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Abstract: This paper proposes a dynamic event-triggered adaptive backstepping control
for underactuated autonomous underwater vehicle systems (AUVs) with input saturation.
The proposed method ensures the system’s stability by introducing a new auxiliary signal
system to compensate for the input saturation. Firstly, the underactuated AUVs is separated
into the underactuated part and the actuated part, and then the dynamic auxiliary signal
system is introduced. A transformation is used to combine the actuated part with the
auxiliary signal system. The controller is designed using the adaptive backstepping method,
and a dynamic event-triggering mechanism is constructed to obtain the event-triggering
controller. A strict theoretical analysis is provided to avoid the Zeno phenomenon. Finally,
the effectiveness of the dynamic event-triggered adaptive backstepping controller is verified
by simulation.

Keywords: underactuated AUVs; input saturation; event-triggered; backstepping

1. Introduction
With the continuous development of society, human exploration of the ocean is progres-

sively deepening. In this exploration process, there is a growing need for more convenient
and safer marine robots. AUVs are marine robots that primarily perform tasks such as
underwater mapping, marine resource exploration, and underwater pipeline laying. AUVs
can be divided into fully actuated and underactuated parts, and many scholars have ap-
plied various methods to study the former, such as reinforcement learning [1–3], adaptive
fault-tolerant control [4,5], sliding mode control [6], etc. However, considering production
costs and reliability, underactuated AUVs are more widely used in practical applications.
Compared with fully actuated AUVs, underactuated AUVs have fewer control inputs than
degrees of freedom, which makes the controller design more challenging. At the same time,
the inherent characteristics of AUVs, such as strong nonlinearity and strong coupling, and
the external disturbance caused by the working environment make the control problem
difficult to solve. In recent years, with the increasing demand, the research on underactu-
ated AUVs has become more and more popular. For example, in [7], the combination of
nonlinear disturbance observer and sliding mode control is used to complete 3D trajectory
tracking under strong disturbance. The input saturation problem is considered in [8], an
asymmetric saturation model is proposed, and the controller is designed using the adaptive
backstepping method to realize the control of underactuated AUVs.
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In practice, the saturation limits of the physical input on the hardware determine that
the control signal is always constrained. The saturation constraints of control signals may
result in system instability. It is also inevitable to consider this problem in the research on
underactuated AUVs. For example, in [9], an adaptive disturbance observer is constructed
to compensate for the saturation and is combined with fuzzy adaptive optimal fault
tolerance to control underactuated AUVs. In [10], an online neural network is used to
identify errors caused by input saturation, combined with the suppressing disturbances
algorithm for underactuated AUVs control. In addition to the aforementioned methods,
there are some approaches to address input saturation [11–13].

In information and control systems, key components such as controlled plants, con-
trollers, and sensors are interconnected via a communication network. In practice, the
traffic of the communication network is limited by the bandwidth of the hardware. To
conserve bandwidth resources, researchers have developed event-triggered control strate-
gies. Its basic principle is different from the traditional control based on time periods.
For event-triggered control, trigger conditions and trigger thresholds need to be set, and
the controller output is updated when the trigger conditions are met. Event-triggered
control is divided into static event triggering and dynamic event triggering according to
the setting conditions of triggering. Static event-triggered control means that the trigger
threshold is set to a defined constant [14,15]. For example, in [16], static event-triggered
control is used in combination with sliding mode control to control the mechanical systems.
Dynamic event-triggered control means that the trigger threshold is a dynamic variable.
The advantage is that the trigger threshold can be dynamically adjusted according to the
actual situation so as to improve the system’s performance [17–19]. For example, in [20],
a dynamic event-triggered controller is designed for the ship control system with exter-
nal disturbances and actuator faults, effectively reducing the frequency of control signal
execution and decreasing the wear of actuators.

Based on the above discussion, we present a dynamic event-triggered adaptive back-
stepping controller design method for underactuated AUVs with input saturation and
external disturbances. This paper makes the following key contributions:

(1) Instead of using observers and neural networks to compensate for input saturation,
we construct an auxiliary system based on the underactuated AUVS model to deal with
the saturation problem. On the basis of the literature [21], the system parameters of the
auxiliary system are modified to ensure the effect and be more suitable for underactuated
AUV controller design. Compared with the observer, fewer state variables are required to
construct the auxiliary system. Compared with a neural network, the parameters of the
auxiliary system are fewer, and the parameter adjustment is more convenient.

(2) Different from the dynamic event-triggered, which uses the controller output dif-
ference as the trigger condition, the dynamic event-triggered condition adopted in this
paper combines the system state variables with the controller output difference. Compared
with the existing dynamic trigger, the introduction of state variables into the trigger con-
ditions can avoid Zeno behavior and ensure that the system tracking error tends to zero.
Theoretical analysis and simulation results show that the method is effective.

This paper is primarily structured as follows: Section 2 presents the model of the
control plant and the control objectives. Section 3 designs a dynamic event-triggered
adaptive backstepping controller for the control plant, accompanied by the theoretical
analysis of system stability. Section 4 conducts simulation verification of the controller
to validate its control effectiveness. Section 5 summarizes the work and outlines future
research directions.
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2. Mathematical Model and Preliminaries
In this section, we present the mathematical model of AUVs with five degrees of

freedom and input saturation. At the same time, the AUV’s model is divided into an
actuated part and an underactuated part, and the output is redefined.

2.1. Problem Formulation

As in reference [22], the mathematical model of AUVs with five degrees of freedom
used in this paper is as follows:{

η̇ = J(η)V

MV̇ + C(V)V + D(V)V + g(η) = u + ωd
(1)

where the vector η = [x, y, z, θ, ψ]T represents the position and orientation in the earth-
fixed frame, where x, y, z, θ, ψ denote the surge, sway, heave, pitch angle, and yaw angle,
respectively. The vector V = [Vu, Vv, Vw, Vq, Vr]T represents the velocities in the body-
fixed frame, where Vu, Vv, Vw, Vq, Vr correspond to the surge velocity, sway velocity, heave
velocity, pitch angular velocity, and yaw angular velocity, respectively.

J(η) =


cosθcosψ −sinψ sinθcosψ 0 0
cosθsinψ cosψ sinθsinψ 0 0
−sinθ 0 cosθ 0 0

0 0 0 1 0
0 0 0 0 1

cosθ


J(η) denotes the transformation matrix from the body-fixed frame to the earth-fixed frame.

M =


M11 0 0 0 0

0 M22 0 0 0
0 0 M33 0 0
0 0 0 M44 0
0 0 0 0 M55


M represents the generalized mass matrix of the AUVs, including added mass. The
elements M11, M22, M33, M44, M55 denote the inertial and added mass parameters.

C(V) =


0 0 0 M33Vw −M22Vv

0 0 0 0 M11Vu

0 0 0 −M11Vu 0
−M33Vw 0 M11Vu 0 0

M22Vv −M11Vu 0 0 0


C(V) denotes the Coriolis and centripetal matrix.

D(V) =


D11 0 0 0 0

0 D22 0 0 0
0 0 D33 0 0
0 0 0 D44 0
0 0 0 0 D55


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D(V) denotes the hydrodynamic damping matrix. The elements D11, D22, D33, D44, D55

represent the hydrodynamic damping parameters.

g(η) =
[
0, 0, 0, ρg▽GMLsinθ, 0

]T

g(η) denotes the resultant vector of gravitational and buoyancy forces. ρ represents water
density, g represents gravitational acceleration, ▽ represents displacement, and GML

represents longitudinal metacenter height.

u =
[
Ulu, 0, 0, Ulq, Ulr

]T

u represents the control input. Ulu, Ulq, Ulr represent saturating constrained inputs in terms
of surge, pitch, and yaw angles, respectively.

ωd =
[
ωd11 , ωd22 , ωd33 , ωd44 , ωd55

]T

ωd denotes the external disturbance. ωd11 , ωdand
, ωd33 , ωd44 , ωd55 represent every component

of external disturbance.
The input saturation can be described as

Ulu = sat(Uu) =

{
sign(Uu)Uum, |Uu| ≥ Uum

Uu, |Uu| < Uum

Ulq = sat(Uq) =

{
sign(Uq)Uqm,

∣∣Uq
∣∣ ≥ Uqm

Uq,
∣∣Uq

∣∣ < Uqm

Ulr = sat(Ur) =

{
sign(Ur)Urm, |Ur| ≥ Urm

Ur, |Ur| < Urm

where Uum, Uqm, Urm are known positive constants, UuUq, Ur represent the controller inputs,
while Ulu, Ulq, Ulr denote the saturation-limited outputs under actuator constraints.

For the underactuated problem, we adopt the processing method from the refer-
ence [23], dividing the dynamic system (1) into the actuated part and the underactuated
part. The specific processing is as follows:

η̇ = J1(η)V1 + J2(η, V2)

M1V̇1 + C1(V2)V1 + D1(V1)V1 + g1(η) = u1 + ωd1

M2V̇2 + C2(V1)V2 + D2(V2)V2 = ωd2

(2)

where V1 = [Vu, Vq, Vr]T represents the speed vector of the actuated part and V2 = [Vv, Vw]T

represents the speed vector of the underactuated part. The transformation matrix J(η) can
be separated into the actuated partial transformation matrix J1(η) and the underactuated
partial transformation matrix J2(η, V2) as follows:

J1(η) =


cosθcosψ 0 0
cosθsinψ 0 0
−sinθ 0 0

0 1 0
0 0 1

cosθ

, J2(η, V2) =


−Vvsinψ + Vwsinθcosψ

Vvcosψ + Vwsinθsinψ

Vwcosθ

0
0


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The components of the actuated part matrix M1, C1(V2), D1(V1), g1(η), u1, ωd1 are,
respectively,

M1 = diag(M11, M44, M55), D1(V1) = diag(D11, D44, D55),

C1(V2) =

 0 M33Vw −M22Vv

(M11 − M33)Vw 0 0
(M22 − M11)Vv 0 0

,

g1(η) =
[
0, ρg▽GMLsinθ, 0

]T
, u1 =

[
Ulu, Ulq, Ulr

]T
, ωd1 =

[
ωd11 , ωd44 , ωd55

]T

The components of the underactuated part matrix M2, C2(V1), D2(V2), ωd2 are, respectively,

M2 =

[
M22 0

0 M33

]
, C2(V1) =

[
M11Vr 0
−M11Vq 0

]

D2(V2) =

[
D22 0

0 D33

]
, ωd2 =

[
ωd22

ωd33

]

2.2. Assumption and Lemma

To design the controller, we make the following assumptions:

Assumption 1. The position reference trajectory ηr is twice differentiable with bounded derivatives.

Assumption 2. External disturbance ωd satisfies the conditions |ωd2 | ≤ ω̄d2 , where ω̄d2 for an
unknown positive constant.

Assumption 3. The pose η and velocity V of the AUVs are bounded.

Lemma 1. For vectors A, B ∈ Rn and any m > 0 , the following inequality holds:

AT B ≤ 1
2
(mAT A +

1
m

BT B)

Lemma 2. For A = [a1, · · · , al ], B = [b1, · · · , bl ], the following inequality holds:

a1b1 + · · ·+ albl ≤
√

a2
1 + · · ·+ a2

l

√
b2

1 + · · ·+ b2
l

2.3. Output Redefinition and Auxiliary System

There is a deviation between the virtual control point and the actual center of gravity;
therefore, the output is redefined as follows in this paper [24]:

ηa =

x + lcosθcosψ

y + lcosθsinψ

z − lsinθ

 (3)

where l is shown in Figure 1 and is the distance between the virtual control point and the
actual center of gravity.

To deal with the input saturation problem, the following auxiliary system is introduced:

λ̇1 = Ja(η)λ2 − k1λ1,

λ̇2 = −k2λ2 + M−1
1 △u

(4)
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where △u = u1 − υ, υ = [Uu, Uq, Ur], k1, k2 are positive constants, Ja(η) as follows:

Ja(η) =

cosθcosψ −lsinθcosψ −lsinψ

cosθsinψ −lsinθsinψ lcosψ

−sinθ −lcosθ 0



EX

EY

EZ

EO
bX

bY

bZ

bO

x

y

z

uV

vV

wV





qV

rV

LP

l

Figure 1. Motion coordinates for an underactuated AUV.

Remark 1. In reference [21], the auxiliary system is constructed for time-invariant systems whose
system parameters do not change with time. The autonomous underwater vehicle (AUV) system in
this paper is a time-varying system; that is, the system parameters change with time. In view of this
difference, the auxiliary system is modified in this paper, and the auxiliary system is transformed
into a time-varying system. The system parameters of the auxiliary system are designed according to
the underactuated AUV’s system parameters, and the state variables η and underactuated AUV’s
system parameters M1 are introduced.

3. Controller Design
For the underactuated AUV system model, the structure of the dynamic event-triggered

adaptive backstepping controller in this paper is shown in Figure 2, which is mainly com-
posed of an auxiliary system, an adaptive backstepping controller, an input saturation
limit, and a dynamic event-triggered mechanism. The auxiliary system takes the controller
output difference as input and outputs some signal compensating the input saturation to
the adaptive backstepping controller and the update law. The update law combines the
state variables and the compensation signal to produce an estimate of the upper bound on
the disturbance, and the estimate is passed to the adaptive backstepping controller. The
adaptive backstepping controller output is passed to the dynamic auxiliary variable after
input limitation. The dynamic event-triggered mechanism combines dynamic auxiliary
variables and system state variables to trigger events and finally outputs to the control plant.

Dynamic 
auxiliary 
variable

Dynamic event-
triggering mechanism

fη

Input 
saturation 

limit
Adaptive backstepping 

controller

Auxiliary 
system

Update 
law

1 2,λ λ

1 2,λ λ D̂

υ
υ̂

controller

lυ

lυ

Figure 2. Controller structure.



Electronics 2025, 14, 1839 7 of 20

3.1. Adaptive Backstepping Controller Design

Before designing the controller, the following coordinate transformation is given:

z1 = ηa − ηr − λ1,

z2 = V1 − Vc − λ2
(5)

Step 1:

The derivative of the actual displacement (3) is obtained:

η̇a =

ẋ
ẏ
ż

+

 −lsinθcosψθ̇ − lcosθsinψψ̇

0 − lsinθsinψθ̇ + lcosθcosψψ̇

−lcosθθ̇

 (6)

It can be obtained from the system (1)

θ̇ = Vq, ψ̇ =
Vr

cosθ
(7)

Substituting Formula (7) into (6), we have

η̇a =

cosθcosψ −sinψ sinθcosψ

cosθsinψ cosψ sinθsinψ

−sinθ 0 cosθ


Vu

Vv

Vw

+

−lsinθcosψVq − lsinψVr

−lsinθsinψVq + lcosψVr

−lcosθVq


By simplification, we obtain

η̇a =

cosθcosψ −lsinθcosψ −lsinψ

cosθsinψ −lsinθsinψ lcosψ

−sinθ −lcosθ 0


Vu

Vq

Vr

+

−sinψVv + sinθcosψVw

cosψVv + sinθsinψVw

cosθVw


let

Jδ(η, V2) =

−sinψVv + sinθcosψVw

cosψVv + sinθsinψVw

cosθVw


we have

η̇a = Ja(η)V1 + Jδ(η, V2) (8)

Derivative of z1, we obtain

ż1 = η̇a − η̇r − λ̇1 (9)

Substituting Formulas (4) and (8) into (9), we obtain

ż1 = Ja(η)V1 + Jδ(η, V2)− η̇r − Ja(η)λ2 + k1λ1 (10)

Take the virtual control law Vc as follows:

Vc = J−1
a (η)(−Jδ(η, V2) + η̇r − k1ηa + k1ηr) (11)

Let the Lyapunov function Va as

Va =
1
2

zT
1 z1 (12)
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Derivative of Va, we obtain

V̇a = zT
1 (Ja(η)(z2 + Vc) + Jδ(η, V2)− η̇r + k1λ1) (13)

Substituting Formula (11) into (13), we obtain

V̇a = zT
1 (−k1ηa + k1ηr + k1λ1) + zT

1 Ja(η)z2

= −zT
1 k1z1 + zT

1 Ja(η)z2
(14)

Step 2:

Derivative of z2, we obtain

ż2 = V̇1 − V̇c − λ̇2 (15)

Substituting Formulas (2) and (11) into (15), we obtain

ż2 = M−1
1 (υ + ωd1 − C1(V2)V1 − D1(V1)V1 − g1(η))− V̇c + k2λ2 (16)

The controller is designed as follows:

υ = C1(V2)V1 + D1(V1)V1 + g1(η) + M1V̇c

− M1 JT
a (η)z1 − M1k2V1 + M1k2Vc − D̂

(17)

where D̃ = D − D̂, D = ω̄d1, D̂ is D estimates.
The update law is designed as follows:

˙̂D = Γ(M−1
1 )Tz2 (18)

where Γ is a positive definite matrix.
Let the Lyapunov function Vb as

Vb =
1
2

zT
1 z1 +

1
2

zT
2 z2 +

1
2

D̃TΓ−1D̃ (19)

Derivative of Vb, we obtain

V̇b = −zT
1 k1z1 + zT

1 Ja(η)z2 + zT
2 (M−1

1 (υ + ωd1

− C1(V2)V1 − D1(V1)V1 − g1(η))− V̇c + k2λ2)

− D̃TΓ−1 ˙̂D

(20)

Substitute (17) and (18) to obtain

V̇b ≤ −zT
1 k1z1 + zT

2 (−k2V1 + k2Vc + M−1
1 D̃ + k2λ2)− D̃TΓ−1 ˙̂D

≤ −zT
1 k1z1 − zT

2 k2z2 − D̃T(Γ−1 ˙̂D − (M−1
1 )Tz2)

≤ −zT
1 k1z1 − zT

2 k2z2

(21)

From Equation (21), it can be observed that z1, z2 are bounded. By assumption, both
η, V are bounded. Consequently, Vc, υ are also bounded.

Theorem 1. For the subsystem given by the model (2), under the input signal (17) and the update
law (18), we can obtain
(1) limt→+∞(ηa − ηr − λ1) = 0
(2) ∥ηa − ηr∥2 ≤ 1√

k̄1
( 1

2 D̃(0)TΓ−1D̃(0))
1
2 + 1√

k0
∥△u∥2
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Proof of Theorem 1. From (21), it follows that the derivative of Vb is less than zero, and
z1, z2, D̃ are bounded. According to the LaSalle-Yoshizawa theorem, when t → +∞,
zi → 0, i = 1, 2. therefore, limt→+∞(ηa − ηr − λ1) = 0.

According to (14)

Va = −zT
1 k1z1 + zT

1 Ja(η)z2

≤ −zT
1 k1z1 +

1
2

zT
1 z1 +

1
2

zT
2 JT

a (η)Ja(η)z2

≤ −k̄1zT
1 z1 +

1
2

zT
2 JT

a (η)Ja(η)z2

(22)

where k̄1 = k1 − 1
2 .

Therefore,
∥z1∥2

2 = ∥ηa − ηr − λ1∥2
2

=
∫ ∞

0
zT

1 (τ)z1(τ)dτ

≤ 1
k̄1
(Va(0)− Va(∞))

≤ 1
k̄1

Va(0)

(23)

When setting zi(0) = 0 and i = 1, 2, Va(0) = 1
2 D̃T(0)Γ−1D̃(0).

∥z1∥2
2 ≤ 1

k̄1

1
2

D̃T(0)Γ−1D̃(0) (24)

namely

∥z1∥2 ≤ 1√
k̄1
(

1
2

D̃T(0)Γ−1D̃(0))
1
2 (25)

To analyze the stability of the auxiliary system, let the Lyapunov function be

Vλ =
1
2

λT
1 λ1 +

1
2

λT
2 λ2 (26)

Derivative of Vλ, we obtain

V̇λ = λT
1 λ̇1 + λT

2 λ̇2

= λT
1 Ja(η)λ2 − λT

1 k1λ1 − λT
2 k2λ2 + λT

2 M−1
1 △u

(27)

According to the following inequality

λT
1 Ja(η)λ2 ≤ 1

2
λT

1 λ1 +
1
2

λT
2 JT

a (η)Ja(η)λ2,

λT
2 M−1

1 △u ≤ 1
2

λT
2 M−1

1 (M−1
1 )Tλ2 +

1
2
△uT△u

(28)

We have
V̇λ ≤ 1

2
λT

1 λ1 +
1
2

λT
2 JT

a (η)Ja(η)λ2 − λT
1 k1λ1

− λT
2 k2λ2 +

1
2

λT
2 M−1

1 (M−1
1 )Tλ2 +

1
2
△uT△u

(29)

Since JT
a (η)Ja(η), M−1

1 (M−1
1 )T are both diagonal positive definite matrices. Let

Γ1 = k1 −
1
2

,

Γ2 = −1
2

JT
a (η)Ja(η) + k2 I − 1

2
M−1

1 (M−1
1 )T

(30)
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we have
V̇λ ≤ −λT

1 Γ1λ1 − λT
2 Γ2λ2 +

1
2
△uT△u (31)

namely

V̇λ ≤ −C0λTλ +
1
2
△uT△u (32)

where λ = [λ1, λ2]
T , C0 = min{Γ1, λ(Γ2)}, λ(Γ2) represents all the eigenvalues of Γ2. Thus,

we have
∥λ∥2

2 =
∫ ∞

0
λT(τ)λ(τ)dτ

≤ 1
C0

[Vλ(0)− Vλ(∞) +
1
2

∫ ∞

0
△uT△udτ]

≤ 1
C0

[Vλ(0) +
1
2

∫ ∞

0
△uT△udτ]

(33)

When λi = 0 for i = 1, 2, we have Vλ(0) = 0. Thus,

∥λ∥2
2 ≤ 1

2C0

∫ ∞

0
△uT△udτ

≤ 1
2C0

∥△u∥2
2

(34)

It is obtained from (25) and (34) that

∥ηa − ηr∥2 ≤ 1√
k̄1
(

1
2

D̃(0)TΓ−1D̃(0))
1
2 +

1√
k0
∥△u∥2

It follows that the tracking error is related to D̃(0), Γ, k̄1, k0,△u. The closer the initial
estimate D̂ is to the true value D, the smaller the tracking error becomes. Additionally,
selecting larger values for k̄1, k0 further reduces the tracking error.

3.2. Dynamic Event-Triggered Control

Let the auxiliary variables be

η̇ f = −βη f + ξ(σ(zT
1 k1z1 + zT

2 k2z2)− eTe) (35)

where η f (0) > 0, β > 0, ξ ∈ [0, 1], σ ∈ [0, 1], e = υ − υ̂. υ̂ is the event-triggered controller
output (17). The trigger mechanism is designed as follows:

υ̂ = υ(tk), ∀t ∈ [tk, tk+1)

tk+1 = sup{t > tk|ρ(eTe − σ
2

∑
1

zT
i kizi) ≤ η f }

(36)

where ρ > 0.
The design of the controller is summarized in Table 1. Theorems can be obtained from

the summary as follows.

Theorem 2. For the subsystem given by model (2), under event-triggered control (36), input signal
(17) and update law (18), If ρ > 1−ξ

β , the system is stable and Zeno’s phenomenon can be avoided.
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Table 1. Controller expression.

Expression

controller υ = C1(V2)V1 + D1(V1)V1 + g1(η) + M1V̇c

− M1 JT
a (η)z1 − M1k2V1 + M1k2Vc − D̂

update law ˙̂D = Γ(M−1
1 )Tz2

dynamic event-triggered mechanism
υ̂ = υ(tk), ∀t ∈ [tk, tk+1)

tk+1 = sup{t > tk|ρ(eTe − σ
2

∑
1

zT
i kizi) ≤ η f }

Proof of Theorem 2. According to the Equations (35) and (36), we can obtain

η̇ f ≥ −βη f −
ξη f

ρ
= −(β +

ξ

ρ
)η f (37)

namely

η f ≥ η f (0)e
−(β+ ξ

ρ )t > 0 (38)

Let the Lyapunov function be as follows:

W =
1
2

2

∑
1

zT
i zi +

1
2

D̃TΓ−1D̃ + η f (39)

Derivative of (39), we obtain

Ẇ ≤ −zT
1 k1z1 + zT

1 Ja(η)z2 + zT
2 (M−1

1 (υ − e + ωd1

− C1(V2)V1 − D1(V1)V1 − g1(η))− V̇c + k2λ2)

− D̃TΓ−1 ˙̂D − η̇ f

≤ −zT
1 k1z1 − zT

2 k2z2 − D̃T(Γ−1 ˙̂D − (M−1
1 )Tz2)

− η̇ f − zT
2 M−1

1 e

(40)

Notice the inequality

zT
2 M−1

1 e ≤ 1
4

zT
2 M−1

1 (M−1
1 )Tz2 + eTe (41)

We have

Ẇ ≤ −zT
1 k1z1 − zT

2 k2z2 +
1
4

zT
2 M−1

1 (M−1
1 )Tz2 + eTe − η̇ f

≤ −zT
1 k1z1 − zT

2 k2z2 +
1
4

zT
2 M−1

1 (M−1
1 )Tz2

+ eTe − βη f + ξ(σ(zT
1 k1z1 + zT

2 k2z2)− eTe)

(42)
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Let
C1 = k1 I − ξσk1 I,

C2 = k2 I − ξσk2 I +
1
4

M−1
1 (M−1

1 )T
(43)

We have
Ẇ ≤ −zT

1 C1z1 − zT
2 C2z2 − βη f + (1 − ξ)eTe (44)

According to the Formula (36), it can be obtained that

Ẇ ≤ −zT
1 C1z1 − zT

2 C2z2 − βη f + (1 − ξ)(
η f

ρ
+ σ(zT

1 k1z1 + zT
2 k2z2))

≤ −(1 − σ)(zT
1 C1z1 + zT

2 C2z2)− (β − 1 − ξ

ρ
)η f

≤ 0

(45)

Based on the above analysis, it can be concluded that after the system (1) adopts the
control law (17), update law (18), and dynamic event-triggering (36), as long as k1, k2, β, η f (0)

are positive constants, ξ, σ ∈ [0, 1], and ρ > 1−ξ
β , the system will be stable.

Exclusion of the Zeno behavior: We will prove that the Zeno phenomenon will not
occur by using the method of reductio ad absurdum. First, we will assume that the Zeno
phenomenon will occur.

lim
k→∞

tk = T, k ∈ Z+

where T > 0. There are infinitely many event triggers within the time interval [0, T]. In the
[tk, tk+1), υ̂ is a fixed value, so e = υ − υ̂ derivative can obtain ė = υ̇. And in [tk, tk+1), e
may be 0 many times in the interval except at the beginning. Let the moment when the last
e is 0 be denoted as t̄. In (t̄, tk+1), we have

d||eTe||2
dt

=
d
√

e2
1 + e2

2 + e2
3

dt

=
e1 ė1 + e2 ė2 + e3 ė3√

e2
1 + e2

2 + e2
3

(46)

where e = υ − υ̂ = [e1, e2, e3]
T .

It follows from Lemma 2 that

e1 ė1 + e2 ė2 + e3 ė3 ≤
√

e2
1 + e2

2 + e2
3

√
ė2

1 + ė2
2 + ė2

3 (47)

Then,
d||eTe||2

dt
≤

√
(ė1)2 + (ė2)2 + (ė3)2

= ||ė||2 = ||υ̇||2
(48)

Since υ is a continuous function and bounded by the Formula (17), the interval
(t̄, tk+1) exists

d||eTe||2
dt

≤ ||υ̇||2 ≤
√

h2
1 + h2

2 + h2
3 (49)

where h1, h2, h3 are the upper bounds of the three components of υ̇, respectively.
Because ∑2

1 zT
i kizi > 0, a sufficient condition for making Formula (36) was established

||eTe||2 ≤

√
η f (0)

ρ
e−(β+ ξ

ρ )t (50)
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Since e(t̄) = [0, 0, 0]T , at the next triggered time, the following condition holds

tk+1 − tk ≥ tk+1 − t̄

≥

√
η f (0)

ρ
e−(β+ ξ

ρ )t/(
√

h2
1 + h2

2 + h2
3)

(51)

So in the interval [0, T], must have

tk+1 − tk ≥

√
η f (0)

ρ
e−(β+ ξ

ρ )t/(
√

h2
1 + h2

2 + h2
3)

= µ > 0

(52)

Therefore, this contradicts the assumption, as triggering cannot occur infinitely many
times within the interval [0, T]; thus, the Zeno phenomenon does not occur.

4. Simulation Results
In this section, the 5-DOF underactuated AUV model from the reference [22] is used

as the simulation plant to verify the effectiveness of the proposed dynamic event-triggered
adaptive backstepping controller. The model is as follows:{

η̇ = J(η)V

MV̇ + C(V)V + D(V)V + g(η) = u + ωd
(53)

where

η = [x, y, z, θ, ψ]T , V = [Vu, Vv, Vw, Vq, Vr]
T , u =

[
Ulu, 0, 0, Ulq, Ulr

]T

J(η) =


cosθcosψ −sinψ sinθcosψ 0 0
cosθsinψ cosψ sinθsinψ 0 0
−sinθ 0 cosθ 0 0

0 0 0 1 0
0 0 0 0 1

cosθ


M = diag{215, 265, 265, 80, 80}, g(η) = [0, 0, 0, 362.6, 0]T , l = 0.2,

D(V) = diag{70 + 100|Vu|, 100 + 200|Vv|, 100 + 200|Vw|, 50 + 100|Vq|, 50 + 100|Vr|},

C(V) =


0 0 0 265Vw −265Vv

0 0 0 0 215Vu

0 0 0 −215Vu 0
−265Vw 0 215Vu 0 0
265Vv −215Vu 0 0 0


The external disturbance are

ωd =



0.5sgn(Vv) + sin(0.1t)

0.02(cos(2t) + sgn(Vw))

0.02(cos(2t) + sgn(Vw))

0.5sgn(Vv) + sin(0.1t)

0.5sgn(Vv) + sin(0.1t)


In the simulation, we adopt the controller, update law, and event-triggered mechanism as

shown in Table 1 and the amplitudes of the actuators are all limited between [−200, 200].
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In order to verify the effectiveness and adaptability of the dynamic event-triggered adaptive
backstepping controller, two different tracking targets are used in the simulation experiments.

4.1. Example 1

The control objectives are set as follows:

xr = 10sin(0.1t), yr = 10cos(0.1t), zr = 0.1t

The controller parameters are set as follows:

k1 = 10.8, k2 = 22.8, Γ = diag{0.7, 0.7, 0.7}, β = 0.7, ξ = 1, σ = 0.6, ρ = 0.4

The initial state is taken η = [0, 10, 0, 0, 0].
The simulation results are shown in the figure. In Figure 3a, the dynamic event-

triggered adaptive backstepping control and the static event-triggered adaptive backstep-
ping control are used for experimental comparison. Figure 3b–d represents the tracking
error over time in the three dimensions x, y, and z.

(a)

0 20 40 60 80 100

t(s)

-0.2

0

0.2

0.4

0.6

0.8

1

X
(m

)

e
x

(b)

0 20 40 60 80 100

t(s)

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Y
(m

)

e
y

(c)

0 20 40 60 80 100

t(s)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Z
(m

)

e
z

(d)

Figure 3. Example 1 Tracking effect and error. (a) Tracking trajectory. (b) Error of the x-axis. (c) Error
of the y-axis. (d) Error of the z-axis.

Figure 4a shows the estimation of the upper bound for the external disturbance.
Figure 4b shows the change in the dynamic auxiliary variable.

Figure 5a–c are the controller outputs. The three terms in the figure represent the
controller output, the output after limited, and the output after the event is triggered.
Figure 5d represents the time interval of the trigger.
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Figure 4. Example 1 Estimation of parameters and dynamic variables. (a) Estimation of the upper
bound of external disturbances. (b) Dynamic auxiliary variable.

0 20 40 60 80 100

t(s)

-4

-3

-2

-1

0

1

2

3

4

5

C
o
n
tr

o
l 
in

p
u
t 
1
(N

 m
)

10
4

12.6 12.8 13 13.2
100

150

200

250

(a)

0 20 40 60 80 100

t(s)

-1.5

-1

-0.5

0

0.5

1
C

o
n
tr

o
l 
in

p
u
t 
2
(N

 m
)

10
4

10 11 12 13 14
-400

-200

0

200

13 13.1 13.2 13.3 13.4
-60

-50

-40

-30

(b)

0 20 40 60 80 100

t(s)

-1.5

-1

-0.5

0

0.5

1

C
o
n
tr

o
l 
in

p
u
t 
3
(N

 m
)

10
4

10 11 12 13 14
-400

-200

0

200

18 19 20 21
0.2

0.4

0.6

0.8

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

t(s)

0

0.05

0.1

0.15

0.2

44 44.5 45 45.5 46

(d)

Figure 5. Example 1 Control output and trigger time. (a) Control input 1. (b) Control input 2.
(c) Control input 3. (d) Consecutive time intervals.
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4.2. Example 2

The control objectives are set as follows:

xr = 0.05tcos(0.2t), yr = 0.05tsin(0.2t), zr = 0.05t

The controller parameters are set as follows:

k1 = 1.9, k2 = 5, Γ = diag{0.01, 0.01, 0.01}, β = 0.001, ξ = 1, σ = 0.99, ρ = 7.9

The initial state is taken η = [0, 0, 0, 0, 0].
The simulation results are shown in the figure. In Figure 6a, the dynamic event-

triggered adaptive backstepping control and the static event-triggered adaptive backstep-
ping control are used for experimental comparison. Figure 6b–d represents the tracking
error over time in the three dimensions x, y, and z.
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Figure 6. Example 2 Tracking effect and error. (a) Tracking trajectory. (b) Error of the x-axis. (c) Error
of the y-axis. (d) Error of the z-axis.

Figure 7a shows the estimation of the upper bound for the external disturbance.
Figure 7b shows the change in the dynamic auxiliary variable.
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Figure 7. Example 2 Estimation of parameters and dynamic variables. (a) Estimation of the upper
bound of external disturbances. (b) Dynamic auxiliary variable.

Figure 8a–c are the controller outputs. The three terms in the figure represent the
controller output, the output after limited, and the output after the event is triggered.
Figure 8d represents the time interval of the trigger.
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Figure 8. Example 2 Control output and trigger time. (a) Control input 1. (b) Control input 2.
(c) Control input 3. (d) Consecutive time intervals.
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4.3. Discussion

It can be observed from Figures 3a and 6a that both dynamic event triggering and
static event triggering can track the tracking target. In order to reflect the tracking effect
more intuitively, we have counted the maximum tracking error of the two algorithms
in three dimensions, x,y, and z, in different cases in Table 2. Comparing the maximum
error in different cases, we can see that the two algorithms have the same tracking effect.
Figures 5a–c and 8a–c show the process of controller calculation. Firstly, the output υ is
given by the adaptive backstepping controller combined with the auxiliary system, then
the output υl is obtained by limiting, and finally the output υ̂ after the dynamic event is
triggered. It is observed that the range of variation of the three control inputs in Example 1
is different from that in Example 2; mainly the values k1, k2 in the controller are different.
For different tracking targets, different k1, k2 need to be adjusted. In the controller, k1, k2 are
within a certain range; the larger the value of k1, k2, the better the control effect, but beyond
a certain range, the system will become unstable.

Table 2. Maximum error in each dimension.

Static Event-Triggered Dynamic Event-Triggered

Example 1 x: 8.19 × 10−1 x: 8.10 × 10−1

y: −3.92 × 10−1 y: −3.92 × 10−1

z: 1.18 × 10−1 z: 1.17 × 10−1

Example 2 x: 1.99 × 10−1 x: −1.98 × 10−1

y: 1.16 × 10−2 y: 4.75 × 10−3

z: 3.32 × 10−2 z: 9.40 × 10−3

Figures 5d and 8d represent the time interval between the triggering of the event. To
compare the effect, we count the number of static and dynamic event-triggered executions
in Table 3. The comparison shows that under the same tracking effect, the execution times
of dynamic event triggering are significantly less than that of static event triggering, and
the execution efficiency is higher.

Table 3. The number of events for the two algorithms.

Static Event-Triggered Dynamic Event-Triggered

Example 1 4340 3994
Example 2 3885 2624

5. Conclusions
In this paper, a dynamic event-triggered adaptive backstepping controller is designed

for a 5-DOF underactuated AUVs with input saturation and external disturbances. Firstly,
the 5-DOF underactuated AUVs model was divided into the underactuated part and the
actuated part, and the output was redefined according to the virtual control point. Secondly,
based on the adaptive backstepping control, an auxiliary system is constructed according
to the characteristics of the underactuated AUVs model to generate a series of signals
to compensate for the input saturation. Then, dynamic event triggering is implemented
by using state variables and controller outputs as event-triggering conditions. Finally,
through theoretical analysis and simulation experiments, it is concluded that the dynamic
event-triggered adaptive backstepping controller can effectively solve the input saturation
problem and reduce the number of executions while making the stability error tend to zero.

In this paper, we consider how to reduce the number of executions as much as possible
to improve the execution efficiency in the case of input saturation. In practice, in addition
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to the problem of input saturation in this paper, there are also problems such as time delay,
dead zone, sensor fault (bias, zero drift, loss of accuracy, etc.), actuator fault (bias fault,
gain fault, etc.), etc. Our future research direction will consider the actual situation more
comprehensively and explore how to ensure the stability of the system while improving
the execution efficiency under these restrictions. After the theoretical verification, we are
ready to improve the experimental conditions and carry out the physical experiment.
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