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Abstract: Remotely operated vehicles (ROVs) face challenges in achieving optimal trajec-
tory tracking performance during underwater movement due to external disturbances and
parameter uncertainties. To address this issue, this paper proposes a position and attitude
control strategy for underwater robots based on a reinforcement learning active disturbance
rejection controller. The linear active disturbance rejection controller has achieved satisfac-
tory results in the field of underwater robot control. However, fixed-parameter controllers
cannot achieve optimal control performance for the controlled object. Therefore, further
exploration of the adaptive capability of control parameters based on the linear active
disturbance rejection controller was conducted. The deep deterministic policy gradient
(DDPG) algorithm was used to optimize the linear extended state observer (LESO). This
strategy employs deep neural networks to adjust the LESO parameters online based on
measured states, allowing for more accurate estimation of model uncertainties and environ-
mental disturbances, and compensating the total disturbance into the control input online,
resulting in better disturbance estimation and control performance. Simulation results
show that the proposed control scheme, compared to PID and fixed parameter LADRC, as
well as the double closed-loop sliding mode control method based on nonlinear observers
(NESO-DSMC), significantly improves the disturbance estimation accuracy of the linear
active disturbance rejection controller, leading to higher control precision and stronger
robustness, thus demonstrating the effectiveness of the proposed control strategy.

Keywords: ROV; linear active disturbance rejection control; deep reinforcement learning;
deep deterministic policy gradient (DDPG) algorithm; resilience to disturbance

1. Introduction

Remotely operated vehicles (ROVs) play an important role in underwater inspection,
marine salvage, and deep-sea mining. Currently, the requirements for the control accuracy
and robustness of underwater robots are also increasing. However, due to the nonlinear
dynamics, external disturbances, and parameter uncertainties present in the underwater
movement of ROVs, designing a reliable tracking controller is challenging. In recent
decades, an increasing number of scholars have conducted extensive research on the
control stability of ROVs. The control methods they used are elaborated upon below.

Proportional-integral-derivative (PID) control is the most widely used approach in
industrial control. Guerrero et al. proposed a saturation function-based nonlinear PID
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controller, effectively addressing the control instability issues in underwater vehicles caused
by actuator saturation and complex environmental disturbances [1]. Sarhadi et al. proposed
a model reference adaptive PID control structure with an anti-saturation compensator to
address the issue of model uncertainty in autonomous underwater vehicle systems [2].

Fuzzy control is a control method similar to expert systems. Han et al. proposed a
fuzzy logic system to address the issue of unknown inertia matrices in AUV systems [3]. Li
et al. proposed a fuzzy adaptive controller that considers the dynamics of ROV thrusters to
improve the trajectory tracking performance of work-class ROVs, using a fuzzy adaptive
control algorithm to compensate for changes in system parameters and disturbances [4].
Yang et al. proposed a fuzzy logic system (FLS) to replace the discontinuous switching
terms in CSMC to reduce chattering phenomena [5].

Sliding Mode Control (SMC) is often used for trajectory tracking of underwater robots
due to its resistance to external disturbances and parameter variations. Cheng et al. pro-
posed a method that combines a finite-time observer with adaptive sliding mode control to
achieve high-precision robust tracking of underwater vehicles [6]. Long et al. proposed an
Adaptive Sliding Mode Control (ASMC) to construct a dynamic controller that calculates
the optimal force and torque based on the output virtual speed. This approach is robust
to parameter uncertainties and addresses the issue of flutter [7]. Luo et al. proposed an
improved sliding surface has been proposed to address the finite selection problem of
exponential parameters, resulting in a controller with better robustness [8]. Huang et al.
introduced a double closed-loop sliding mode controller for trajectory tracking control of
working-class ROVs, which uses the arctangent function as the switching function of the
controller, effectively reducing chattering phenomena [9].

Neural network control (NNC) has emerged as a potent tool for crafting controllers for
nonlinear and uncertain systems. Wen et al. proposed a predefined time control strategy
using Radial Basis Function Neural Networks (RBFNNs), which effectively approximates
external disturbances, thereby enhancing the robustness of the system [10]. Chu et al.
proposed an adaptive control scheme based on radial basis function (RBF) neural net-
works for ROV trajectory tracking. To ensure system stability under actuator saturation,
a first-order auxiliary state system was constructed [11]. Shojaei et al. proposed a neural
network-enhanced feedback linearization control framework, which effectively addresses
the performance guarantee issues of underactuated AUVs under model uncertainties and
disturbances [12].

Each of the methodologies mentioned above has specific limitations. As the complexity
of the Remotely Operated Vehicle (ROV) model increases, the effectiveness of proportional-
integral-derivative (PID) control decreases significantly. Fuzzy control heavily relies on a
fuzzy rule base constructed from expert experience, while SMC (Sliding Mode Control)
has a very high dependency on the model and is prone to high-frequency chattering
issues [13,14]. Neural network control (NNC) is particularly influenced by the number of
nodes in the neural network; while increasing the nodes can improve control accuracy; it
also leads to a significant rise in computational complexity, posing challenges for practical
engineering applications [15]. Furthermore, these approaches do not adequately address
the constraints related to the ROV’s state, potentially compromising tracking precision and
risking damage to the thrusters.

To overcome the limitations associated with the status of the Remotely Operated Vehi-
cle (ROV), this research employs Linear Active Disturbance Rejection Control (LADRC), an
optimal control approach. LADRC preserves the essential characteristics of the proportional-
integral-derivative (PID) algorithm without requiring an accurate model of the controlled
system [16]. Instead, it treats the unmodeled dynamics and external disturbances as “total
disturbances,” which are then estimated and compensated for. This methodology offers
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significant advantages in engineering applications due to its ease of use and robust resis-
tance to interference [17,18]. Zhao et al. introduced a trajectory tracking control method
for a dual-joint robotic arm system, integrating an extended state observer to estimate
both the disturbances and states of the system. Additionally, they applied a state error
feedback controller, and experimental findings indicate that the proposed control approach
effectively meets control requirements under various conditions, including low-frequency,
high-frequency, load, and disturbance scenarios [19,20]. Despite the successful implementa-
tion of LADRC in nonlinear systems, its control effectiveness is limited by its fixed structure
and parameters.

The adaptive adjustment of parameters for control methods has been a prominent
subject of interest, with various optimization algorithms being utilized to improve the
robustness and control efficacy of these methods [21,22]. Different operational contexts
necessitate varying control parameters, posing challenges for controllers with fixed opti-
mization parameters to achieve optimal control performance. Drawing inspiration from
artificial intelligence technologies, reinforcement learning (RL) algorithms have been amal-
gamated with control theory to devise novel control strategies that augment the adaptability
of control systems and uphold optimal control performance in real time. Chen introduced a
Q-learning-based adaptive tuning technique for LADRC parameters [23], which identifies
optimal control parameters through iterative updates of the Q-value table and applies it
to the heading control of ships. Nevertheless, the Q-learning algorithm mandates manual
partitioning of the states of the controlled object and the specification of discrete actions,
rendering it arduous to train and learn efficiently as the number of states and specified
actions escalates. Furthermore, due to the discrete actions specified, the controller param-
eters can only assume predetermined values rather than varying continuously, thereby
constraining the controller’s flexibility. To solve this problem [24], this study employs the
Deep Deterministic Policy Gradient (DDPG) RL algorithm to dynamically generate optimal
control gains online for the designed LADRC within the Linear Extended State Observer
(LESO), thereby determining the optimal parameters of the extended state observer under
diverse unknown disturbance conditions. This methodology circumvents the issue of
inaccurate disturbance estimation stemming from fixed parameters, and the efficacy of the
algorithm is ultimately corroborated through simulations.

The main contributions of this article include:

1. This article presents a nonlinear model for underwater robots that considers param-
eter uncertainty in the dynamic model. It also proposes a linear active disturbance
rejection controller for controlling the position and attitude of the underwater robot
based on this model. The convergence of the extended state observer in the active
disturbance rejection controller and the stability of the closed-loop control system are
demonstrated using the Lyapunov method.

2. A novel control method, named DDPG-LADRC, has been introduced to address
disturbances in linear systems by integrating the Deep Deterministic Policy Gradient
(DDPG) algorithm with an active disturbance rejection control approach. This method
focuses on optimizing the extended state observer through the DDPG algorithm,
enabling the observer to sustain optimal performance under varying external dis-
turbances during both position and attitude control of Remotely Operated Vehicles
(ROVs). Through real-time adjustments of control parameters, the performance of the
extended state observer (LESO) is enhanced, thereby improving the system’s resilience
to disturbances and enhancing control accuracy in intricate underwater settings.

3. Based on a nonlinear underwater robot model, numerical simulations have confirmed
the efficacy of the approach. The simulation results first compared three control
algorithms: PID, fixed-parameter LADRC, and DDPG-LADRC, and finally included
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NESO-DSMC for comparison. Through analysis, the proposed method has been
verified to have significant advantages in terms of transient performance, control
accuracy, and robustness.

The subsequent sections of this article are structured as follows: Section 2 introduces
a nonlinear model for the underwater robot, Section 3 outlines the design of the LADRC
controller for the robot, and Section 4 introduces the DDPG-LADRC algorithm and analyzes
the convergence of the extended state observer and the stability of the closed-loop control.
Section 5 presents the results and analysis of numerical simulations, and lastly, a conclusion
is offered.

2. Dynamics Model of a Robot

This section investigates the dynamic model of an ROV for offshore underwater
structure marine growth cleaning and structural inspection independently developed by
the Hadal Science and Technology Center of Shanghai Ocean University. The robot is
equipped with eight thrusters, allowing it to execute three-dimensional spatial maneuvers.
Figure 1 shows the coordinate system of the robot and defines the inertial coordinate system
(x0, Yo,2z0) and the motion coordinate system (x, y,z). The state variables relative to the
motion coordinate system are represented asV = [u, v, w,p,q, r} T , where u,v, w represent
linear velocity, and p, g, 7 represent angular velocity. The state variables relative to the
inertial coordinate system are represented as [x, v,z,¢,6, 1[)]T, where x, y,z indicate the
position of the ROV, and ¢, 8, i represent the attitude of the ROV. The kinematic equations
of the ROV can be expressed as 17 = J(17)v [25]. The roll and pitch are passively stabilized
by the buoyancy system, requiring no active control, so ¢ = 6 = 0. Therefore, the six

degrees of freedom motion of the ROV can be simplified to four degrees of freedom motion.

Body fixed frame

Figure 1. Remotely operated vehicle coordinate system.

The dynamic equations in the Remotely Operated Vehicle (ROV) motion coordinate
system are presented below [25]:

Mv+C(v)v+ D(v)v+g(n) = T+ Af 1)

In the dynamics Equation (1) of the ROV, M represents the inertia matrix of the ROV,
v represents the linear velocities and angular velocities of the ROV, v represents the linear
and angular accelerations of the ROV, C(v) represents the Coriolis-centrifugal matrix, D(v)
represents the hydrodynamic damping matrix, ¢(1) represents the restoring force vector,
7 is the control input provided by the main thrust and torque from the ROV’s thrusters,
and Af represents external water flow disturbances and uncertainties such as unmodeled
dynamics. The movement of an ROV can be conceptualized as the general motion of
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a rigid body influenced by gravity and hydrodynamics in a water flow. Usually, the
fluid dynamics parameters are derived from experiments or fluid simulations. However,
due to the complexity of real-world ocean conditions, ensuring the accuracy of these
parameters is a significant challenge. Consequently, the parameters M, C(v), and D(v) in
the equation remain indeterminate. The M, C(v), D(v) in Equation (1) can be represented as
the combination of the nominal parameters My, Co(v), Dg(v) and the dynamic uncertainties
AMy, ACy(v), ADqy(v), as follows:

M = Mo+ AM
C(0) = Co(0) + AC(v) @
D(v) = Dy(v) + AD(v)

Then, Equation (1) can be rewritten as:

Mov + Co(v)o + Do(v)o +g(17) = T+ Af + 1 (3)
0 0 m 0 z, Z, Z, Z
—myg mxg 0 I N, N, N, N;

By assuming that the origin O of the dynamic system coincides with the centroid G
and that the coordinate axes coincide with the three principal inertia axes, and ignoring the
off-diagonal elements in the Mrp and M 4 matrices [25], we can obtain the M matrix:

m—X, 0 0 0
0 m-—Y; 0 0

Mo=M My = v 5

0 = Mgp + My 0 0 m-z, 0 (5)
0 0 0 I;-N,

In Formula (5), My € R*** represents the inertia matrix, which is composed of the
sum of the rigid body mass matrix Mgp and the added mass matrix, My. m is the mass
of the ROV, I is the moment of inertia, and X, Y;, Z represent the hydrodynamic forces
induced by the added mass in the x, y, and z directions, respectively, with unit acceleration
along the u, v, and w axes. N, represents the additional inertial force generated by the

unit angular acceleration 7 in the direction of the z-axis.

0 0 0 Yuv 0 0 0 —mv
0 0 0 —X.u 0 0 0 mu
C = i C =
A(v) 0 0 0 rRB(V) 0 0 0 0
-Y,v X,u 0 0 mv —mu 0 0 ©)
0 0 0 —(m=Y,)v
0 0 0 m— X \u
Co(v) =Crp+Ca = 0 0 0 ( 0 i
(m—=Y,)v —(m—X;,)u 0 0

In Formula (6), Co(v) € R***, Co(v) = Crp + Ca, where Crp represents the matrix
encompassing the rigid body Coriolis force and centripetal force, while C4 denotes the
matrix accounting for the Coriolis force and centripetal force resulting from the added mass
of the inertial fluid dynamics [25].
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Xy + Xu\u| \u| 0 0 0
0 Yo + Y, |0 0 0
D)= ° L %
w + w\w||w‘ 0
0 0 0 Nr + Nr|r||r’

Desired trajectory
xq = 2sin(0.1mt)
Yq = 2cos(0.1mt)
zq = 0.2t
a =04

(’xd9yd’zd9l//d)

In the Formula (7), Dg(V) € R*** denotes the damping matrix, which arises from
the effects of viscous fluid dynamics on the robot. The symbols X,,Y,, Z,, N, and
Xuju)» Yolo|r Zuwl,|» Nrjr| correspondingly denote the primary and secondary hydrodynamic
damping coefficients that emerge during the motion of the underwater robot [25].

T
gty =1[0 0 ~(w-B) 0 ®)

In Formula (8), g(7) is represented as the restoring force and moment caused by
gravity and buoyancy [25]. W is the gravity of the underwater robot, and B is the buoyancy.
In the physical structure design of the ROV, buoyancy is equal to gravity, so it can be further

expressed as: g(17) = [O 00 0} T.

In Formula (3), T € R*** represents the thrust generated by the propeller, expressed
as T = [Fy, Fy, Fz, Nz] T where Fy, Fy, F7 are the thrusts generated by the propeller along
the three coordinate axes, and Nz are the moments generated by the propeller around the
coordinate axes.

In Formula (3), Af € R*** represents external disturbances such as ocean currents

in the working environment, and 7z € R¥x4

represents the uncertainty of dynamic
lumped parameters, where 7y = —AMv — AC(v)v — AD(v)v. For the subsequent design
of LADRC, we unify the model parameter uncertainty terms (AM, AC(V),AD(V)) and

external disturbances as total disturbances.

3. LADRC Controller Design

In addressing the challenges posed by uncertainties in ocean current disturbances,
process noise, and hydrodynamic damping coefficients, the Linear Active Disturbance
Rejection Control (LADRC) method is utilized. LADRC comprises a Linear Extended State
Observer (LESO) and Linear State Error Feedback Control Law (LSEFC). Of particular sig-
nificance is the development of the LESO, which is implemented to estimate and counteract
external disturbances and uncertainties in model parameters. The LSEFC determines the
virtual control signal uy by evaluating the system’s state error. The control block diagram

is illustrated in Figure 2.
Disturbance: f = [fe f3 for Jyl"

= [205sin(0.4 * t) 20sin (0.4 * t)
20sin(0.4 * t) 20sin(0.4 * t)]7

Z,
. , (2.7,7,7,) e .zy)
A
ZS
Z, 4 _
Linear Expansion
Z State Observer

Figure 2. Structure diagram of linear active disturbance rejection controller.
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3.1. Linear Extended State Observer

LESO improves the performance of control systems by estimating and compensating
for disturbances and unknown state variables. This section outlines the design process of
the LESO scheme based on the mathematical model of the ROV system. The kinematics
expression of the ROV is # = J(#)v [25], from which we can derive Formula (9):

i=1mv+jmy
= J(1)Mg (A +1a — Co(v)o — Do(v)o +g()) + J()v + J () My ' )
=f+X+](nMy't

In Formula (9), X = J(7)v = J(1) My (Co(v)o — Do(v)o +g(n)), f = J(1) My (A + T)
represents the total uncertainty of the unmodeled dynamics and external disturbances. For
the convenience of designing the LESO, let f = [fy, fy, fz, fy|, T = {Tx, Ty, T2y Tlp} , then
Formula (9) can be written as [26]:

X =mT+ X1+ fx

y=m1y+Xo+fy

/ 10
Z:ﬂ3Tz+X3+fz ( )
Y = agTy + X +f1p
X1 = 2 (X4 Xy | 10| —(m =Yy )ur)
e (Yo 4 Yopoy | 0| —(m — X )ur)
—usiny — vcosy
cos sin
a = (mf)lgil - mflygi})
_ sing cosy
Xy = m—Xx, (Xu + Xu|u\ | u | 7(7?1 - Y@)M?’) + m=Y,
(YU + Yoo |0 | —(m — Xit)ur> + ucosyp — vsiny (1
sin cos
az = mf)ll(}u + mi,
Xs = W
a3 = m—lzw
Ny+N, || )r
Xa= %'”‘1 = =N

The total uncertainty f, which represents the unmodeled dynamics and external
disturbances, is defined as the total disturbance. To achieve an accurate estimation of the
total disturbance f experienced in the control of underwater robots [19], the dynamics
model of the ROV is rewritten as follows.

. (NT+Nr|r|‘r|)r 1
1[J—IZ_N_T¢+ L_N + fy (12)

r r

Using the dynamic expression of heading angle ¢ from Equations (10) and (11) as
an example for controller design, we provide a detailed design explanation for LESO
and LSEFC.

In Formula (12), IZ%N is a constant term whose value is determined by the system’s

inertia parameter I; and damping coefficient N.. To simplify the formula, b = IZ%N

(Nr"N,M ‘Y‘)‘f
I;—N:

is used to replace this complex coefficient. The second term describes the

nonlinear disturbances caused by hydrodynamics, which are typically rergarded as a type of
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interference or unmodeled dynamics. In the design of LESQO, this part is incorporated into
the total uncertainty f for unified treatment. Therefore, Formula (12) can be simplified to:

Y ="bty+ fy (13)

Taking the state variables 1, §», {3, among them ¢3 = f, as the extended state, the
ROV heading angle 1 control model can be expressed as:

=1
¥y = by + ¢
Y3 =D

Let D = f g P2 = . A linear expansion state observer can be established for the
system (13) [19]:
e1=¢v—1z9
21 =2+ prer
2y = z3 + Boeg + by
23 = Pser

(15)

In reference Formula (15), z1,z, represent the estimated values of the state variables
of the controlled object (in this example, z; represents the observation value of ¢, and z; is
the observation value of the i derivative), while z3 represents the real-time estimated value
of the total disturbance (unknown external disturbances and uncertain models). B1, 82, B3
are the gains of the LESO. If the observer gains are chosen appropriately, LESO can achieve
precise tracking of each state variable of the controlled object. To facilitate parameter tuning,
the values of 81, B2, B3 are determined by wy. By reasonably selecting the parameter wy,
the observed value of the “total disturbance” can be made closer to the true value. The
Laplace transform of the LESO equation yields [19]:

7 = 51524{#;25%31/(5) + -5 U(s)

40 )
Zp = ﬁzz/?;l)hsy(s) i bS(Li—(:If;)l)U(S) (16)
2
z3 = B5Y(s) — 75 U(s)

Y(S) is the Laplace transform of the system output y(t) in the time domain, and U(S)
is the Laplace transform of the system input u(t) in the time domain. The characteristic
equation corresponding to LESO is [18]:

L (s) = 53+ Brs® + Bos + B3 (17)

To stabilize the system, the roots of the characteristic equation must be located in the
left half of the s-plane. Therefore, the three poles of the observer are uniformly placed
on the left half of the real axis at —w, (where w, is the bandwidth of the observer, and
w, > 0). Therefore, the observer gain can be obtained as ; = 3w,, B2 = 3w?, B3 = ws.

The estimated error of LESO can be expressed as [18]:

él =€) — ﬁlel
e = e3 — Boey (18)
e3 = D — Bse

Among them, e; = 1; — z; (i = 1,2,3) provides the conditions for the estimation error
of LESO, which will be used for the stability proof of LESO in the following text.
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3.2. Linear State Error Feedback Controller

Traditional PID controllers use error integration to eliminate static errors, but the
feedback from error integration can make the system prone to oscillation. In contrast,
the LESO (Linear Extended State Observer) employs real-time compensation for total
disturbances, avoiding the negative effects of integral feedback. The result is shown in
Equation (19) [18]:

e1 =Y —21
e=19,—2 (19)
Ug = kpel + kdez

In the equation, ¥, is the reference heading angle input, 1y is the error feedback
control quantity, and kj, k; are the controller gains. According to Equation (19), the transfer
function of uy concerning r can be obtained:

Uo(s) o kp +de
R(s)  s2+kgs+kp

(20)

By setting both poles of the controller on the real axis at —w, (Where w, represents
the control bandwidth) in the left half of the s-plane, the controller gain can be determined

as [18].
ky = w? 1)
kd = ZCL)C

Based on 19, an additional compensation term for the total disturbance estimate is
added, so the control quantity can be taken as:

—2z3 + Ug

Tl[) = b() (22)

In Formula (22), ug is the error feedback control quantity, and 7y is the actual input
of the controlled object.

4. DDPG Optimization of Control Parameters for Active Disturbance
Rejection Controller

For the controlled system, when the range of unknown disturbances is too large and
the rate of change is too fast, using a fixed-parameter active disturbance rejection controller
results in low control accuracy. Therefore, by combining deep reinforcement learning, an
improved active disturbance rejection controller has been designed, in which the active
disturbance rejection control parameters will vary with the environment.

4.1. Deep Deterministic Policy Gradient-Active Disturbance Rejection Controller Algorithm Framework

Reinforcement learning is an algorithm that allows an agent to adjust its behavioral
strategies based on observations made during interactions with the environment, to maxi-
mize cumulative rewards. The schematic diagram is shown in Figure 3.

Status Action

Strategy
Reinforcement
Learning Algorithm

Reward

Figure 3. Reinforcement learning diagram.
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In response to the online adjustment problem of fixed parameter active disturbance
rejection controllers, this paper employs the Deep Deterministic Policy Gradient algorithm
(DDPG), which can handle continuous action control. The proposed control strategy, DDPG-
LADRGC, treats the entire underwater robot control system as the environment, using the
system’s control performance as the reward evaluation criterion. The DDPG-LADRC agent
determines actions based on the current environment, and then the environment provides
a new state based on the output value and calculates the reward value. The DDPG-LADRC
agent makes judgments, optimizes and updates the next action, and interacts with the
environment until the reward converges.

4.2. Deep Deterministic Policy Gradient Algorithm Principles

DDPG is a deep reinforcement learning algorithm based on the actor-critic framework.
The actor-network outputs deterministic actions in a continuous action space based on
environmental state feedback, while the critic-network calculates the corresponding Q-
value based on the current state and action, which is used to evaluate the long-term
expected return of the action. By adjusting the weights of the critic network according to
the error between the reward output by the critic network and the actual received reward,
the output estimates of the critic network can become more accurate. Using the policy
gradient algorithm, the parameters of the actor-network are updated in the direction of
increasing the action value. During the interaction between the agent and the environment,
the learning parameters of both networks will be continuously updated until the policy
converges [27].

At time ¢, the mapping from state s to action a is referred to as policy 7.

ay = 7T(St) (23)

According to the actions generated by strategy 7, new states and reward values r are
continuously obtained. The formula for calculating cumulative rewards is:

T
G =Y o' 24)
t=1
The Bellman equation for the state value function is represented as:

Vi(s) = Ex[} o Gtls = st] = Ex[reyn + vVa(sei1)[s = st] (25)

Considering the impact of actions on the value function, the Bellman equation for the
state-action value function is represented as:

Qr(s,a) = Ex[rit1 +7vQn(st41, ar41)[s = st,a = ai] (26)
The optimal Bellman equation can be expressed as:
Q" (st,at) = g +vQr(St41,4141) (27)

The optimal strategy 77* is obtained by maximizing the cumulative reward and its
corresponding optimal Bellman equation:

m(s) = ar = argmaxQ;(st, ar) (28)
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We calculate the loss function for the target Q value, using y; to represent it:

{yt =r+7Q (St+1,7T/ (St+1 | en/) | 9Q,> (29)

L(69) = E(y: — Q(st,ar | 09))?
By calculating the gradient of the loss function, we update the current value net-
work [28].
O = 0~ naVeeL (67,
VaoL (68 1) = E(2(vi — Q(5,(68 ) im0, (30)
VQpo (5,002 1 ) ls=sea-a)
The strategy network uses the Q function output from the value network as the

loss function. By taking the policy gradient of the Q function, the update formula is
obtained [28].

O = 07y — i VarL (07 ,)
Vop 7= VaQ(s,a | 67 ;) (31)
|s:s,,at:n(s,)v9”7r(5 | 9]?,1) |s:st)

The target network uses a soft update method as follows [29].

Q _ g0 Q
{ek =102  +(1-1)8Y, )

0F =107 |+ (1—1)07,

The DDPG algorithm is a deterministic policy that adds noise to the deterministic
policy, as shown in Equation (33), allowing the agent to explore the environment more
effectively and preventing it from getting stuck in local optima. The deterministic policy

gradient helps the critic converge and updates the network parameters [29]. The meanings
of the various parameters in the above analysis are shown in Table 1.

ar = pg(se) + N (33)

Table 1. DDPG algorithm parameter meaning.

Algorithm Parameters Meaning
Q (st, a | GQ) The Q value output by the current value network at time ¢
Q (St+l, ’ (St+l | 6”/) | BQ/> Input Q value of the target network
h (St 41| 9”’) Action variables output by the target strategy network
9,?, 0F The parameters of the network at the k round of learning
Ho Learning rate of value networks
Vool (Gka 1) A gradient of the loss function concerning the parameters
U Learning rate of the strategy network
0 4 Strategy gradient
919,, 91?/ The parameters of the target network at the k learning iteration
T Soft update coefficient

The structure of the DDPG algorithm model is shown in Figure 4. The DDPG agent
stores the sample data obtained from interacting with the LADRC control system in the
experience pool. During the learning process, it randomly samples m pieces of data from
the experience pool and continuously iterates to update the network gradient values to
optimize the algorithm [29,30].
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Figure 4. DDPG algorithm framework diagram.

Combining deep reinforcement learning with an active disturbance rejection controller,
the control system is designed to obtain environmental state data through the interaction
between the agent and the environment (underwater robot control system). Here, LSEFC
represents the state error feedback controller, and LESO represents the linear expanded
observer. The structural block diagram of the active disturbance rejection controller based
on deep reinforcement learning is shown in Figure 5.

(X225 Y4) , LT 5z
LSEFC - b
z, 5
LESO
t W
DDPG

I(e,é)

Figure 5. Block diagram of a self-disturbance rejection controller based on reinforcement learning.

According to the control system structure block diagram designed in the above figure,
we set the various parameters of the deep reinforcement learning agent.

If the LADRC control has the Markov property, then when optimizing with DDPG, the
future state transitions of the system depend only on the current state and control actions,
without the need to explicitly model the state transition probabilities. The optimization
problem of the LESO observation capability is modeled as a reinforcement learning task
in a continuous action space. The DDPG algorithm is used to dynamically adjust the key
parameter wg of the LESO, enabling it to adapt to changes in external disturbances, thereby
improving the disturbance estimation accuracy of the LESO and the robustness of the
controller. The actor network is responsible for generating the adjustment of the LESO
observer bandwidth wy, based on the current state. The critic network outputs the action
value Q based on the current state and the action generated by the actor network, guiding
the policy update of the actor network. The ROV studied in this paper is under umbilical
cable control, effectively avoiding the issue of limited resources for the ROV, and the ROV’s
controller can meet the high computational demands of DDPG training.
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For the state space, select (e, ¢), corresponding to the errors (e, ey, ez, ep), and the
differential of the error in each degree of freedom.

For the action space, select the poles of the expanded state observer, that is wy,
B1 = 3w, f2 = 3w, B3 = wj.

To reduce the final error, a reward function is set based on the error between the output
of each degree of freedom and the expected value: R = — K\/ ex? +e,2 +e?+ 64,2)} .

In terms of the discount factor, the degree to which future rewards influence current
decisions is determined, and in this article, the chosen discount factor 7y = 0.98 is used to
ensure that accurate trajectory tracking is given high priority. After multiple adjustments,
the final selected DDPG parameters are shown in Table 2.

Table 2. DDPG algorithm parameters.

Hyperparameter Value
Actor-network learning rate 0.001
Critics” online learning rate 0.0005

Small batch sampling sample size 64
Discount factor 0.98
Noise variance 0.2
Noise attenuation coefficient 0.00001
Experience pool size 100,000

The reward curve of the Deep Deterministic Policy Gradient (DDPG) algorithm is
generally used to determine whether the agent’s training has converged. The curve showing
the change in rewards after training over the training iterations is shown in Figure 6.

0 x10*

-0.5

Reward

-2.5
0 50 100 150 200 250 300 350 400 450 500

Episode
Figure 6. Training reward change curve.

4.3. Stability Analysis

To conduct the analysis, the following hypothesis is proposed based on engineering
practice: the total disturbance observed by the observer in the self-disturbance rejection
control is bounded within H, H = {D||D|< F,}, where F, is a positive constant.

Theorem 1. The estimation error of the observer constructed in Equation (15) is bounded [18].

lim |le|| =0.
wo—00,t—r00

Proof. Letq; = %(z =1,2,3), then Equation (18) can be rewritten as:
1 = wo(qg2 —3q1)

qy = wo(q3 —3q1) (34)

g, — D _
13 = Wol (g — M
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The reference Formula (34) can be rewritten as:
. D
= wyAq+B— (35)
Wo
For simplicity, let g = [q1,42,q3]", therefore:
-3 1 0
A=1|-3 0 1|,B=|0 (36)
-1 0 1

Observing the above equation, for any positive w,, A is Hurwitz, therefore, there
exists a unique positive definite symmetric matrix P, that satisfies the Lyapunov equation
ATPW + PyA = —Qy. By choosing the Lyapunov function as V(q) = qTP,7 g, we can derive
the following for V(q):

: . .T

V(q) =q"Pyg+q Pyq

9" Py(woAq + B ) + (woAq + B5)TPyq (37)
—woqTQyq + 2qTP,]BwQS,

Referring to Equation (37), using the Cauchy inequality and the property of the
minimum eigenvalue of positive definite matrices, V(q) can be rewritten as:

V(q) = —woq"Qyq +24"PB5 (38)
2F /\mux P
< @ouin(Qy) | g 12 +Ztzerlfullel

w;
Using the eigenvalues of the matrix, we can obtain the following bounds on the

quadratic form: Amin(Py) || 7 II°< 97Pyq < Amax(Py) || 9 [|*- This can be rewritten as:

% <[l q°< % Therefore, inequality (38) can be rewritten as:

V(g) < wo @y ()

2B Aax (Py )mﬂx ( ‘Z)(q) (39)

W3\ Amin (P1])

To obtain the linear differential i lity, let W = +/V(a), then W = —V@_ can be
0 obtain the linear differential inequality, le VV(q) NGO

obtained, and inequality (39) can be rewritten as:

W<w /\min(Qly) W+ Fh/\max<P77>

. (40)
¢ 2/\mzzx (Pﬂ) wg' /\min (Pﬂ)

When studying the state equation W, it is often necessary to obtain the boundary of its

solution W, rather than the solution itself. The Gronwall-Bellman method is one of the
/\min(Q,/) § = Fh/\max(Pq) By

approaches used for this purpose [31]. First, let § = —wy Dmax(P,)’ 5 v (1)
U Wy min \ Iy

applying the inequality, we can obtain the following.
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Assume W = BW + . Thus, thereis W < (W(ty) — %)eﬁ(t’t0> + §- By organizing,
we can obtain the following expression:

/\min(Q’ )
W< (— 2B,A2,(Py) B W(to))efwoumaxw;) (t—to)
wy \/)\min(Pq))\min(Q'/) (41)
ZPh/\%nax(PV)
wg\//\min(P;y))\min(Qv)

From W = V() = /Py, o < 1917 < 5, we can obain
Equation (42):

VV 1
gl < = (42)
\/)‘min (PU) \/)\min (Piy)
When t — co, the Expression (43) can be obtained:
(q)
gl <
/\min (P;])
ZFh)‘%nux(P'?) (43)
—’amAmm(BQAmm(Qﬂ)
T
2F3 A2 (Py)

In Formula (43), k = is a normal constant, and because P, Q; are

Amin (PW)Amin (QI1 )
independent of wy, the Equation (43) can demonstrate that  lim  ||g|| = 0, which,

wy—00,t—00
<llglleg < &5 =0,

wy

lim |lel|
0—>00,t—00

thus completing the proof. Define H, as H, = {e|||e||< E}, where E is a positive constant.
k
wo
Theorem 1 has been proven. [J

together with q; = %(z =1,2,3), is produced. Therefore,
(] W

By adjusting wy to ensure -~ < E, the estimated error of LESO will remain within H,,

Theorem 2. According to the error feedback control law given by Equation (19), we can ensure the
closed-loop stability of the control system. According to Theorem 1, the convergence of LESO can
be guaranteed by carefully selecting wq,b, and the estimation error of LESO will be constrained
within H,. Translate Equation (19) into the Equation (14) to obtain:

é‘l’l = ell’z (44)
ey, = —kpe¢1 — kd&pz + kpel +kaer +e3

Referencing Equation (44), ey1 = ¢y — ¢ and eyp = ¥, — ¢ are defined as tracking
errors. The above equation can be rewritten as:

é¢ = C€¢ + Ge

_(,){p —1’%1 (45)
G=[ky ks 1]

ey = [elpl,ewz} T,C =

Since the controller output is positive, ensure that k,,, k; > 0. Then, the characteristic

_ ky k3
Ma= -t/ —ky+ 2 (46)

roots of C can be expressed as:
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Therefore, the designed linear active disturbance rejection controller is stable, and
Theorem 2 has been proven. The tracking error of the observer is also bounded.

5. Simulation Analysis

The underwater intelligent cleaning and inspection robot is specifically designed for
the safety inspection of marine oil platform risers and the removal of marine organisms
attached to the risers. It is equipped with an Ultra-Short Baseline positioning system
(USBL), an attitude sensor, a depth sensor, and a compass, enabling precise positioning,
attitude awareness, and depth perception. In addition, its propulsion system includes four
horizontal thrusters and four vertical thrusters. The model parameters of the underwater
robot are shown in Table 3, and the physical prototype and thruster layout are illustrated in
Figure 7.

Table 3. ROV model parameters.

Parameter Values Parameter Values

m 197 kg Yool —245.2 N? /m?
L 25.1 Nms? Zw —12.6 N/S
Xu —5.24N/S Z, —367.8 kg
X, —135.1kg Zaw| —547.4N?/m?

Xy [u) —109.1 N?2/m? N, —152N/S
Y, ~11.1N/S N, —343kg
Y, —390.6 kg N,y —26.2N?/m?

Figure 7. Underwater robot (ROV) physical prototype, 3D arrangement of thrusters.

To verify that DDPG-LADRC has stronger robustness, this paper proposes two experi-
mental simulation scenarios.

(@) Section 5.1 introduces a simple time-varying external disturbance, and the tracked
trajectory is also relatively simple, to evaluate the improvement of the DDPG-LADRC
control strategy on the transient performance during the motion of the ROV.

(b) The time-varying disturbances introduced in Section 5.2 are related to the motion
state of the ROV and track different trajectories, aiming to verify that the DDPG-
LADRC control strategy has stronger robustness when the ROV is in a dynamic
marine environment.

5.1. Scenario 1

To verify the enhanced effect of combining reinforcement learning DDPG with a linear
active disturbance rejection controller in terms of disturbance suppression capability and
control accuracy, the position and attitude of the underwater robot are tracked under
time-varying external disturbances. The transient performance of the control system under
perturbations is evaluated to validate the disturbance rejection and robustness of the DDPG-
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LADRC control scheme. Disturbances are introduced during the movement of the ROV
as follows:

f= [fx'fyffszwr
= [20sin (0.4 x t) 20 sin(0.4 x t) 47)
20 sin(0.4 % t) 20sin(0.4t)]T

The initial conditions for the underwater robot are set as [X(0), Y(0), Z(0), Phi(0)] = 0,
with the velocity and angular velocity set as 1£(0) = v(0) = w(0) = r(0) = 0. Additionally,
for the controller parameters, the PID parameters are set as:

K, = {150, 150,300,370}
K; = {15,15,60,15} (48)
K4 = {300,300, 150,300}

The parameters for the Active Disturbance Rejection Control are set as follows:
by = 10, wy = 5, because B; = 3w,, B2 = 3w§,[53 = wg’ which means B, =15, , =75,
B3 = 125. The relevant DDPG setting parameters are shown in Table 2 above. The under-
water robot simulation is designed to run for 100 s, with a simulation step size of 0.01 s.
The proposed control algorithm is mainly compared with PID and LADRC under fixed
parameters through three-dimensional trajectory tracking, and planar tracking, to verify
the degree of improvement in the system’s transient performance by the DDPG-LADRC
control strategy. The trajectory tracking curve in the inertial coordinate system is:

x4 = 2sin(0.17tt) m
Y4 = 2cos(0.17tt) m
zg =02t m
Py = 0.037tt rad

(49)

First, a feasibility analysis of the parameter optimization for LESO is conducted.
Figure 8 compares the observation errors of the LESO optimized by DDPG with those of the
fixed-parameter LESO. It can be observed that the fixed-parameter LADRC controller is not
precise in tracking total disturbances. In contrast, the DDPG-LADRC can maintain better
performance with a shorter time under the constraints of model parameter uncertainty
and strong unknown external disturbances in underwater robot trajectory tracking control.
The DDPG-LADRC can quickly respond to changes in disturbances and adjust its control
strategy promptly to adapt to these changes, thereby enhancing the system’s dynamic
performance. This indicates that the optimized observer parameters of DDPG-LADRC
are effective.

60 T T T
—LADRC

40+ —DDPG-LADRC |
f\; 20
8/ _\/\ _—
i 0 ———— !
0
g -20

-40

_60 1 1 1

0 20 40 60 80 100

Time (s)

Figure 8. Comparison of total disturbance observation errors of two types of observers.
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The three-dimensional trajectory tracking performance of the ROV under different
control schemes, as well as the tracking curves in the XY, XZ, and YZ planes shown in
Figure 9, can be observed. It can be seen that even in the presence of disturbances, the
DDPG-LADRC control scheme can achieve precise trajectory tracking, with control perfor-
mance superior to that of the PID controller and the fixed parameter LADRC controller,
demonstrating stronger robustness. Therefore, parameter optimization based on DDPG
can enhance the control performance of LADRC.

—REF

—FPID 3 ‘
LADRC —REF
——DDPG-LADRC 2 —PID
0 . LADRC ||
o —DDPG-LADRC
Eo
>
¥ \—/
) ‘
.3 -
-3 2 1 0 1 2 3

(a) XYZ three-dimensional space and XY plane.

20— 2
—REF
15+ ——PID 1 15¢
LADRC
0 —DOPGLADRC, {0
E 2
N 5 2 N 5
0r 0
5 5 .
2 1 0 1 2 -2 1 0 1 2
X(m) Y(m)
(b) XZ plane and YZ plane.

Figure 9. Trajectory tracking results of the ROV under three control schemes.

The selected evaluation indicators for transient performance are overshoot, settling
time, and peak time.

In underwater robot control, overshoot is an important indicator used to describe the
dynamic performance of a system. Overshoot is typically measured by the difference between
the maximum output value and the steady-state value, and it can also be expressed as a
percentage of this difference relative to the steady-state value. The system without overshoot
typically stabilizes at the setpoint without deviating too much from the target value, indicating
that there is no significant overreaction or oscillation during the response process. From Table 4,
we can see that DDPG-LADRC maintains response speed without overshoot, while PID and
LADRC exhibit overshoot. When the overshoot is too large, the control system is prone to
oscillation. The results indicate that DDPG-LADRC ensures the dynamic response process
of the system, maintaining high robustness even in the face of model uncertainty or external
disturbances. The parameter optimization effect of DDPG-LADRC is evident, effectively
meeting the dynamic performance requirements of the system.
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Table 4. Comparison of transient performance of different control methods: overshoot.
Comparison X Y V4 Phi
PID 6% 12.5% 10% 5%
LADRC 2% 25% 5% 0
DDPG-LADRC 0 0 0 0

In underwater robot trajectory tracking control, the adjustment time is an important
dynamic performance indicator. It reflects the robot’s sensitivity to changes in control
signals and its ability to respond quickly, defined as the time required for the ROV to
respond and maintain within a certain allowable error range (usually £2% or £5% of
the final value) after initially reaching the target value. A shorter adjustment time means
that the ROV can stabilize more quickly around the target value, reducing oscillations or
instability during the transition process. Additionally, a rapid response can better handle
external disturbances and changes in the internal parameters of the ROV, enhancing the
system’s robustness and stability. Referring to Table 5, it can be seen that the adjustment
time of DDPG-LADRC for the ROV in the X-direction is significantly better than the other
two control strategies, reducing by 93% and 98%, respectively. In the Y-direction, the
reductions are 93% and 86%, respectively, and in the Z-direction, the reductions are 66.7%
and 90%, respectively. The attitude angles Phi were reduced by 64% and 89%, respectively.

Table 5. Comparison of transient performance of different control methods: settling time/s.

Comparison X Y z Phi
PID 50 71 10 11
LADRC 14 40 3 35
DDPG-LADRC 1 5 1 4

Even if the overshoot is 0, the system response may still have a “peak,” which does
not refer to a deviation exceeding the steady-state value, but rather to the maximum value
during the response process. In the underwater robot trajectory tracking control system,
the peak time is an important dynamic performance indicator that describes the time
required for the system response to exceed its steady-state value and reach the first peak.
Referring to Table 6, the comparison of peak times shows that in the X-direction, DDPG-
LADRC significantly outperforms the other two control strategies, reducing by 93% and
98%, respectively. In the Y-direction, it reduces by 82% and 90%, respectively, and in the
Z-direction, it reduces by 80% and 98%, respectively. The attitude angles Phi are reduced
by 93% and 89%, respectively.

Table 6. Comparison of transient performance of different control methods: peak time/s.

Comparison X Y z Phi
PID 50 34 5 61
LADRC 15 62 50 35
DDPG-LADRC 1 6 1 4

In summary, through a comparative analysis of transient performance under different
control methods, the results indicate the superiority of the DDPG-LADRC control strategy
in terms of transient performance. Compared to PID controllers and traditional LADRC
controllers, the proposed DDPG-LADRC is more suitable for underwater robotic systems
that are multivariable, strongly coupled, have significant randomness, and are subject to
unknown disturbances.
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The tracking error of the ROV trajectory tracking in Figure 9 is shown in Figure 10.
Compared to the PID controller and the fixed parameter LADRC controller, the proposed
DDPG-LADRC controller has a smaller steady-state error. The PID and fixed-parameter
LADRC control schemes are unable to eliminate steady-state errors in a short time, which
leads to an inability to track the desired trajectory. However, the DDPG-LADRC signifi-
cantly improves the control accuracy of the system by introducing DDPG to achieve online
tuning of LADRC parameters in response to environmental changes. This ensures that
the ROV can maintain satisfactory control performance even in the presence of inaccurate
model parameters and significant uncertain disturbances.
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(b) Position Z, attitude angle Phi tracking error curve.

Figure 10. Comparison of tracking errors of different control methods for ROV.

After 60 s, data from 1000 sampling points should be collected to calculate the root
mean square error for determining the stable accuracy of the control method, as presented
in Table 7.

Table 7. Stable accuracy (X, Y, Z = m, Phi = rad).

Comparison X Y Zz Phi
PID 0.351 0.497 0.381 0.004
LADRC 0.0285 0.3587 1.43 x 107° 0.003

DDPG-LADRC 543 x 107° 114 x107%  129x 1071 656 x 1077

In underwater robot control, better stability accuracy means that the robot can precisely
reach the target position. Simulation results indicate that the designed DDPG-LADRC
controller not only has robust performance but also possesses the ability to quickly track
commands and suppress disturbances. Further comparisons show that the performance of
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DDPG-LADRC surpasses that of PID and conventional fixed-parameter LADRC. Therefore,
parameter optimization based on DDPG can enhance the control performance of LADRC.

5.2. Scenario 2

To further verify the robustness of the controller, the anti-interference capability of
different control methods under strong interference conditions was compared. The most
representative tracking trajectory during the ROV’s motion was selected (Formula (51)). A
dual closed-loop sliding mode control scheme based on a nonlinear extended state observer
(NESO-DSMC) was added for the comparison of control methods [26], to validate the
superiority of the DDPG-LADRC controller’s performance.

The parameters for the Active Disturbance Rejection Control are set as follows: by = 10,
wy = 5, Because 1 = 3wy, B2 = 3w§, B3 = wg’ which means 81 = 15, B, =75, 3 = 125.
The relevant DDPG setting parameters are shown in Table 2 above. In addition, the
controller parameters proposed in the NESO-DSMC are chosen as follows: § = 0.01, €17 =
€y = €31 =05, =01, p11 = 100, pp1 = 300, p3; = 1000, ¥ = 72 = 73 = y4 = 0.01,
m =15, q=2, K, =diag{0.3, 0.3, 0.3, 0.3}, K, = diag{10, 10, 10, 10} [26].

The external interference added is shown in Equation (50). The added disturbance
signal is related to the state of the ROV, and this signal is constantly changing.

fr =40 —1.65X — 0.3Y2 — 1.227% — 87
fy =22X*—-25Y+03Z (50)
f: =18 —2.1X% - 0.88Y2 — 0.522

The tracked trajectory is shown in Formula (51). This trajectory indicates that the ROV
first descends vertically, then performs linear back-and-forth and spiral movements on a
horizontal plane, accompanied by changes in depth and adjustments in heading, ultimately
returning to a horizontal straight path. The initial position and attitude of the ROV are set
as: X(0) =0m, Y(0) =1m, Z(0) = 0m, Phi(0) = O rad.

O0m,0<t<20s
02(t—20)m,20 < t < 40's
sin(0.047t(t —40)) +4m,40 <t < 60's
—0.2(t—60) +4m,60 < t < 80's
— sin(0.057(t — 80)),80 < t < 100's
0.2(+ —100) m, 100 <t <120's
1m,0<t<20s
1m,20 <t <40s
—co0s(0.057t(t —40)) +2m,40 < t < 60s
3m,60 <t<80s
—cos(0.057T(t — 80)) +4m,80 < t < 1005
5m,100 <t <120s
Zd(t):{ 0.3tm,0 <t <20s
6 —4co s(0.17t) + 5 sin(0.17tx) + 4cos(0.17ty)m,20 < t < 120s
Orad,0<t<20s
Orad,20 <t <40s
0.057(t — 40) rad, 40 < t < 60's
mrad,60 <t <80s
7T —0.057t(+ — 80) rad, 80 < t < 100 s
Orad,100 <t <120s

xq(t) =

va(t) =
(51)

Pa(t) =

The simulation results shown in Figure 11 demonstrate that the DDPG-LADRC can
achieve accurate disturbance estimation for the perturbation observations and correspond-
ing disturbance observation error curves of the three state variables f, f,, f.. The maximum
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observation error value for the observer in the X-direction is 0.00141, the maximum ob-
servation error in the Y-direction is 0.0016, and the maximum observation error in the
Z-direction is 0.0021. DDPG-optimized LESO has achieved the estimation accuracy for
disturbances that meet our requirements.
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(b) Disturbance observation and observation error.

Figure 11. Cont.
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(c) Disturbance observation and observation error.

Figure 11. DDPG-LADRC disturbance observation and corresponding error.

From Figure 12, it can be seen that LADRC, due to the issue of fixed parameters in the
controller, is unable to eliminate steady-state errors in a short time. Under continuously
changing external disturbances, LADRC cannot achieve optimal control performance. In
the presence of significant uncertain disturbances, NESO-DSMC cannot reach the same
level of error convergence accuracy as DDPG-LADRC. Tables 8 and 9 show the RMSE and
MAE under different control methods, indicating that DDPG-LADRC has better robustness
compared to LADRC and NESO-DSMC. DDPG-LADRC can eliminate steady-state errors
within 5 s because it incorporates DDPG for online adjustment of LADRC parameters
in response to uncertain disturbances caused by environmental changes, significantly
improving the control accuracy of the system. This ensures that the ROV can maintain
satisfactory control performance even in the presence of inaccurate model parameters and
significant uncertain disturbances.

Table 8. Root Mean Square Error (X, Y, Z = m, Phi = rad).

Comparison X Y z Phi
LADRC 0.01 0.021 0.014 0.003
NESO-DSMC 0.005 0.0003 0.006 0.0006
DDPG-LADRC 0.0011 0.0002 0.0012 0.00029

Table 9. Mean Absolute Error (X, Y, Z = m, Phi = rad).

Comparison X Y V4 Phi
LADRC 0.005 0.015 0.012 0.008
NESO-DSMC 0.001 0.0003 0.0007 0.00028

DDPG-LADRC 0.0006 0.0001 0.0005 0.00011
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6. Conclusions

In response to the issue of underwater robots facing difficulties in determining model
parameters and external disturbances, and the inability of traditional fixed-parameter
controllers to achieve optimal control performance for the controlled object, an online
parameter tuning strategy based on active disturbance rejection control has been proposed:
the DDPG-LADRC algorithm.

1.  Based on the nonlinear model of underwater robots, dynamic parameter uncertainty
was considered, and a linear active disturbance rejection controller was designed. The
convergence of the extended state observer in the linear active disturbance rejection
controller and the stability of the closed-loop control were proven using the Lyapunov
method. To address the issue that fixed parameter controllers in nonlinear systems
cannot achieve optimal control performance, a DDPG-LADRC control strategy was
designed, which improved the performance of the LESO by online adjusting control
parameters, resulting in the reward curve of DDPG. A feasibility analysis of parameter
optimization for LESO was conducted in numerical simulations, demonstrating the
effectiveness of the DDPG-LADRC strategy.

2. Compared to PID, fixed-parameter LADRC, and the latest nonlinear observer-based
double closed-loop sliding mode control method (NESO-DSMC), the DDPG-LADRC
method can generate optimal parameters for the controller, thereby improving con-
trol accuracy. Experiments show that this control strategy outperforms PID, fixed-
parameter LADRC, and NESO-DSMC control strategies in terms of transient perfor-
mance and anti-interference capability. Therefore, it can be said that DDPG-LADRC
has significant advantages in tracking and anti-interference capabilities.

3. The algorithm, although demonstrating good performance in simulations, still faces
significant challenges when being translated into practical engineering applications.
For instance, the accurate determination of an ROV’s rotational inertia and hydrody-
namic coefficients presents a notable challenge. In the future, the parameter adapta-
tion concept based on DDPG can be combined with other control methods to achieve
asymptotic stability and optimal control performance.
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