial current assumption (FOPCA). The CCA method [34] assumes
that the ocean current velocity remains uniform and invariant across the entire simulation
domain. The FOPCA method [35] models the ocean current velocity as a linear function of
position, offering the capacity to capture spatial variations.

For the proposed RBF-based ocean current field estimation method, proper initial-
ization of model parameters is crucial for the successful convergence of the Levenberg–
Marquardt (LM) optimization algorithm. Appropriate initialization of the RBF model
parameters is crucial before applying the LM optimization algorithm. Accordingly, five
Gaussian RBFs are initialized with centers strategically placed to encompass the spatial
domain of the AUV navigation region: four at the vertices of a bounding rectangle encom-
passing the DR-WT trajectory and one at the geometric center of the domain, represented as
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c ∈
{
(xmin, ymin), (xmin, ymax), (xmax, ymin), (xmax, ymax),

(
xmin + xmax

2
,

ymin + ymax

2

)}
(24)

For each RBF, the weight parameter ω is initialized as zero. And, the width parameter
σ is computed based on the spatial distribution of AUV trajectory points, as

σi =
2
P

P

∑
j=1

∥∥∥pj − ci

∥∥∥ (25)

where P denotes the number of AUV trajectory points, ci is the center parameter of i-th RBF,
and σi is the width parameter of i-th RBF. This formulation assigns each basis function a
width parameter that is twice the average distance between its center and all the trajectory
points, ensuring appropriate spatial coverage.

All three methods will be evaluated using the simulated dataset described in the
previous section, encompassing the two distinct vortex flow models (Cases 1 and 2). The
ocean current estimation results based on CCA, FOPCA, and proposed RBF methods are
shown in Figures 12 and 13.
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From the figures, it can be observed that the CCA method can only reflect the average
trend of ocean current variations. It is limited in its ability to capture the finer details of
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the current variation. The FOPCA method is more capable of capturing the ocean current
variations when compared to CCA. However, it still falls short in accurately estimating
the dynamic changes in the ocean currents. The errors observed in the FOPCA results
indicate that while the method can estimate the general ocean current behavior, it struggles
with precise prediction, especially under complex flow conditions. The proposed RBF
method demonstrates superior performance in accurately estimating the ocean current
variations across two cases. As shown in Figures 11 and 12, RBF provides a much closer
alignment with the true ocean current, minimizing the absolute errors significantly. This
indicates that the RBF method is highly effective in capturing both the general trends and
the more intricate details of the ocean current changes, making it a promising approach for
real-world oceanographic applications.

To quantitatively assess the performance of the ocean current estimation based on the
proposed RBF model method, we introduce the root mean square error (RMSE) to evaluate
the ocean current estimation result, which is defined as follows:

RMSE =

√√√√ 1
P

P

∑
i=1

(v̂c(xi, yi)− vc(xi, yi))
2 (26)

where (xi, yi) is the AUV position at time ti, P is the total number of waypoints along the
AUV trajectory,

(
v̂c,x, v̂c,y

)
is the estimated ocean current velocity using different ocean cur-

rent model, and
(
vc,x, vc,y

)
is the true ocean current components encountered by the AUV.

Table 2 presents the east current RMSE and the north current RMSE for each case
and for each method. Compared with CCA and FOPCA, the accuracy of current esti-
mation result using the proposed RBF method shows significant improvement, with
substantially lower RMSE values in both Case 1 and Case 2 for both the east and north
current estimations.

Table 2. The ocean current estimation results under different methods in Case 1 and 2.

Ocean Current
Field Method East Current

RMSE (m/s)
North Current

RMSE (m/s)

Case 1
CCA 0.0279 0.0343

FOPCA 0.0020 0.0030
Proposed RBF 0.0004 0.0002

Case 2
CCA 0.0125 0.0157

FOPCA 0.0104 0.0133
Proposed RBF 0.0005 0.0004

3.2.3. Evaluation of Navigation Performance

After obtaining ocean current estimations along the AUV path, we evaluated four
navigation methods: DR-WT, CCA, FOPCA and our proposed RBF method. The DR-WT
method relies solely on DVL water-tracking measurements without accounting for ocean
currents, while the other three methods incorporate ocean current estimates into their
navigation solutions. This approach enables a direct comparison of their effectiveness in
mitigating positional drift and enhancing accuracy relative to the baseline DR-WT method.
Figures 14 and 15 illustrate the navigation trajectories and corresponding positioning errors
for all four methods across two case studies.

The quantitative assessment of positioning accuracy is presented in Table 3, which
compares the performance metrics of the four trajectory estimation methods across two
distinct ocean current field cases. We employed three error metrics for evaluation, which
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are Mean Absolute Error (MAE), root mean square error (RMSE), and maximum error
(Max), calculated as follows:

MAE =
1
P

P

∑
i=1

∥p̂(ti)− p(ti)∥ (27)

RMSE =

√√√√ 1
P

P

∑
i=1

∥p̂(ti)− p(ti)∥2 (28)

MAX = max
i∈{1,...,P}

∥p̂(ti)− p(ti)∥ (29)

where p̂(ti) represents the estimated AUV position at time ti, p(ti) represents the ground
true position, and P is the number of position estimates.
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Table 3. The statistic of positioning results in Case 1 and Case 2.

Ocean Current
Field Method

Positioning
Error

MAE (m)

Positioning
Error

RMSE (m)

Positioning
Error

Max (m)

Case 1

DR-WT 147.87 173.99 319.85
CCA 40.11 44.24 64.21

FOPCA 1.43 1.51 2.54
Proposed RBF 0.48 0.54 0.95

Case 2

DR-WT 152.73 180.64 324.54
CCA 12.31 14.30 26.64

FOPCA 5.44 6.06 9.37
Proposed RBF 0.81 0.85 1.17

3.2.4. Reconstruction of Ocean Current Field

In addition, we also reconstruct the ocean current field based on the optimized parameters.
Figures 16a,c,e and 17a,c,e show the reconstructed ocean current field based on CCA, FOPCA,
and the proposed RBF method of Case 1 and 2, respectively. Figures 16b,d,f and 17b,d,f show
the norm of error ∥vc − v̂c∥ in the field.

3.3. Experiment and Results Based on Real-World Oceanographic Data

To evaluate the feasibility and effectiveness of the proposed RBF-based ocean current
field estimation method for AUV navigation, a simulated ocean current field was con-
structed using real-world oceanographic data. The dataset was sourced from the Hawaii
Ocean Time-series (HOT) project, specifically collected during the HOT 312 cruise from
1 June to 4 June 2019 aboard the research vessel Kilo Moana. This vessel was equipped
with a Teledyne RD Instruments Ocean Surveyor 38 kHz Acoustic Doppler Current Profiler
(ADCP), configured to operate in both broadband mode (maximum range of 1200 m) and
narrowband mode (maximum range of 1500 m), with an average measurement interval
of approximately 5 min. The ADCP provided high-resolution current velocity profiles,
enabling the reconstruction of a realistic ocean current field for simulation purposes.

We utilized horizontal current velocity data at depth of 756.4 m, as measured along
trajectory of the vessel. Figure 18 shows the horizontal distribution of ocean current veloci-
ties at this depth as measured by ADCP onboard. Figure 19a presents the raw horizontal
distribution of ocean current velocities at this depth, spanning an area of approximately
13.3 km by 14.9 km. To generate a continuous planar flow field suitable for AUV navigation
simulations, the sparse ADCP measurements were interpolated using a triangle-based
natural-neighbor interpolation method, as shown in Figure 19b. This interpolated field
served as the ground truth for validating the RBF-based current estimation approach.

During the AUV navigation, a bathymetric survey was conducted to construct bathy-
metric submaps for terrain matching purposes in Area 2 of Figure 8. The multibeam swaths
of AUV true path is shown in Figure 20. To acquire relative position measurements between
these submaps, the dual-stage bathymetric ICP method proposed by Zhang et al. [33] was
employed. This process resulted in the establishment of 41 terrain-based relative position
constraints, as depicted in Figure 21. The average errors of these terrain-based relative
position constraints were 0.7184 m in the x-direction and 0.9156 m in the y-direction.
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field using proposed RBF.

Following the establishment of the constraints above, the proposed Levenberg–
Marquardt optimization for RBF parameter estimation method was implemented for
ocean current estimation. The initialization of RBF parameters was consistent with the
settings described in Section 3.2. Meanwhile, CCA and FOPCA were also employed for
comparison. Figure 22 presents the ocean current estimation results along the AUV path.
As shown in Figure 22a,b, the proposed RBF method accurately captures the variations
in both the east and north components of the ocean current, closely following the true
current values. In contrast, the CCA method provides a constant approximation that fails
to capture the variations, while the FOPCA method uses linear approximation with limited
ability to represent the complex current patterns. The absolute estimation errors in the east
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and north directions for each method are illustrated in Figures 22c and 22d, respectively.
The proposed RBF demonstrates lower error magnitudes compared to both CCA and
FOPCA. Quantitatively, the RMSE for the east component are 0.0074 m/s, 0.0058 m/s, and
0.0036 m/s for CCA, FOPCA, and the proposed RBF method, respectively. Similarly, for the
north component, the RMSE are 0.0172 m/s, 0.0100 m/s, and the 0.0017 m/s, respectively.
The results clearly demonstrate the superior accuracy of the proposed RBF method in
estimating ocean currents.
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To evaluate the impact of these ocean current results on navigation accuracy, Figure 23
provides a comparison of navigation trajectories and positioning errors for DR, CCA,
FOPCA, and the proposed RBF approach. The trajectory comparison in Figure 23a shows
that the RBF-based navigation path most closely follows the true trajectory, while the DR
method exhibits the largest deviation. Figure 23b illustrates the positioning errors over
time, with the proposed RBF method maintaining consistently lower errors throughout the
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navigation period. Quantitatively, the navigation accuracy is evaluated using MAE, RMSE,
and maximum error. For the DR method, the MAE is 100.13 m, the RMSE is 114.80 m, and
the maximum error reaches 192.94 m, indicating substantial drift due to uncompensated
currents. The CCA method improves upon this, achieving an MAE of 25.30 m, an RMSE of
28.30 m, and a maximum error of 41.34 m, benefiting from its basic current approximation.
The FOPCA method further reduces these values to an MAE of 17.96 m, an RMSE of
20.92 m, and a maximum error of 40.24 m, reflecting the advantage of its linear current
model. However, the proposed RBF method outperforms all the others, with an MAE of
just 3.13 m, an RMSE of 3.39 m, and a maximum error of 5.09 m. These metrics demonstrate
that the RBF approach significantly enhances navigation precision by accurately capturing
the dynamic nature of ocean currents.
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Figure 23. The comparison of navigation trajectory and the positioning errors of four methods (DR,
CCA, FOPCA, and proposed RBF): (a) the comparison of navigation trajectory; (b) the comparison of
positioning errors.

The effectiveness of these methods in reconstructing the ocean current field is further
explored in Figure 24, which compares the true current field with the reconstructed fields
and their associated errors. Figure 24a presents the results for the CCA method, where the
reconstructed ocean current field appears uniform and fails to capture the spatial variability
of the true current. This limitation leads to significant errors across the domain, as evident
in the error distribution in Figure 24b. Figure 24c,d depict the performance of the FOPCA
method, showing a reconstructed field with linear gradients that can represent basic trends
but struggles to replicate the intricate, nonlinear patterns of the true current. Consequently,
the error field for FOPCA, while improved over CCA, still reveals noticeable discrepancies.
In contrast, Figure 24e,f show the reconstruction of the proposed RBF method, which
closely reflects the complex spatial variations in the true ocean current field. The resulting
error field is minimally distributed, indicating a high degree of accuracy in capturing both
the magnitude and direction of ocean currents. This superior reconstruction capability
aligns with the low RMSE values of the RBF method for current estimation, reinforcing its
effectiveness in modeling the dynamic and nonlinear characteristics of ocean currents.
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4. Conclusions
This paper proposed an approach for ocean current field estimation in mid-water en-

vironments to enhance AUV navigation. A significant challenge in underwater navigation
is the loss of DVL bottom-tracking when AUV operates beyond effective range from the
seafloor, resulting in navigation drift due to unknown ocean currents.
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The ocean current model is built upon the fundamental physical principle of incom-
pressibility for ocean currents. By employing Gaussian RBFs as the stream potential func-
tion, the resulting velocity field is calculated as the gradient of stream function, inherently
satisfying the mass conservation equation. This ensures a physical realistic and consistent
representation of the current field. Our method uses MBES data to construct bathymetric
submaps and the ICP algorithm as terrain-matching algorithm to obtain terrain-based
relative position constraints among these submaps. These constraints are then integrated
in to a nonlinear optimization problem, solved using the LM algorithm to determine the
RBF parameter.

The numerical simulations and experiments validate the effectiveness of the proposed
method, demonstrating high accuracy in ocean current estimation, substantial reductions
in positioning errors, and significant improvements in ocean current field reconstruction.
Compared with the ocean current estimation results based on simple constant current
assumption and traditional first-order polynomial current assumption, the proposed RBF
approach exhibits better performance in estimating ocean currents. In terms of navigation
correction, the proposed RBF method substantially reduces positioning errors, showing
the superiority in AUV localization during long-endurance missions in mid-water environ-
ments. Furthermore, the proposed RBF method excels in reconstructing the ocean current
field, accurately capturing its complex spatial variations with minimal distributed errors.

However, the method has certain limitations that should be acknowledged. The accu-
racy of current field estimation depends on the quality and distribution of terrain-based
relative position constraints, potentially limiting performance in regions with sparse bathy-
metric features. Additionally, the computational complexity increases with the number of
RBF centers used to model the current field. In the future work, we will focus on developing
adaptive RBF placement strategies and more efficient optimization techniques to address
these limitations. We also aim to integrate complementary navigation technologies, such as
acoustic positioning systems and geomagnetic measurements, to enhance robustness in
diverse underwater environments.
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