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Abstract: Marine mammal monitoring, a growing field of research, is critical to cetacean
conservation. Traditional ‘tagging” attaches sensors such as GPS to such animals, though
these are intrusive and susceptible to infection and, ultimately, death. A less intrusive
approach exploits UUV commanded by a human operator above ground. The development
of Al for autonomous underwater vehicle navigation models training environments in
simulation, providing visual and physical fidelity suitable for sim-to-real transfer. Previous
solutions, including UVMS and L2D, provide only satisfactory results, due to poor envi-
ronment generalisation while sensors including sonar create environmental disturbances.
Though rich in features, image data suffer from high dimensionality, providing a state space
too great for many machine learning tasks. Underwater environments, susceptible to image
noise, further complicate this issue. We propose SWiMM), o, coupling a Unity simulation
modelling of a BLUEROV UUV with a DRL backend. A pre-processing step exploits a
state-of-the-art CMVAE, reducing dimensionality while minimising data loss. Sim-to-real
generalisation is validated by prior research. Custom behaviour metrics, unbiased to the
naked eye and unprecedented in current ROV simulators, link our objectives ensuring suc-
cessful ROV behaviour while tracking targets. Our experiments show that SAC maximises
the former, achieving near-perfect behaviour while exploiting image data alone.

Keywords: deep learning; reinforcement learning; active target tracking; computer vision;
sim-to-real; unity; simulation

1. Introduction

Marine megafauna conservation has seen increased research focus over recent decades,
primarily due to water pollution, with projects varying in methodology, execution and
scale. One branch of projects involves monitoring, profiling, and rescuing endangered
marine megafauna (large marine mammals) species, including whales, dolphins, and turtles.
Traditionally, mammals are ‘tagged” with satellite-linked transmitters, either embedded
or attached to the skin [1]. These enable GPS positioning. However, such approaches
are well known to cause mental and physical discomfort. Small wounds caused by such
applications are susceptible to infection, which can lead to disease and death. Furthermore,
many aquatic populations are prone to disturbance caused by such techniques [2].
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UUVs provide a less intrusive approach to monitoring marine mammals. UUVs
have a wide range of applications, from inspecting marine infrastructures for the energy
industry to detecting naval mines [3]. By providing increased coverage and access to
previously inaccessible ocean parts, UUVs provide a valuable research tool to various
scientific fields, including biology, ecology, geology, meteorology and medicine. These
unmanned vehicles can be sub-categorised into ROVs and AUVs. The former are typically
characterised by an umbilical tether that sends sensory information and receives power and
commands from a human operator. Hundreds of metres long, this physical connection is an
additional expense that can be both hard to manage and limiting to the range and freedom
of movement of the vehicle [4]. An AUV, extends the former by providing autonomous
control, making them more practical. Communication with a land or vessel-based server
can minimise system recovery or human-in-the-loop intervention. This is important given
that underwater communication methods (e.g., acoustic waves) suffer from high latency
and frequent data loss [5]. Mapping sensory information to a control system presents a
challenging problem. The configuration and extent of such tools are vast, combined with
various algorithmic approaches and implementations.

BLUEROV, a versatile UUVs that can explore low to mid-range underwater environ-
ments, is at the forefront of cost-effective UUV research. The default configuration provides
the chassis, housing, four thrusters, onboard camera and Rasberry Pi4. Powered by a
tether connecting the BLUEROV to another machine, the rover sends sensory information
(e.g., camera stream) to the ArduSub software housed on the receiving platform. A joystick
controller provides commands to the onboard Pixhawk, which are converted to motor
signals. We aim to extend the BLUEROV from an UUV to an AUV, responding to visual
stimuli via a DRL algorithm. The DRL model’s outputted actions emulate joystick controls,
thus eliminating the need for an operator.

Given that state-of-the-art simulations vary in their complexity, versatility and us-
ability, we draw attention to our requirements, which can be promptly satisfied via a
Game Engine:

Real-time Physics. A real-time dynamically changing environment modelling the physical
world where game data can be facilitated as input features.

High-fidelity Rendering. To aid generalisation, an accurate model of the Sony IMX322/323
image sensor (https://datasheetspdf.com/pdf-file/938855/Sony/IMX322LQJ-C/1,
accessed on 21 March 2025) is housed on the ROV.

Game World Manipulation. Game state manipulation on the order of milliseconds.

1.1. Motivations

BLUEROV has previously been modelled for sim-to-real transfer [6-9] (Section 2).
While these applications’ requirements vary, none combine accurate camera and BLUEROV
modelling with an integrated RL pipeline. To the best of our knowledge, we, for
the first time, enable autonomous BLUEROV control by exploiting image data alone
through DRL.

Other solutions [4] exploit heavier hardware to enrich the feature space. However, the
former do not support the control communication protocol required during training and
such components are usually expensive, have high power consumption and are subject to
interfere with the environment. Many also lack manoeuvrability while we require an ROV
responsive to rapid target movement. We investigate if a DRL algorithm can generalise
a commercial game engine environment (Unity), thereby extending the UUV to an AUV.
Unity, conjoining rendering, physics and control have proven capable of bridging the gap
in robotics between simulation and reality [10]. By exploiting camera data alone, we also
aim to minimise environmental disturbance. For solutions also exploiting image data for
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DRL sim-to-real transfer [9,11], the former operates in above-ground conditions while few
if any operate in dynamically changing environments presented by active target tracking.

Given that even low-resolution images define an extensive feature space, we require
compression methods to achieve dimensionality reduction suitable as input to our DRL
pipeline. Additionally, an architecture capable of achieving generalisation fit for sim-to-real
transfer, particularly in noisy environments such as those found underwater. The CMVAE
exploited in our solution reduces the dimensionality of our 64 x 64 images by orders of
magnitudes, with image reconstructions and state space extractors also proving that the
critical features are learned.

A recent tool benchmarks marine robotic simulations [12]: HoloOcean [13]; Dave [14]
and Stonefish [15]. These simulators provide the meshes for UUVs, including BLUEROV.
While the latter two focus on robotic simulation, HoloOcean includes a Gym-like interface
supporting RL with a game binary. However, none of the previous models include a
physical camera emulation of the Sony IMX322/323 image sensor and high-quality 3D
mesh of a dynamic target. Furthermore, this tool was not explicitly designed to evaluate
UUYV behaviour by exploiting model behaviour metrics, which are here proposed for the
first time (Section 4.4.4).

1.2. Objectives

Our previous solution, SWiMM;  [16], successfully trained an SAC DRL agent yet
failed to meet some of the previous requirements. Firstly, the target policy was delayed
and slow to react (https://youtu.be/uLHhKhIprKA, accessed on 21 March 2025); the
target often deviated from the camera’s central vision and the BLUEROV would stray too
far/near the target. Furthermore, training times were high: the CMVAE/DRL taking over
1/2 days. These limitations motivated us to formulate the following criteria the desired
system should abide:

1.  Target Visibility. A stable and clear video feed is vital for providing meaningful
feedback to marine conservation experts. Therefore, the target object should deviate
little from the camera’s central field of view.

2.  Target Distance. Many marine populations are sensitive to disturbances caused by
robotic monitoring. BLUEROV's restricted target distance helps to avoid potential
stress of discomfort that may be caused by a AUV with a stricter range threshold. In
addition, we advocate that freedom of movement is encouraged, capturing more of
the environment and providing a greater environmental context.

3.  Collision Avoidance. The rover should avoid collisions with the target, preventing
stress or panic in the animal and avoiding damage to the ROV, resulting in challenging
autonomous control recovery.

4. Smooth Control. DRL algorithms applied in real-time environments are particularly
susceptible to jitter, as the target policy fails to infer velocity and aims only to achieve
the current optimum.

5. Pipeline Requirements. Sim-to-real transfer should minimise training time and
reduce the costs and danger associated with real-world training. Our training pipeline
should (1) minimise training time, (2) minimise hardware demand, and (3) exploit
modern state-of-the-art solutions.

1.3. Methodology and Pipeline (Figure 1)
Figure 1 visualises the SWiMM,  (https://github.com/SamuelAppleby/SWiMM_
DEEPeR /releases/tag/MDPI_FINAL, accessed on 21 March 2025) training and infer-

ence pipeline. For the former, the Unity game engine acts as our data generator and
real-world simulator (https://github.com/SamuelAppleby/SiM_DEEPeR /releases/tag/
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MDPI_FINAL, accessed on 21 March 2025). Static image datasets are generated using
physically accurate camera configurations. These datasets train and evaluate our CMVAE
with an encoder achieving a dimensionality reduction of 1.23 x 10%, a more manageable
observation for our DRL network.
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Figure 1. SWiMMj  pipeline. The sample taken from the real environment captures a shark located
off the west coast of the Big Island, Hawaii, from a GoPro camera attached to BLUEROV, permission
of Blue Robotics.

During DRL training, the client (Figure 1: “Training Environment (Unity Simulation)’)
combines in-game image renders with game state information (rover and target position,
orientation and forward vectors). The former are bundled into one observation (Figure 1:
‘Observation’) and sent across a TCP/IP connection (Figure 1: “TCP/IP’). The CMVAE
on the receiving pipeline encodes the received images (Figure 1: Cross-Modal Variational
Autoencoder), obtaining a much more compressed state representation z (Figure 1: Encoded
Observation, z). Then, previous 10 actions (Figure 1: ‘Action Queue’) are concatenated with
z, providing the state to the DRL network (Figure 1: ‘State” s). Meanwhile, by exploiting
game data, we compute discrepancies between current versus optimum target distance
and rover heading, and a reward is calculated r (Figure 1: ‘Reward function’ 7, Reward
7). The new state, s, and reward, r, are processed by the DRL algorithm and the target
policy 7t dictates the next action, a (Figure 1: 'DNN’ (SAC/PPO/TD3)’, ‘Policy’ m). a, is
both appended to the action queue and also returned to the Unity client across the TCP/IP
connection, where the former is translated into forces providing the simulated thrust. The
trained target policy 7t requires only image data, given that game data were exploited only
for reward computation to aid the optimisation process. Thus, in real-world inference
(Figure 1: ‘Real Environment’), image frames alone, obtained from the on-board BLUEROV
camera stream, provide all the necessary data to retrieve the next action a.

1.4. Improvements from SWiMMj o
1.4.1. Target Visibility

Firstly, SWiMM); o’s azimuth penalisation was ill-defined. An upgraded reward func-
tion logarithmically penalises heading discrepancies, resulting in a much stricter policy
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(per our objective). Second, search tasks represent different challenges to active target
tracking. SWiMM] (’s training environment allowed for the target to leave the field of view,
and, particularly during the early stages of training, the target was not in the camera’s
view. An image containing no target cannot be optimised for active target tracking without
extending the observation space. SWiMM,;  exploits camera frustum culling calculations
within the simulation, which is included within the episode termination criteria during
DRL training. Should the target not be visible, the episode is terminated, preventing the
DRL algorithm from exploring unnecessary states.

1.4.2. Target Distance

SWiMM, o overly penalised distance discrepancies resulting in erratic behaviour
causing stress or discomfort to the animal. SWiMM,;  relaxed this penalty, granting the
BLUEROV greater freedom from the optimum distance while reducing power consumption.

1.4.3. Smooth Control

Strict azimuth penalties resulted in control jitter not exhibited by SWiMMj g (in the
absence of strict penalties). By extending the observation space (Section ‘Observation Space’),
our agent can infer velocity, optimising strict penalisation criteria while eliminating jitter.

1.4.4. System Compatibility and Enhancements

SWiMM; g exploited old versions of the Tensorflow v1.14.0, OpenAl Gym and Stable
Baselines libraries, absent of optimisations and improvements contained in the modern
implementations. SWiMM),; g updates the entire pipeline. For the encoding step, Tensor-
flow 2 provides modern state-of-the-art Keras network implementations for our CMVAE,
achieving improved image and state reconstruction values. In the best case, target distance
(d) MAE is reduced by 69.6% (Section 4.3.2), and low image reconstruction MAE enables
a more accurate observation as input to the DRL network. For training, Stable Baselines
3 (stable-baselines3 = 2.2.1) exploits the latest state-of-the-art DRL algorithms, providing
enhanced algorithm performance and GPU support. This is coupled with OpenAl's Gym-
nasium environments, which focus more on DRL research. Two additional state-of-the-art
algorithms, PPO [17] and TD3 [18], are also investigated as a more extensive coverage over
industry-standard DRL algorithms.

1.4.5. Training Time

SWiMM;  suffered from high training times, with the entire pipeline requiring over
3 days to train. Firstly, we explore the effectiveness of other DRL algorithms, including
both on- and off-policy, which may optimise a target policy achieving faster convergence
and greater accuracy. SWiMM]; o exploited SAC alone, while we also include PPO and TD3.
Second, SWiMM; g was constrained by CPU training. By exploiting GPU acceleration with
CUDA, SWiMMj;  achieves similar accuracies in much lower training times than SWiMM, g.
For CMVAE training, a 21.5x speed-up was achieved. Concerning both pipelines, training
time achieves a 3.97x speed-up, with our best model attaining an improved average
episodic reward from 2.12 x 103 to 2.40 x 10°.

1.4.6. Benchmarking Correctness

Firstly, SWiMM] g (incorrectly) considered training rewards to gauge model perfor-
mance. In ML applications, behaviour should be judged on unforeseen data. SWiMM; g
exploits our custom evaluation callbacks, resetting the environment during training and
testing the agent on a new instance of the simulation, thus providing more realistic rewards.
Second, SWiMM); ( used cosine similarity for our image similarity experiments, which
is agnostic brightness or contrast. In its place, SWiMM),; g uses pixel-wise MAE. For our
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resizing similarity experiments (Section 4.2), SWiMM); o achieves MAE of 1.09, and for
the resolution scaling experiments, an MAE of 2.03. Both results are comparable to those
from SWiMM, .

This paper is organised as follows: Section 2 provides literature targeting similar prob-
lems and background design, Section 3.1 explains the learning architectures and training
mechanisms, Section 3.2 details the simulation environment, including communication
with the RL engine, Section 4 showcases our experiments, benchmarks and findings, and
finally, Section 6 provides future work directions.

2. Related Work

Our model differs from traditional methods used for DRL target tracking, which often fo-
cus on vehicle racing or waypoint following [19]. As erratic or aggressive control—particularly
those that produce acoustics [20]—are known to increase marine mammal stress, an em-
phasis on smooth movement is necessary. This would not be achievable with racing or
tasking algorithms, whose main objective is quickly reaching a destination.

2.1. Unity

Game engines are systems with a well-defined separation of core software components
required for a game (multidimensional graphics, physics simulation, audio, etc.) [21].
Traditional game engines were written in-house, but the growth of the games industry and
the popularity of ‘modding” games encouraged the development of standalone engines
that could be outsourced to video game companies. Standalone engines are designed as
extensible and can be exploited for the foundation of various games. But, given the realistic
and physically accurate simulation environments provided by modern game engines, their
application has extended into the domain of test beds for algorithms including, naturally,
RL algorithms operating under real-time environments. The most recent projects [10,13]
utilise commercial game engines, in line with a growing trend in DRL. In game engines, a
transform, T, is a core game object component. Given a point p = (x,y, z):

1 0 0 oy |px
eps . : / 010 Oy | [Py
Position. A translation matrix moves p to p’ by v:
0 01 v]]|p:
000 1]|1
a b cf|px
Rotation. A rotation matrix rotates pto p: |d e f| |py|, where {a,---,f} depend on
hoij]lpe

the rotated dimension.

Forward. The forward vector, f defines the z-facing direction vector (derivable from rotation).

All of the position, rotation, and forward vectors are stored in 7. Firstly, PhysX (Nvidia
(https:/ /developer.nvidia.com/physx-sdk, accessed on 21 March 2025)), integrated with
Unity, is an accurate physical modelling SDK successfully used by many state-of-the-art
applications, particularly in robotics.

Second, DirectX, Metal, OpenGL, and Vulkan are all graphics APIs supported by Unity,
enabling cross-platform state-of-the-art visual rendering. Camera components also support
physical camera specifications, allowing for a direct replication of the Sony IMX322/323
image sensor.

Third, C# scripting support allows for game world manipulation on both rendering
and physical frame updates, allowing for almost instant application of DRL commands
and camera renders to be returned across a TCP/IP connection.
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ML-Agents [22], an open-source toolkit (provided by Unity), enables developers
to directly train ML agents within Unity. While such a tool may be beneficial for the
development of game Al our project requires heavy pipeline customisation and extensions
that are not easily achieved through ML-Agents. Our custom pipeline consists of 2 parts:
the first managing the simulation (client) and the second handling all RL and network
optimisations (server), communicating across a TCP/IP connection.

Recently, sim-to-real has seen a surge in popularity [19] and many applications suc-
cessfully have exploited sim-to-real transfer across various platforms and industries [23].
As a world-leading UUYV in robotics, the BLUEROV has been a lead candidate for sim-
to-real research. Von Benzon et al. provide a detailed mathematical model of BLUEROV
in Matlab/Simulink [6], while Yang et al. exploit the same simulation for optimising
rover control [7]. Walker et al. provide experimental validation of wave-induced distur-
bances [8]. Other applications include digital twin modelling the BLUEROV in the Gazebo
simulator [9]. Comparisons of our approach against other simulations are shown in Table 1.

Table 1. Comparison between solutions exploiting different robots for autonomous control.

Benzon et al. [6] Yang et al. [7] Walker et al. [8] Skaldebo etal. [9] Viitala et al. [11] SWiMM; o
Engine Matlab/Simulink ~ Matlab/Simulink Matlab Gazebo Unity Unity
Purpose Physic'al ' Dyr}amic W;.ave-induced Und'erwater vehicle Image-basgd Image-based m'arir'le
modelling positioning control disturbances manipulator system  track following  megafauna monitoring
Robot BLUEROV BLUEROV BLUEROV BLUEROV Donkey Car BLUEROV
Sim-to-Real v v 4 v v v
I : : / / /
RL Support X X X X 4 4

A very recent solution in [12] provides a framework, URoBench, analysing RL robotics
simulators including HoloOcean [13], Dave [14], and Stonefish [15]. Of these, HoloOcean,
a solution exploiting a game engine similar to SWIM, provides the greatest similarity
to SWIM, though it does not support dynamic target tracking. URoBench evaluates the
training of RL algorithms across a variety of AUV (including BLUEROV) through system
resource demand (CPU, GPU, and primary memory) and RTF (a measure between simu-
lation training versus real-world training efficiency). While UroBench provides a robust
framework for analysing the demand and efficiency of robotics RL simulators, it does not
assess the resulting agent performance. SWIM's primary requirement is the optimisation
of a DRL behaviour policy for smooth autonomous marine mammal tracking achieving
high reward, the success of which can be validated with our custom metrics (Section 4.4.4).
Neither of the former is considered by UroBench.

2.2. Data

Computer vision tasks concerning marine cetaceans span several objectives. Classi-
fication tasks are highly researched, for example, identifying specimens from images or
categorising species from audio data. For any ML task, a sufficient and robust dataset is
required to both enable successful convergence and achieve suitable generalisation. Specifi-
cally for dolphins, dorsal fin data such as Risso’s dolphin dataset [24] can be exploited to
identify individuals [25], while acoustic data from cetacean echolocation clicks [26] can be
exploited to identify click types [27].

While classification tasks can be solved in a static environment, active target tracking
extends the former, as dynamic environments have a temporal perspective and must re-
spond to model behaviour, which also must be considered in optimisation loss. Concretely,
tackling a challenge such as active target tacking requires a reaction from the environment
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in response to an action chosen by the model. Additionally, the training objective must be
extensive enough to cover a sufficient range of world states, including both dolphin pose
and rover pose, lest the model generalisation suffers.

Datasets such as [28] provide images obtained from GoPro Hero 3 and GoPro Hero 4
video feeds, capturing bottlenose dolphins in the North Sea. Yet, their use in active target
tracking is limited: a DRL model requires a response to its chosen action, static datasets do
not provide this and are more suitable to ML problems. Furthermore, a ML model must
witness an extensive collection of target/rover poses to generalise well, often requiring
hundreds of thousands of samples; in particular, the dataset provided by Trotter et al. [28]
contains only 2201 poses, without a guarantee of sufficient state distribution. Gathering
a sufficient and varied amount of training data on underwater megafauna is extremely
costly, from both a time and economic standpoint. Furthermore, ensuring a suitable range
of aquatic movement is captured defines a difficult research task whereby the gathering of
such data would cause further stress to such animals. Finally, the CMVAE exploited in our
pre-processing step (Section 2.3.1) requires, in addition to image data, the target distance,
azimuth, and target yaw such that the former features are embedded into the resulting
latent space. The prior datasets lack such information, necessitating our requirement for a
data generation step providing the former which can be retrieved directly via simulation.

The prior reasons motivate our attempt at sim-to-real transfer, whereby we can enforce
that a sufficient variety and magnitude of poses are captured. Our pre-processing training
image dataset comprises of 3 x 10° images across equally distributed target and rover
poses, thus ensuring an accurate encoding for future environment states witnessed in DRL.

2.3. ML
2.3.1. Feature Embedding

Stable Baselines default to a small CNN to limit the number of network parameters
and, therefore, search space for the policy optimisation. However, this can lead to reduced
feature learning. By decoupling feature learning from policy learning, the former can
be allocated a neural network extensive enough for learning rich representations, whilst
the latter can be allocated a network small enough to succeed with the credit assignment
problem—Ilearning the value of states and actions through experience. Furthermore, a lower
dimension observation creates a smaller observation space, and an abstract representation
aids generalisation, producing a more robust policy that can better survive the domain
transfer challenge of sim-to-real.

Feature learning uses a cross-modal variant of a VAE [29]. The VAE takes the raw im-
age as input and performs non-linear dimensionality reduction down to a specified number
of dimensions (features). The decoder then tries to recover the input by decompressing the
encoded feature vector.

CMVAE was first introduced by Spurr et al. [30], jointly encoding data from multiple
modalities. Bonatti et al. [31] acknowledged that, by jointly encoding this information with
image data, we could aid the control policy pipeline given we know the important state data
a priori, while also guaranteeing adequate ambient noise reduction (Section 4.4.6). While
the authors were able to learn a successful imitation control policy given a dynamically
moving drone and static gates, we further investigate the CMVAE's capability operating
under active target tracking conditions containing both an active target and observer. The
authors exploited a supervised imitation pipeline enabling drones to navigate through
a series of static gates by training in simulation, where expert trajectories were defined.
We investigate if the former expert trajectories can instead be learned by a DRL network
operating under semi-supervised conditions with reward alone being the prime motivator.
We use a CMVAE solution consisting of 3 networks:
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Encoder, g;;,q. Dronet [32], an 8-layer residual network, defines our encoder architecture,
Figure 2. q;;,4 reduces a high-dimensional image to a latent space, z.

Decodet, piyq. Pimg reconstructs an image from z, consisting of six transposed convolu-
tional layers, exploiting the ReLU activation function and batch normalisation before
each convolution, providing the image reconstruction loss against the original image.

State Decoder, ps. A set of auxiliary networks [31] (one per feature: 4; 0 and ) performs
pose regression—predicting d, 6 and ¢. Each network consists of 2 dense layers.
During training, each relevant feature from z is passed through ps, and losses between
the ground truth and predicted feature values influence the gradient updates of
9img, disentangling the learnt feature space and ensuring the first three features

are task-relevant.

Figure 2. Showcasting the usage of the Dronet [32] 8-layer residual network architecture as part of
our pipeline, gjy¢-

The new compressed output from g, greatly reduces the observation space for
the DRL algorithm, aiding the DRL optimisation process. While these authors exploited
imitation learning, we aim to investigate if the same gains can be gained by DRL. Thus,
this paper uses the multimodal solution for better compressing the image while deriving
the main object position in the environment while exploiting RL-based approaches to learn
better which is the best way to navigate the environment.

2.3.2. Three-Dimensional Object Tracking

Images provide a rich data representation containing a multitude of features, and
thus image feature extraction is a heavily researched field across a variety of disciplines.
Concerning robotics, techniques such as [33] estimate object location in space by exploiting
corner flow detection using image data from the surrounding environment. Given this
information, the robot’s displacement can be derived. The author’s experiments demon-
strate the solution’s capability in environments including reconstructing vehicle trajectories
from a static camera, as well as identifying the objects’ displacements when the camera
is moving and the obstacle has a fixed location. Our solution’s camera is housed on a
system with a dynamically changing position also combined with a dynamic target, where
knowing the object’s relative position is as important as knowing the target rotation as well
as reconstructing the tracked objects” azimuth position. Thus, features critical for target
tracking such as 6 and 1 cannot be accurately gauged from the relative pose alone as per
CMVAE, as [33] require at least two poses for deriving such information.

State-of-the-art classification methods such as [34] exploit video feed data to predict
target actions, the former extending VARG techniques. While such information could help
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to enrich the feature space for better categorizing the target’s action through discretisation,
our DRL control policy represents a continuous classification task, mapping continuous
features to continuous actions. Discretising such an environment (whether simulation
or reality) would provide a less accurate control policy in comparison with the CMVAE,
providing continuous feature mappings z while ensuring that a subset of learned features
are objective-critical (r, 6, ¢), with remaining features providing additional contextual
information from which we can immedjiately transfer as prompt operations to be transferred
to UUV for target tracking.

More complex environments, such as those faced by autonomous driving in real urban
scenarios, require a more holistic understanding of the environment, often boiling down to
ethical problems [35]. Accurate environmental perception is then critical, as the objective is
not only concerned with learning a sufficient control policy [36] but also considers complex
decision-making processes, including obeying road laws, collision detection, and avoidance.
The focus of SWIM is optimising a successful control policy alone, as underwater target
tracking does not face the complications that the former environments encompass, requiring
an extended feature space than that currently provided by the CMVAE.

2.33.RL

RL is a branch of ML lying between supervised and unsupervised approaches. The
behaviour policy dictates the actions the agent will take based on environment observations
(unsupervised), while the target policy is optimised through reward values computed using
these observations, guiding the model towards some optimum state (supervised). RL
excels in real-time dynamically changing environments such as autonomous vehicle navi-
gation, where objectives can be well constructed by exploiting environmental observations
(e.g., distance from the centre of the road). Environment resets return the environment and
agent to an initial state, thus terminating the episode. Q-learning and SARSA are examples
of RL algorithms, relying on tabular or approximation methods in the optimisation process.

SWiMM; g exploits Gymnasium, a fork of OpenAl’'s Gym (https://github.com/
openai/gym, accessed on 21 March 2025); the industry-standard API for enabling in-
tegration of RL applications and libraries. While providing some defaults, Gymnasium also
allows for the integration of custom RL environments, requiring only the implementation
of the step and reset templates. The former provides the action for the previous observation,
while the latter reinitialises the environment at the user’s discretion.

We consider a standard RL setup consisting of an agent interacting with an environ-
ment to learn a behavioural policy 7. At time step ¢, the agent receives an observation o¢
of the state s;, and uses 7t to predict action a;. The agent receives feedback as a bounded
value—the reward r;. The agent policy is shaped by the DRL algorithm whereby the final
objective is to achieve high reward. In the RL framework, we have 2 policies:

Behaviour Policy: 71, enforces the agent’s action for the current state in the current
timestep s;.

Target Policy: 7t is updated based on the rewards from the current action. It is used to
‘learn’ the best action based on future rewards. These policies are often greedy.

RL Algorithms can be on-policy or off-policy:

On-policy. the behaviour policy is the same as the target policy, T = 7. Therefore, the
action proposed by the target policy (often a greedy policy estimating future rewards)
is chosen.

Off-policy. the behaviour policy can be different to the target policy, 7 # m,. For exam-
ple, our behaviour policy may be random, while the target policy may follow a
e-greedy approach.


https://github.com/openai/gym
https://github.com/openai/gym
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Off-policy algorithms are more sample-efficient than on-policy ones, as they can
exploit previous experiences stored in a replay buffer to optimise their network. In contrast,
on-policy algorithms typically discard previous experiences but can optimise much faster.
We investigate this trade-off by exploiting the following state-of-the-art RL algorithms:

SAC (off-policy) [37]: This is an actor-critic approach optimizing both policy and value
network—a model estimating the expected return of a given state or state-action pair.
It maximises a trade-off between expected cumulative reward and entropy (a measure
of policy stochasticity), encouraging exploration by penalizing overly deterministic
policies while maximizing expected rewards.

PPO (on-policy) [17]: This provides a policy gradient solution improving training stability
and efficiency by using a clipped objective function to limit the extent of policy updates.

TD3 (off-policy) [18]: This combines aspects from Q-learning and policy gradients and
has been exploited in advancing RL applications in continuous control tasks, such as
robotic manipulation and autonomous driving.

Traditional RL methods struggle with large or continuous state and action spaces.
DRL extends traditional RL by exploiting neural networks as function approximators to
estimate value functions, Q-values, and policies. This allows the algorithm to generalise
across large, complex state and action spaces. Pixel data from even low-resolution images
provides a high-dimension feature vector, and throttle/steering values define a continuous
action space with infinite outputs. Traditional RL methods would suffer in both memory
and time under such high-dimension spaces (e.g., Q-learning combinatorial explosion).
In addition, RL suffers as the exploration space grows due to the exponential increase in
possible state configurations. DRL algorithms provide efficient exploitation techniques to
visit the relevant unexplored states.

Given visual discrepancies between simulation and reality, we exploit a subset of DRL
algorithms enabling us to generalise and explore the environment. DRL has seen high
success rates in its ability to map perceptual data to image control [38].

3. Materials and Methods
3.1. Methodology

Firstly, the environment is reset (Section 2.3.3), randomly placing and rotating the
observer (rover) in the water body. The target (dolphin) is placed at a distance d and az-
imuth 6 and assigned randomised animation parameters. The rover performs active target
tracking by sensing the environment and moving the actuators. The observation/action
cycle continues until either a rollout is completed (the network weights are then trained) or
the maximum step threshold is reached. As our current solution leverages state-of-the-art
CVMAE solutions for compressing and denoise images while also retaining object tracking
information, we refer to Section 2.3.1 for further information in this regard.

3.1.1. Deep Reinforcement Learning Pipeline
Observation Space

SWiMM, o exploited only image data, whereby the agent could not gauge its speed.
To help aid the agent in velocity inference (regardless of the observation space selection),
SWiMM,; o provides a history of past behaviour through action concatenation. The observa-
tion space is extended by concatenating the previous 10 actions (ActPrev) to the encoded
image. By providing the most recent actions as additional agent observations identifying
its current state alongside the perceived image, the agent can then be influenced by any
previous continual changes that may suggest a velocity. Overshooting was significantly
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reduced, and motion jitter (from a stricter 6 policy, Section ‘Reward Function, ') was elimi-
nated. Table 2 details the implementation differences between the observation differences
from SWiMM; j and SWiMM; .

Table 2. Observation space extension between SWiMM; o and SWiMM, . Tfos/ T;"t denote the
position/rotation of the object on the i’th axis. W/ H denote the width/height of a given image render.

Observation Type Dimensionality SWiMM1 o SWiMM; o
Ground Truth 12 rov/target '[72;5:,5,7'}7;?57'— Z;%OS,
Raw Image W-H-3 [IZ;‘OZ‘/{%RlC;{BG,IBr,Hf r(}z;gclilGB]’ P w Acbree
Encoded Image ny (20,21, -+, Zn,]
Action Space

We use a 5-part continuous action space. The first four actions correspond with the ve-
hicle’s four degrees of freedom given a default thruster configuration { x,y,z,v' } € [-1,1].
x,Y, z represent linear force along the AUV’s axis (i.e., lateral thrust or sway, vertical thrust
or heave, and forward thrust or surge), and y’ represents proportional angular force around
the AUV’s y axis (i.e., yaw). The BLUEROV also has a series of dive modes mode normally
toggled using buttons on the controller:

mode,an: No feedback stabilisation, heading holding or depth holding.
modeg,p: Roll is stabilised and yaw when not commanded to turn.

modegepn: As modes,, but also will maintain heave unless commanded otherwise.

In our simulation, we enable mode ., by default, as stable rover depth and roll would
limit the state space, thus providing additional support for the optimisation of z, .

Curriculum learning is a common technique in autonomous vehicle navigation [39]
to break down complex environments. Once good model behaviour has been achieved
in the more primitive environments, complexity can be added in an iterative approach,
allowing for a targeted focus on each additional feature. We apply the same motivation here.
From an observational perspective, our training environment consists of only one target
object, the dolphin, and one rover, both moving underwater. From an action perspective,
we reduce the dimensions to 2, with 7t outputting values for z and y’ only. The target’s
movement is restricted to the xz-plane. We transform the Unity simulation into an RL agent
environment by providing observation and action space implementations.

Reward Function, F

We provide the maximum reward followed by penalties; an agent is ‘rewarded’ by
reducing these penalties. For any two game objects, a, b, with translation vectors v, and vy,
the heading (1 = v, — v;) between them is required for computing azimuth error penalty
between the rover and the dolphin.

The target has freedom of movement on the xz-plane. The target can also move on the
y-axis, though we save this for future work. On this plane, we compute the radial distance

d=\/hx2+hz? 1)

Likewise, 0 defines the angular difference in the y component on the same plane, taking

between the rover and target, d:

the dot product between the normalised heading vector and the rover’s forward vector:

f = arccos (ﬁ - fx) (2)
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In SWiMM] , our reward function penalises the agent for the difference between the

current and optimum heading/distance with equal weighting (Table 3). opt_d is the optimal

distance between AUV and dolphin, max_d is the maximum distance the AUV can deviate

from the optimal distance before the episode is terminated. Our freedom of movement has

arange: [opt_d &+ max_d|. However, note the following:

1.

Distance Strictness, pen;. In SWiMM] o, pen,; was too great (scaling penalty quadrat-
ically), over-biasing the agent to achieve optimum distance while also causing greater
changes to azimuth, thus leading to poor responsiveness. Instead, we should allow
greater freedom of movement from opt_d as the video feedback (and, therefore, the
penalty for azimuth increases) is affected more by the ROV’s heading than the raw
distance. This also has the added benefit of minimising azimuth fluctuations. We
replace the quadratic penalty with an exponential one; a more lenient behaviour.
Poor Responsiveness, pen,. To enforce a stricter heading penalty, we provide a loga-
rithmic increase, rather than a linear one as in SWiMM, . For the latter, subsequent
experiments reveal unresponsiveness to significant azimuth changes concerning the
original maximum possible azimuth of 180°, which were not considering the camera’s
horizontal field-of-view camy,:

. Camhfgv - camy,
== arctan( 2. f ) (3)

where cam, stands for camera sensor’s width. This new penalty encourages a much

more responsive agent.

Smooth Control. An agent penalised heavily for small changes from the optimum
will jitter, whereby the action will continuously flip between negative and positive
values. The challenge, then, is discovering an agent that can maintain optimum
heading and distance while eliminating jitter caused by overshooting at the optimums.
Preliminary investigations applying a smoothness penalty resulted in an agent being
overly conscientious of maintaining smooth control. While the resulting policy almost
eliminated jitter, sharp control changes were lacking, and the target was not tracked
effectively. We opted for a different mechanism by extending the observation space to
include the previous n actions (action stacking, distinct from frame stacking, Section
‘Observation Space’), which successfully eliminated jitter /overshooting. This is detailed
in the following section, ‘Smoothness Error Implementation’.

Concerning F, high rewards are achieved by keeping the target within strict bounds

of the centre of vision while maintaining a suitable distance from the target but allowing

some freedom of movement.

Table 3. Reward penalty for azimuth for SWiMM; g and SWiMM, . pen, denotes the distance
penalty and pen, denotes the Azimuth Penalty with range [0, 1]. r; denotes the step reward. Thus

r¢ € [—1,1]. k denotes the penalisation weighting; a lower value will penalise the feature less. For

our experiments (Section 4), we found that k = 1 was an appropriate value. opt_d and max_d are set

to 6 and 4 metres respectively, which was chosen as a suitable target range.

Function SWiMMy o SWiMM,,

L pen, (d—optd)* ell-ld—apld)) _
max_d? plkemax_d) _ 1

2. pen, 161 In((k-|0]) +1)
180 In((k-a)+1)

i 1 — (pen, + peny)




Al2025,6,71

14 of 44

Sa

Sp

(10.5—0.4] - 0.25) + (|0.5 — 1] -0.2) + (/0.5 — (=1)| -0.15) _ 35x 10~}

(]02—0.2]-0.25) + (|02 — 0] -0.2) 4 (/0.2 — 0.5 - 0.15) _ 8.5 x 102

Smoothness Error Implementation

A consistent video feed necessitates stable and smooth control, minimising power
usage and environmental disturbance.

The smoothness errors are calculated by performing a normalised weighted absolute
difference between the current action and all the previous from ActPrev. The weighting list,
W, diminishes for actions further in the past and is defined as follows:

W = [0.25,0.20,0.15,0.10, 0.08, 0.06, 0.05,0.04, 0.04, 0.03]

0.03 corresponds to the weight of the occurring 10 steps before being considered less
important than the last action, 0.25. The normalisation divides the respective errors by
the maximum error possible, |1 — (—1)| = 2, given that our continuous actions lie in the
range [—1,1]. An action index, k, is used to select the control of interest, where, given our
current set of actions, act, act[k] selects the value for the k’th action. In our setup, act|[0]
denotes the surge smoothness, while act[1] denotes the yaw smoothness. Sy denotes the
smoothness for the k’th index (action) of interest. For our action space, Sp/S1 indicate the
smoothness errors for surge/yaw, which, for clarity, are renamed Sp/S 4. At any step, s,
the intermediate smoothness error is as follows:

Sy = % . i(|(act[k} — ActPrev((n — i) + 1)[k])|) - Wi (4)

i=1

where n = |ActPrev| (in our case, n = 10). For example, let us suppose we are at step
s = 4, with a history of the previous 3 actions: ActPrev = [(—1,0.5),(1,0), (0.4,0.2)]. A new
action is decided: act = (0.5,0.2). The first element act[k = 0] = 0.5, indexes the surge
output (50% of maximum thrust) while the second act[k = 1] = 0.2 selects the yaw (20% of
maximum thrust). We return the following intermediate smoothness errors:

=425x%x 1072 (5)

2 2
=175x10""! (6)

2 2

An episode with S 4/Sp = 0 indicates perfect smoothness (i.e., all actions are identi-
cal), while S 4 /Sp — 1 indicates high action variance. Unlike traditional error metrics,
achieving 0 smoothness error is not desired, as that is only achievable with identical action
commands. Instead, a low §; combined with low A/ D values indicate good behaviour
with minimal jittering.

Episode Termination

Good practice in RL literature [40] is the termination of episodes upon the satisfaction
of certain criteria. The target is susceptible (particularly during early training) to instances
where the target leaves the camera view. As a preventative measure, we extend the set of
episode termination criteria, Table 4.

Only observations containing the target are included in the state space. Otherwise,
our problem extends beyond the scope of target monitoring (in the absence of a perfect
information environment) to also include target search, requiring different methodologies.

Table 4. All episode terminating criteria. Criteria marked with CALLBACK are processed after
completing each step.

Parameter Definition Value SWiMM; SWiMM,
Distance A distance from the optimum no 4 v/ v/
Threshold greater than the threshold should occur.
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Table 4. Cont.
Parameter Definition Value SWiMM SWiMM,
Target The target should always be N/A X v/
Visibility within view of the camera.
Collision A collision with the N/A 4 v/
Avoidance target must be avoided.
Time Limit Episodes, £, can run for, 3 % 103 v/ v/

at most, s steps, |E| < s.

3.2. Simulation Engine

Inaccurate environmental representation can harm sim-to-real transfer, including
physics, graphics, and hardware. Figure 3 displays a still from the simulation.

Figure 3. Debug information can be visualised. The red (green) rings represent the optimum (out-of-
bounds) ranges from the target. The green (yellow) headings display the rover’s optimum (current)
forward direction vector. The yellow container (bounded by the cyan lines) is the onboard camera’s
view frustum, calculated using physical camera properties.

3.2.1. Environment Wrappers

Unity ml-agents Section 2, provides a Gym (not Gymnasium) wrapper, allowing the
integration of a DRL pipeline on top of a Unity simulation. We do not exploit ml-agents
for several reasons. Firstly, a bespoke underwater environment for continuous action
spaces is unlike any of the simulations provided by ml-agents, which mainly consider
discrete actions in above-ground scenarios. Second, we require an encoding pipeline
as a pre-processing step to the DRL integration, for which ml-agents does not provide
native support. Third, we want to exploit the latest state-of-the-art DRL algorithms and
environments available (using Gymnasium and Stable Baselines 3). By using ML agents,
we limit the tools we can use.

Gymnasium’s environment wrappers provide additional control over the training
process, computing metrics detailing the optimising process, or allowing manipulation of
the training cycle. We exploit the TimeLimit, with a maximum episodic length of 3 x 103,
and Monitor, providing logging information evaluating agent performance. By limiting the
maximum episode length, the gains are two-fold:

1.  Episodes lasting longer than the threshold length indicate that the target policy has
already been optimised for the current sequence of states. It is better to reset the
environment to a set of new (potentially unobserved) states than to continue the
current episode, continually receiving states already in the replay/rollout buffer.

2. Resetting the environment results in state configurations that are unlikely to
be observed once an episode has begun. This includes the starting and early
states, where the ROV/target may have greatly varying velocities than those
exhibited mid-episode.
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3.2.2. Callbacks

RL solutions are often brittle and susceptible to gradient escape or early conver-
gence. Good practice in such applications would be agent evaluation, monitoring accuracy
concerning the network weights at the time of evaluation. Stable Baselines callbacks are
triggered at specific intervals during training. Default callbacks can, for instance, inject
evaluation episodes during training, while custom callbacks enable bespoke implementa-
tions. SWiMM, j includes a custom evaluation callback with the following improvements
from Stable Baselines:

Rollout-Based Evaluation. Regarding agent performance, we advocate evaluation only
after model optimisation. Evaluation on an episode threshold means several evalua-
tions can be made for identical networks, which is not optimal.

Step and Episode Threshold. Granted that continuous learning tasks are more concerned
with step reward against the conditions at the end of an episode, we also allow
step-based evaluation frequencies to support continuous learning tasks.

Minimum Steps for Evaluation. DRL networks, and therefore the target policy, are more
susceptible to large changes in behaviour during the early stages of training (particu-
larly with dynamic learning rates that anneal with time). Given that this (inexperi-
enced) behaviour has been trained only on a limited number of samples, we provide
a new criterion, a minimum training step threshold, that must be reached before
evaluation can begin.

3.2.3. Physics

PhysX, a state-of-the-art physics engine developed by Nvidia, emulates physical
pseudo-realism. SWiMM; o manipulates object movement using PhysX forces. An internal
physics step processes all physical properties. Physics updates at a constant rate, while
rendering is varied.

Buoyancy

PhysX allows us to implement realistic buoyancy, discussed in our previous work [16].
As its set-up is irrelevant to the specific Al pipeline and, for brevity, we refer to the reader
to the former for further details.

3.2.4. Reproducibility

Ensuring reproducible results represents a challenging task:

Firstly, Unity runs the physics and rendering systems on separate threads. Each has
its own time: fixedDeltaTime (fixed) is the frequency at which all physical calculations are
performed, while deltaTime (variable) also considers rendering time, updating the graphics
based on the current physical world state. Therefore, there is always a desynchronisation
between the physics engine and graphics. While these discrepancies are often discrete, they
have a significant impact, as observations rely on the image data and the objects’ physical
attributes. In addition, DRL algorithm optimisation may be particularly susceptible to even
small changes, generating very different models for identical training environments.

Second, a TCP connection introduces variable delay, exaggerated by large network
messages required by image encodings. How can we remove this influence?

Our freeze pipeline, detailed in Section ‘Action Inference’, guarantees replicable results.

To enable greater control over the physics processing of the simulation, we propose
our freeze pipeline setting, providing a deterministic environment, that can guarantee
reproducible results.
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Freeze Pipeline

1.
2.

First. Native Unity physics is disabled.

Second. We perform a physics update for the rover/target. For the former, actions
from the DRL network provide the emulated joystick controls, while the latter inte-
grates the forces as determined by its state machine.

Third. We await the end of the current rendering step. At this point, physics
and graphics are synchronised and the resulting image accurately represents the
physical characteristics.

Fourth. Game data are retrieved, including the positions and rotations of the rover/-
target. Both the game data and image render are encoded into an observation, which
is then sent back across the TCP/IP socket.

Fifth. Repeat 2—4 until commanded by the network otherwise.

Algorithm 1 provides the implementation details for simulation management during

such a freeze cycle.

The benefits of such a mechanism are two-fold. First, we eliminate any discrepancies

resulting from the desynchronisation between physics and rendering by employing a cus-

tom physics step. Second, as the entire engine is frozen between observations, we remove

the latency resulting from a TCP connection.

Algorithm 1: Freeze Pipeline Implementation

1
2
3

4

10
11
12
13

14
15
16

17
18

19
20
21
22

23

Class SimulationManager:
Function Start():
t Unity.Physics.Disable();

Function NetworkReceive(action):
t ROV.OnActionReceived(action);

Function NetworkSend(observation):
L tcpConnection.Send(observation);

Class ROV:
Function OnActionReceived(action):
thrusters.SetForces(action);
FixedUpdate() ; /* Process ROV physics */
for obj in physicsObjects do
L obj.FixedUpdate();
Unity.Physics.Simulate(Time.fixedDeltaTime);
img < yield return StartCoroutine(ImageRenderer.SendImageData());
gameData < RetrieveGameData() ; /* Retrieve rov/target game
state information */
obs < Encode([img, gameData]);
SimulationManager.NetworkSend(obs);

Class ImageRenderer:
Function SendImageData():
yield return new WaitForEndOfFrame();
renderTex <— camera.Render(); /* Rendering details redacted for
brevity purposes */

return renderTex;
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Network

Traditional RL solutions couple their RL environment and simulation into one exe-
cutable enabling direct communication. By exploiting Unity, we require a communication
mechanism between the simulation and the learning architecture. As an extension from
SWiMM] o, hosting all operations on one connection, we exploit 2 separate TCP network
sockets: the first for training and the latter for evaluation. We decouple the read /write
thread, enabling greater communication flexibility and higher throughput.

BLUEROV Modelling

BLUEROV includes six thrusters providing four degrees of freedom: surge; sway,
heave and yaw. Our goal is the optimisation of two commands: surge and yaw, using
image data alone. Our experimental section showcases that these actions suffice to provide
full control of UUV when tracking marine wildlife.

Mesh

We use the standard 3D model mesh of BLUEROV (Figure 4) as provided by
Blue Robotics.

Heave (w) [+V]

K1) Yaw (1)

Roll (P)

Figure 4. BLUEROV, consisting of 1.67407 x 10° tris. Designed by 3D Molier International also
illustrating the 6 degrees of freedom exhibited by aquatic vehicles.

Unity provides physical camera tools including sensor size, aperture, and focal
length, enabling accurate modelling of the Sony IMX322/323 image sensor (https://
datasheetspdf.com/pdf-file /938855/Sony /IMX322LQJ-C/1, accessed on 21 March 2025)
used in BLUEROV’s Low-Light HD USB camera (https:/ /bluerobotics.com/store/sensors-
sonars-cameras/cameras/cam-usb-low-light-r1/, accessed on 21 March 2025).

Controls

The traditional control method for BLUEROV is a joystick controller sending input
commands through a wired tether to the Rasberry Pi4 to a series of thrusters housed on
the model’s chassis (Figure 5). Thus, emulating such inputs in Unity is easily transferable,
as game engines share such a control scheme.


https://datasheetspdf.com/pdf-file/938855/Sony/IMX322LQJ-C/1
https://datasheetspdf.com/pdf-file/938855/Sony/IMX322LQJ-C/1
https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/

Al 2025, 6,71 19 of 44

Camera Tilt Camera Tilt
Down N 4 up

Stabilize
Mode

Lm”'q@} Lateral Depth Hold Manual
Left GJ" Right Mode Mode
Reverse shift

Camers Tit Center
Ascend
Yaw Yaw
Left “ Right
Descend
Lights Dimmer Lights Brighter =
m RolLef Tim foll Rt

Decrease Gain Toggle Input Hold
Trim Pitch Backward

Increase Gain
fim Pitch Forward

Figure 5. BLUEROV specifications (https://bluerobotics.com/learn/bluerov2-assembly/, accessed
on 21 March 2025). (Left) Xbox joystick controller for BlueROV2. (Right) BLUEROV’s (standard)
thruster configuration.

Action Inference

Unity has a variable frame rate, and the ML pipeline takes an arbitrary time to process
each observation while sending data through TCP sockets between the two introduces
further delay. An arbitrary number of frames may occur between each action/observation,
so how should the agent behave in these intermittent frames?

Our pipeline provided 3 ‘action inference’” implementations, separated into the Unity
physics default behaviour (A), and the custom physics handling (%, Section 3.2.3):

A maintain. Every action is applied for all simulation ticks in between actions.

A onReceive. Each action is enforced for one simulation tick only. The observer then waits
for the next command.

* freeze. Each action is enforced for one simulation tick only. Native physics behaviour is dis-
abled. Upon receiving an action, our custom physics step is exploited, guaranteeing
simulation consistency. Detailed implementation is described in Section 3.2.4.

3.2.5. Target Modelling

Building on SWiMM;  [16], we improved the realism of the target model. Marine
megafauna directional behaviour includes the following [41]:

¢ Undulatory Locomotion. Sinusoidal movement along the bodies and tails provides
forward movement.

* Rolling. Enables more efficient water navigation.

*  Yawing. Bending and flexing of bodies changes direction.

Additional animations including banking are provided in SWiMM,; o. Figure 6 show-
cases some such animations at their extents.

~-{D

Figure 6. Common bottlenose dolphin Tursiops truncatus model, consisting of 3.524 x 10 tris. It
includes a rigged skeleton and realistic animation patterns. Designed by Junnichi Suko (https:
/ /junichistamesi.wixsite.com/my-personal-site), accessed on 21 March 2025.


https://bluerobotics.com/learn/bluerov2-assembly/
https://junichistamesi.wixsite.com/my-personal-site
https://junichistamesi.wixsite.com/my-personal-site
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4. Results

We exploit a Razer Blade Pro laptop running Ubuntu 20.04/Windows 11: Intel Core
i7-10875H CPU @ 2.30-5.10 GHz, 64 GB DDR4 2933 MHz RAM, 265 GB disk space. Due
to space limitations, hyperparameters used in our experiments, such as arguments and
environment configuration files are provided in our data repository (https://doi.org/10
.17605/0SF.I0/7KS2C). The main packages include: Stable Baselines 3 (2.2.1); OpenAl
Gymnasium (0.29.1) and Tensorflow 2 (2.10.1). GPU acceleration (CUDA v11.8, CuDNN v8)
for all compatible pipeline sections, including TensorFlow and PyTorch v1.13.0. Saved
models are denoted as: M5, where M is the model type, seed represents the seed and fs
is the weight-freezing timestamp.

The SWiMM; o pipeline is influenced by stochastic behaviours:

DRL network weight initialisation. Network weight initialisation is well known to im-
pact a network’s optimisation, evidenced by our DRL experiments.

CMVAE sampling strategy. Values sampled by our decoder are obtained from normal
random distributions.

DRL action determinism. A multilayer perceptron policy for each SAC/PPO/TD3 repre-
sent non-deterministic policies.

Simulation Randomisation. Unity exploits random number generators, determining the
environment’s initial and reset state (positions, orientations, etc.).

While seeding can provide similar results, ensuring identical ones requires setting the
pipeline to freeze (Section ‘Action Inference’).

IMAGETRAIN/ IMAGETEST denote our CMVAE training/test sets (90/10 split, 2.7 x 10°
and 3 x 10* samples, respectively). For these, rover/target position and rotation and, for the
latter, animation frames (for both the previous and new poses) ensure uniformly distributed
states. A large sample size provides a more robust state-space coverage. IMAGENTERPOLATE
contains 6 samples, whereby the target d/6/1 fields are set between their minimum and
maximum extents with all other fields being constant.

IMAGEsivmariTy (1 % 103 samples) denotes our image similarity dataset, undergoing
the same randomisation process as the previous with additional resolutions.

4.1. Data Generation Setup

As an extension of our previous solution, randomised fields are limited to ranges
within our episode termination thresholds (Section ‘Episode Termination’). We exploit early
episode termination during the DRL training cycle (Section ‘Episode Termination’, which
includes distance thresholds) and therefore restrict the Euclidean distance to within the
threshold only. Table 5 details the data generation for the image sampling regarding image
specifications while Table 6 details the environment configuration.

Table 5. The data amounts required for the training and benchmarking of the CMVAE. 1 denotes the
number of samples contained in each set. By exploiting different seeds, we can guarantee a mutual
exclusion between training, validation, and test data.

Set n Resolutions (W x H) Seed
IMAGESviARITY 1x103 {(1920,1080), (640, 360), (64, 64) } 2
IMAGETRAIN 2.7 x 10° {(64,64)} 3
IMAGETgsT 3 x 10% {(64,64)} 5
IMAGEINTERPOLATE 6 {(1920,1080) } 7
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Table 6. Rover telemetry feature randomisation and target positioning and animation limits. Distance
is relative to the rover. Animation is merged in a blend tree. x/y/z values are relative to global
coordinates (0,0,0). Data was sampled from a normal distribution, [Seed = 2].

Range (Unity x/y/z)
Rover
Position ([—30,30],[—4,4], [—30,30])
Rotation ([0,0], [~180,180], [0, 0])
Target
Euclidean Distance [2,10]
Rotation ([0,0], [—180, 180], [0, 0])
Forward Animation Weight 1,1]
Turn Animation Weight [—1.3,1.3]
Normalised Animation State [0,1]

4.2. Image Similarity

Emulating a 1920 x 1080 video stream introduces the following problems:

1.  Texture Rendering. The cost of rendering high-resolution images is high, from both a
memory and time perspective, in particular for sample-hungry DRL algorithms.

2. Message Latency. Latency defines the ratio between message size and through-
put of our TCP connection. High-resolution image vectors necessitate large
buffer size requirements, introducing a significant delay between observation and
control commands.

Our CMVAE receives 64 x 64 images. Therefore, we assess reducing rendering compu-
tation and network load by exploiting the low-dimensional input resolution directly. Thus
we asked the following:

1.  Can we exploit image scaling techniques in Unity to reduce network traffic latency?
2. If above, can we render our input resolution directly, reducing rendering load?

One image is defined as R"W x RH x RC-dimensional tensor img, where W/H/C,
respectively, denote the image’s width, height, and number of RGB colour channels. We
require C = 3, as colour features help better highlight the target object. A pixel, pl\, ata
width, w and height /, is denoted as a tuple pi’u = (r,g,b) |V(c) € p, 0<c<255.

SWiMM,  exploited cosine similarity, which, while indicating the shape differences
between images, is insensitive to scaling factors:

L 1Z]HlP1
VELTL ¢2 Lo

We opt for using MAE, considering absolute pixel-wise differences, a more appropriate

)

SimilaritySWiMMl 0

metric for comparing the ‘same’” image:

Similarityswima, , = H Z% Z ] -l (8)
i=lj=
We first determine that the choice of resizing algorithm (client versus server) produces
almost negligible differences (in the worst case, MAE = 1.09). We then observed that
rendering in high resolution and down-scaling versus rendering in low resolution directly
achieves very low data loss (MAE = 2.03). The gains of our proposed optimisations far
outweigh minimal data losses. Throughout the rest of this paper, W/H/C = 64/64/3.
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4.3. CMVAE Training

Our preparatory experiments train our CMVAE, providing a lower-dimensional in-
put for the latter DRL network. We exploited the network architectures proposed by
Bonatti et al. [31]. We enhance SWiMM; j as follows:

Early Stopping. To prevent any unnecessary training providing no benefit to models hav-
ing already found a maximum optimum [42], we monitor validation losses concerning
a window size w. Where no monitoring exists, we denote this as w = oo, otherwise,
an integer n indicates the patience value.

State-of-the-art DNN Libraries. SWiMM; o exploited old DNN packages, including Ten-
sorflow v1.14.0, and downgraded the implementation of [31]. SWiMM,  exploits
modern networks from Tensorflow 2 including the modern implementation from
Bonatti et al. [31], enabling improved performance and accuracy.

4.3.1. Training

SWiMM; g required 100 epochs. As optimisation may occur far before this number,
we dissect our training into 2 batches. The first batch (w = co) operates under the same
conditions as SWiMM] . The second batch (w = 5) monitors validation losses using a slid-
ing window for the previous 5 iterations requiring a minimum validation loss reduction of
>1%. We exploit IMAGETraIN With five seeded training runs. The ‘best’ network weights
are saved for the lowest validation loss concerning image and state data reconstruction. Our
preliminary experiments, detailed in Supplement S1, justify our early stopping approach.
Table 7 defines the configuration exploited during training of the variational autoencoder
and Figure 7 displays the results of our second batch of experiments, w = 5.

The ‘best’ model’s weights (lowest validation loss, Figure 7), are saved: CMVAE%; /
CMVAE3}/CMVAES;/CMVAES} / CMVAES.

Table 7. CMVAE training configurations.

Parameter Definition Value
w=25 w = ©
cmvae_training_config
train_dir Training samples directory (see Table 5) IMAGETRAIN IMAGETRAIN
batch_size Size of splices for training data 32 32
learning_rate Gradient learning rate 1x 10* 1 x 10*
load_during_training Should all images undergo splicing on the fly True True
max_size Limit on number of samples NULL NULL
epochs Maximum number of epochs to run 100 100
window_size Epochs to analyse for early stopping criteria 5 NULL
loss_threshold Fractional gain to reach within window_size 1x102 1x 1072
cmvae_global_config
use_cpu_only Prevent GPU acceleration False False
n_z Latent space size 10 10
img_res Expected Resolution of Input Data (64,64, 3] [64, 64, 3]
latent_space_constraints Disentangle latent space constraints [31] True True
deterministic Tensorflow determinism True True
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Table 7. Cont.

Value
Parameter Definition
w=>5 w = o0
env_config
seed Seed exploited for stochastic operations {11,13,17,19,23} {47,53,59,61,67 }

Training Loss

1107 =

Validation Loss

2x10 3x10 0x107 1x10° 210 3x107!

Epoch Epoch

Figure 7. Training (left) and validation (right) losses, w = 5.

4.3.2. Inference

The ‘best’ models generated from Section 4.3.1 are evaluated. In total, 1 x 103 images
and state data are sampled from IMAGETgst for 5 different seeds.

Firstly, we want to investigate how MAE varies with training time (Figure 8). A
network pass-through is performed: encoding, decoding, and returning the image and
state reconstructions along with the latent space vector z. Given the ground truth values
of the state data and images versus those reconstructed, we record the MAE for each
image/d/0/y. These values are normalised considering their maximum possible errors
(255/4/360/360, respectively). d and ¢ exhibited the worst reconstructions, though these
values are still low, MAE < 1.00 x 10~!. Conversely, image and 6, had exceptional
reconstructions, often achieving a MAE of 1%. Marginal accuracy gains are achieved for
models where w = oo, while training times suffer a great increase of almost 4x. Given
that there will always be a trade-off between training time and optimisation, we select
CMVAE3; as our CMVAE of choice, coupling low MAE with low training times.

5x107+

MAE (Normalised)

510 110 15107
Training Time (s)

Feature Image d 0 v

S e Mi/s

n i

Mlwas/® A Mg/
Model / & ) P
vae/S @ Moyvag/ S

13 1
O Mawar/® O Miwae/=

Figure 8. MAE (normalised) versus training times across 4 features: image, 4, 6 and . Both models
with/without early termination (w = oo/w = 5) are evaluated.



Al2025,6,71

24 of 44

Second, we investigate how accurately CMVAE33 can infer cross-modal features
against the former CMVAE from SWiMM], y and, from the original solution, Airsim [31],
by comparing the raw MAE values obtained from the previous experiment (Table 8).
SWiMM; g outperformed Airsim with 6 but not 4 and was unable to infer ¢ accurately,
while SWiMM;  improved across all fields, in particular d, achieving a loss reduction
of 3.30x. These gains result primarily from the more optimised datasets (Section 4.1).
Regarding i, while SWiMM, ; makes considerable gains from SWiMM; o (even with the
addition of extended animations), Airsim still achieves the lowest loss. While Airsim
simulated square gates, symmetrical and uniform in all dimensions, SWIM models dolphin
meshes, introducing a more complex image to infer a correct state. Table 9 defines the
inference configuration.

Table 8. MAE when predicting target distance (d), azimuth (6), and yaw (¢) in SWiMM DEEPeR and
AirSim [31]. Red boxes indicate worst performance while bold font indicates the best (lowest) values
per feature.

Env
Airsim SWiMM; o SWiMM, o
3.9 %1071 £2.30 x 102 3.80 X 1071 +1.08 x 10—2
141 x 100 £1.2 x 1072 1.23 x 100 £ 3.07 x 10~2
1.00 X 10! £ 7.50 x 101 3.12 x 101 4 1.26 x 100

Table 9. CMVAE evaluation configurations.

Value
Parameter Definition
w=>5 w = 00
cmvae_inference_config
test_dir Testing samples directory (see Table 5) IMAGETgsT IMAGETgsT
weights_path Model’s network weights path Pa’ch(/\/lsc‘NSI%1,151’13’17’19’23 }) Path(./\/lscll\/s[‘e,ié7’53’59’6l’67 })

cmvae_global_config, see Table 7

env_config

seed

Seed exploited for stochastic operations {29,31,37,41,43 } {71,73,79,83,89 }

Third, to benchmark the effectiveness of the image reconstruction, we randomly
sampled 8 images from IMAGErgst. One pass-through of CMVAE33 returned the recon-
structed image, encoded into z, and decoded into the desired dimensions. The results
are shown in Figure 9. The target’s shape, size, and colour are always maintained during
image reconstruction.

Fourth, given 2 images containing the target in distinct locations and rotations, can
an interpolation between the z values produce a smooth transition from one image to the
other? To do so, we exploited IMAGENTERPOLATE- This consists of images containing all
mix/max values for 7; 0 and ¢, keeping constant the other features. Then, given the latent
space z from the minimum and maximum, we artificially generate a new z, interpolating
some degree between the two. This is then passed back through the decoder to reconstruct
the artificial image. Figure 10 demonstrates that the Dronet [32] architecture has correctly
optimised its network.

Fifth, can we extract meaningful behaviour through feature-wise interpolation be-
tween the minimum and maximum values for each feature encoded in z (dims|z| = 10)?
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By exploiting the constrained model proposed by [31], the first 3 features of z are forced to
encode to the relative pose, as shown by Figure 11. While the first 3 rows reveal the first
three features are task-relevant, the latter 7 features are more difficult to interpret from a
visual perspective.

Figure 9. Reconstruction pairs from 8 arbitrary images (original raw images are on the left followed
by their decoded counterpart on the right).

Figure 10. Six images are taken in the simulation (the far left/right of each row): the min/max

values for each r (Top)/6 (Middle)/yp (Bottom) (keeping constant the other 2 features). These images
are encoded to generate their feature vectors. The resulting z vectors are then linearly interpolated
between, where each newly generated vector is decoded and reconstructed as a new image (the
middle 9 images).

Figure 11. Interpolation results between min/max values for each feature of z. The first 3 rows

(r/0/1) demonstrate a successful disentanglement of the learnt feature space.
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Last, given 2 random images from IMAGEtgsT, can an interpolation between the z
values generated by both provide a meaningful translation from one to the other? An
interpolation between the 2 z values generates a sequence of 10 intermediate results. These
values are processed through the image decoder, shown by Figure 12. The intermediate
images demonstrate that the CMVAE has successfully learnt the relevant features.

Figure 12. Interpolated z values are decoded from 2 randomly-sample images from IMAGEtgsT.

4.4. Reinforcement Learning

SWIiMM; o exploits the SAC/PPO/TD3 algorithms provided by Stable Baselines with
PyTorch GPU acceleration. We now also consider the best SAC model from SWiMM; y,
denoted as SACswivmv1.0/ SACswiMmv2.0-

Table 10 defines the configuration exploited during training of the each DRL algorithms.

Table 10. DRL Training Configurations.

Parameter Definition Value
cmvae_inference_config
weights_path Path to the ‘best” model’s network weights M5C3MVA E
cmvae_global_config, see Table 7
env_config
obs Observation type ‘cmvae’
n_envs Number of environments to run in parallel 1
img_res Resolution of incoming images (64, 64,3]
debug_logs Should network logs be generated FALSE
seed Seed exploited for stochastic operations {97,101,103,107,109 }
algorithm DRL algorithm to train with {’sac’, ‘ppo’,“td3" }
render Mode of rendering the Unity environment ‘human’
pre_trained_model_path Model to either: train on-top of or to use for inference ~
env_wrapper
stable_baselines3.common.monitor.Monitor
allow_early_resets Are we allowing early episode termination TRUE
gymnasium.wrappers.time_limit. TimeLimit
max_episode_steps Allow at most max_episode_steps per training episode 3 x 103

callbacks

gym_underwater.callbacks.SwimEvalCallback

eval_inference_freq

How many episodes/steps to run the evaluation for

[2,“episode’]

eval_freq Training episodes required per evaluation sequence 10
min_train_steps Minimum number of training steps required to begin evaluation 5x 10°
deterministic Should the actor use deterministic or stochastic actions TRUE

verbose Output information and metrics 1

gym_underwater.callbacks.SwimCallback
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4.4.1. Training

Firstly, 5 training runs are performed for each of SAC/PPO/TD3 for 1 x 10° steps (dis-
tinct from the maximum episode length of 3 x 108 steps) and seeds s € {97,101, 103,107,109 }.
For monitoring, a window size, stats_window_size = 10, records statistical data for the pre-
vious 10 episodes. We maintain a memory of the previous 10 actions for ActPrev (Section
‘Observation Space’). Network architectures are denoted as net_arch = [hly, hly, ..., hl,], where
for any i, net_archi indicates the number of neurons at hidden layer i. Both SAC/ TD3 exploit
a 2-layered DNN (net_archgsc = [64, 64], net_archrpg = [400,300]) while PPO exploits a
single layer (net_archppp = [256]). In place of hyperparameter tuning, we exploit well-tested
configurations (https://github.com/DLR-RM/1l-baselines3-zoo/blob/master /hyperparams,
accessed on 21 March 2025) previously demonstrating successful results amongst similar envi-
ronments. SAC/PPO/TD3’s hyperparameters are provided in Supplement S2, Tables S1-53.
We include the Monitor and TimeLimit environment wrappers. Results are shown by
Figure 13.

Concerning mean episodic reward, SAC far outperforms both PPO and TD3, across
all iterations. SAC, in most cases, achieves high episodic rewards (>2 x 103, best case
2.5 x 10%) within a fraction of the time. PPO performs poorly across all instances, achieving
consistently low mean episodic rewards (<2.5 x 10%). Even in the latter stages of training,
episodes are terminated almost immediately due to exceeding the distance threshold or the
target leaving the camera’s view, as the target policy either steers the rover away from the
target or provides the incorrect turning direction. TD3 displays the most volatile behaviour,
with most iterations (seeds 97, 101, and 109) behaving similarly to PPO, with the remaining
(seeds 103 and 107) achieving much higher rewards (5 x 102).

SAC PPO TD3

2x107 =

10)

5x107 =

x107 =

5x10" =

Mean Episodic Reward (p

0x107 2.5x10% 5x10° 7.5x10° 1x107°0 107 2.5x10% 510 7.5x10° 1x107°0 107 2.5x10% 5x10° 7.5x10° 1x10°
Step

Seed 97 101 103 107 109

Termination Criteria ® Maximum Distance 4  Target Collision ™  Target Out Of View +  Threshold Reached

Figure 13. Mean episodic training reward for SAC/PPO/TD3, with stats_window_size = 10. Every
terminated episode is denoted by a point, where the point shape denotes the cause.

4.4.2. Evaluation

We inject evaluations halfway through training, at 5 x 10° training steps, performing
2 evaluation episodes every 10 training episodes onwards. Significantly, given that the tar-
get is guaranteed to spawn in a reasonable location to the rover on each episode reset (where
step reward is guaranteed to be positive), achieving a negative episodic reward indicates
extremely poor behaviour, where the agent has failed to track the target completely.

To better gauge performance in reality, our evaluation episodes lack early termination;
they continue until the time limit is reached (3 x 10° steps). The minimum/maximum step


https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams

Al 2025,6,71 28 of 44

reward ([—1, 1]) therefore bounds the minimum/maximum episode reward to be in the
range [—3 x 1073,3 x 10%]. Figure 14 displays the evaluation results while Table 11 details
the timestamps and optimum values found per algorithm per seed.

SAC PPO TD3

2x10% -
el
—-
<
3
[}
~
2
B 0x10'-
R
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[}
=

-2x10"-

5x10" 610" 7x10%° 8 x10*° 9x10° 1 x105'x10" 6x10™ 7x10™ 8x10"5 9x10"> 1 x105x10°5 6 x10"° 7 x10*° 8 x10*° 9x10*° 1 x10"
Step
Seed 97 101 103 107 109

Figure 14. Mean episodic reward per evaluation SAC/PPO/TD3. Evaluation episodes begin at
5 x 10° steps. The vertical /horizontal lines display the step/reward where the highest mean episodic
reward was recorded, determining the models exploited for the inference Section 4.4.5.

Table 11. Evaluation results denoting the timestamps and values of the best evaluations per algorithm
per seed: (Top) SAC, (Middle) PPO, (Bottom) TD3. Each algorithm has its best model listed (also
displayed in bold): SACY. ... /PPO%S . /TD310

8.78x10 6.50x10° 9.57x105"
Seed Timestamp Value
97 8.78 x 10° 2.40 x 103
101 9.31 x 10° 235 x 103
SAC 103 9.39 x 10° 2.28 x 103
107 9.23 x 10° 2.34 x 10°
109 7.63 x 10° 2.39 x 108
97 9.27 x 10° —6.07 x 102
101 9.68 x 10° —6.73 x 102
PPO 103 6.50 x 10° —3.14 x 102
107 8.70 x 10° —5.53 x 102
109 7.78 x 10° —9.24 x 102
97 6.60 x 10° —8.36 x 102
101 8.86 x 10° —5.66 x 102
TD3 103 9.98 x 10° 2.04 x 103
107 9.57 x 105 2.11 x 103
109 7.17 x 105 —8.67 x 102

Training/evaluation episodes share performance. SAC achieves consistently high
rewards and the highest reward, while PPO suffers, with even the best model achieving
negative rewards; a near-random control policy. TD3, displays large fluctuations in be-
haviour. Seeds 97, 101 and 109 are comparable with the poor performance from PPO,
while seeds 103 and 107 achieve performance similar to SAC. However, even in these
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instances, SAC outperforms in all instances. The best models (model (reward)) are as

follows: SACG . 105 (2.4 x 10%), PPO[S | 5 (=3.14 x 10%) and TD3§%, | 5 (2.11 x 10%).

4.4.3. Training Times

We investigate how training times vary among model performance across algorithms.
First, we consider the factors influencing running time.

Training Time Influencing Factors

RL FPS (a measure of the average number of steps (and therefore frames) processed per
second) is a commonly used metric to analyse performance, yet running time and FPS are
measures of the same variable, time. With each algorithm bound by the maximum training
timesteps (1 x 10°), and given that the rest of the pipeline for each of SAC/PPO/TD3
remains constant, we would like to highlight how the FPS may be influenced:

Model Performance. Well-behaving models regularly achieve the maximum episode
length, while a poorly behaving one activates some of our episode termination
criteria (Table 4). The latter, activating early episode termination, results in lower FPS,
due to the high resource demand of environment reset.

Network Optimisation Frequency. While SAC performs network updates per episode,
PPO/TD3 perform theirs every 512 step. Therefore, the latter exhibits an (almost)
constant number of updates per run, while the former performs an indeterminable
number of updates. Well-performing models will suffer from the latter due to the
more regular (and unnecessary) updating of network weights.

Network Architecture. SAC/PPO/TD3 exploit different network architectures
(Section 4.4.1), in both the number of hidden layers and neurons per layer. More
complex networks have a higher resource demand.

Algorithmic Implementation. TD3 exploits twinned critics while SAC and PPO exploit
only one, doubling the demand on critic network optimisation.

Training Time Benchmarks

Figure 15 displays the results. Concerning total training time, SAC (obtaining
a mean running time of 5.82 x 10* s) demonstrates a significant gain over PPO/TD3
(8.44 x 10*/7.58 x 10%), a 1.45/1.30 x speedup. All algorithms demonstrate little volatility
in total training time across all instances with every SAC/TD3 instance achieving lower
times than TD3/PPO. We also record the time required to discover the best model (higher al-
phabars), given that these are the models exploited for our latter experiments. For this, SAC
(5.06 x 10* s) again outperforms PPO/TD3 (6.50 x 10*/5.88 x 10%), a 1.28/1.16 x speedup.
However, there is much greater volatility in these values per algorithm than for total
training time. For SAC, in the worst case (seed/time = 107/5.73 x 10%) is considerably
slower than the best cases for PPO(103/4.20 x 10%)/TD3(97/3.96 x 10%). Still, the mean
running time of 5.82 x 10* s obtained by SAC is a significant improvement over the training
time of 9.38 x 10* s for the SAC model in SWiMMj  (albeit for double the number of total
timesteps, 2 x 10°).

SAC (5.82 x 10* s) demonstrates a 1.45/1.30x training time speedup over PPO/TD3
(also a significant improvement over SACswivmvio (9-38 X 10% s)). Best model discov-
ery exhibits a higher variance, though SAC still achieves a 1.28/1.16x speedup against
PPO/TD3.
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Figure 15. Mean total training time for each of SAC/PPO/TD3. The best model timestamps reached
are visualised with lower alpha values.

4.4.4. Model Behaviour Metrics

Reward values do not accurately estimate objectives. Learned target policy is often
judged with the naked eye, which is also prone to bias. We have no grounded quantifiable
means for model-to-model analysis to compare the learned target policies.

Our custom behaviour error metrics (Table 12, one per our initial objectives
(Section 1.2)) directly correlate with intended agent behaviour, allowing for quantitative
comparison between the best SAC model discovered in our previous pipeline, SWiMM] .
First, D/ A provide a notion of the rover’s control accuracy, stating the mean distance/angle
away from their optimum. Second, the more serious of these errors are ‘safety conditions’;
errors either significantly harming the BLUEROV /target, i.e., a collision between rover and
target (C’), or rendering the rover in a comprising state that no longer guarantees reliable
autonomous control (such as exceeding the maximum distance threshold D', or losing
sight of the target entirely .A’). The remaining metrics Sp and S 4 are concerned with the
stability of surge and yaw thrust, with high values indicating high amounts of jitter.

Table 12. Metric definitions for final model analysis. All metrics are normalised against their largest
respective error.

Objective (Section 1.2) Symbol Safety Condition Formula (Normalised)
Objective 2 D X Mean d error
Objective 1 A X Mean 6 error
Objective 2 24 v Distance threshold exceeded (max 1 per episode)
Objective 1 A v Target visibility lost (max 1 per episode)
Objective 3 c’ v Total number of collisions (max 1 per episode)
Objective 4 Sp X Mean distance smoothness error
Objective 4 S4 X Mean yaw smoothness error

D/ A are normalised between a/max_d. D'/ A’/C" are normalised against the to-
tal number of evaluations episodes, 100. Sp/S 4 are detailed in Section ‘Smoothness
Error Implementation’.
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4.4.5. Inference

The purpose of the following experiments is two-fold. Firstly, we provide a direct quan-
titative benchmark of our objectives (Section 1.2). Second, rewards validate the correctness
of our reward function. We also consider SACswinmvi.0- We exploit the same callbacks and
setup as our evaluation experiments, with an increased number of episodes to 20 for a fur-
ther 5 seeds, s € {113,127,131,137,139 }. We also provide videos for each: SACswinmmv1.0
(https:/ /youtu.be/Ere3rlZWChw, accessed on 21 March 2025)/SACswivmv2.0 (https://
youtu.be/T3BEWD9sNQ_o, accessed on 21 March 2025)/PPO (https://youtu.be/Znu-
BpzF9l8, accessed on 21 March 2025)/TD3 (https:/ /youtu.be/OL-aF9csEPY, accessed on
21 March 2025). Results are displayed in Figure 16.

1x107=

7.5x107" =

5x107"' -

Value (Normalised)

2.5x107" =

0x10%"=

1x10* 0x10% 1x107 2x107
Mean Episodic Reward

Metric A D A D' c Sa Sp
Algorithm B SACswinwvio @ SACswawvzo A PPO & TD3

Figure 16. Inference results per algorithm. Twenty episodes are run per seed. Some points may
overlap (e.g., D'/ A’ /C" = 0) for SACswinmv2.0)-

Episodic reward has a direct negative correlation with metric errors. PPO achieves
the lowest rewards of —9.72 x 102 and suffers the highest errors for almost all metrics;
S 4 = 6.04 x 1072 indicates smooth (but erroneous) behaviour. Distance smoothness errors
Sp = 4.55 x 1071, indicate high surge volatility. Across 100% of episodes, the sight of the
target is lost, and the maximum distance threshold is exceeded, and in 50% of episodes, a
collision occurs. A = 1.0, indicates the highest error, indicating the target is rarely within
view. D = 6.57 x 107! as the rover fails to maintain the optimum distance.

SACswimmv1.0 achieves much higher rewards (2.04 x 10%). Against the former, all
(aside S 4) errors were reduced. Significantly, A’ and C’ were never violated and D’ was
violated only once. .A was more than halved to 3.57 x 10~! while distance errors were also
reduced to D = 4.49 x 10~!. Smooth surge control was achieved, Sp = 8.77 x 1072

TD3 makes slight reward gains to 2.10 x 103, corresponding with significant reductions
in D/ A; the latter being drastically reduced by almost an order of magnitude to 4.74 x 1072,
A sharp increase in S 4 = 4.53 X 1071/Sp = 3.81 x 107!, indicates the rover cannot achieve
smooth control. D’ rose to 7 x 1072, aligning with more abrupt control.

SACswimmvz.0 achieved the highest reward of 2.40 x 103. D/ A were further reduced,
with A = 2.67 x 102, an azimuth error of just over one degree and D = 2.35 x 1071, a
value less than one metre. D’ was reduced to 0. Notably, S 4 = 1.86 x 10~ ! lowers into a
much more stable range and Sp = 8.08 x 1072, the lowest for the metric. Table 13 defines
the configuration exploited during inference of the each DRL algorithms.
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Table 13. DRL Inference Configurations.

Parameter Definition Value

cmvae_inference_config, see Table 10

cmvae_global_config, see Table 7

env_config
obs Observation type ‘cmvae’
n_envs Number of environments to run in parallel 1
img_res Resolution of incoming images [64, 64, 3]
debug_logs Should network logs be generated FALSE
seed Seed exploited for stochastic operations {113,127,131,137,139 }
algorithm DRL algorithm to train with {’sac’, "ppo’,‘td3’ }
render Mode of rendering the Unity environment ‘human’
pre_trained_model_path Model to either: train on-top of or to use for inference Pa’ch(./\/lsD‘RSLe {97,101,103,107,109 })
env_wrappet, see Table 10
callbacks
gym_underwater.callbacks.SwimEvalCallback
eval_inference_freq How many episodes/steps to run the evaluation for [20, ‘episode’]
eval_freq Training episodes required per evaluation sequence 10
min_train_steps Minimum number of training steps required to begin evaluation 5% 10°
deterministic Should the actor use deterministic or stochastic actions TRUE
verbose Output information and metrics 1

gym_underwater.callbacks.SwimCallback

4.4.6. Model Robusteness to Noise

The previous experiments demonstrated that SAC can learn a successful behaviour
policy satisfying our objective desiderata. While the previous environment operated under
clear conditions, more realistic environments are susceptible to noise, such as water clarity,
optic distortion, and blurred focus. Then, to address the robustness of the proposed
methodology under noisy conditions, we perform 2 separate experiments: one for the
image pre-processing and CMVAE, and the other concerning DRL working on noisy data.

To simulate such noise, we extend our base pipeline to use Unity’s ‘Post-Processing
Stack v2’. Where applicable, we also simulate the real-world specification of the Sony
IMX322/323 image sensor. The following post-processing effects are included into
our pipeline:

Enhanced Fog: Unity fog overlays colour onto pixels concerning their distance from the
camera. Our enhanced fog exploits the squared exponential distance. This enables
a much greater emphasis on a murky underwater effect in contrast with SWiMMj o,
which used exponential with lesser weight only.

Grain: Grain exploits a gradient coherent-noise function to simulate irregularities in film
tape. In our simulation, we exploit grain to emulate stochastic underwater particles
particularly those causing reflection.

Depth of Field: This simulates the focusing properties of a camera lens, enabling physically
accurate Bokeh depth of field effects.
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Lens Distortion: Warps pixel data to make objects bend inward (pincushion distortion)
or outward (barrel distortion). We provide barrel distortion to emulate underwater
fisheye lens.

Motion Blur: When objects move faster than a camera’s exposure time, they are blurred.
We provide a camera-based motion blur.

While for small resolution rendering, such as the 64 x 64 image renders we provide,
such noise may be difficult to visualise with the naked eye (Figure 17), but could signifi-
cantly affect the optimisation process. Under certain conditions, the distortion becomes

much more apparent as showcased by Figure 18.

Figure 17. A 64 x 64 random image sample taken from both a noiseless (left) and noise world (right).

Figure 18. Showcasing the ability of p;,¢ above (and g;;,¢, below) to reconstruct originally fed images

(on the left) from the latent space: the results on the right remark that reconstructed images are fairly
similar after either noise and noiseless conditions.

To aid sim-to-real generalisation, the study from [31] introduced distance noise in
simulation, proven to emulate such effects in reality successfully. Additionally, real image
encodings were demonstrated to have significant similarity with a simulation representa-
tion when reconstructed through the image decoder, thus affirming the CMVAE’s ability to
generalise real-world data.

We perform a similar experiment, investigating if our previously trained encoder
CMVAEgg (untrained on noise) can retain the critical information (target position and
rotation) without being influenced by noise. First, exploiting the data generation pipeline
from Section 4.1, we generate 1 x 10° images for the noiseless environment using stochastic
environment randomisation. The same is repeated for the noisy environment containing
the effects previously described. Every image is rendered under identical environment
conditions by exploiting the same seed, 149. Thus, we generate image pairs from the
noiseless and noisy environments. Then, a pass-through of each pair through g;,,, generates
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the compressed vectors ziseless and Zpoisy- Next, each z;pjseress / Zuoisy 1S passed through the
image decoder pjy,¢, generating the image reconstructions across both vectors. Finally, we
compare these reconstructed images to evaluate the extent of influence noise has on the
CMVAE. Similarly to our image generation step, we generate 1 x 103 noisy images through
stochastic simulation as previously discussed (Section 4.1). Then, we compute error metrics
across all reconstruction pairs, including both image reconstruction and state prediction.
Table 14 demonstrates that the image reconstructions suffer a 9.91 x 10~! MAE. While
significantly higher than errors previously obtained for noiseless environments (Figure 8),
the majority of critical information is still retained. This is visualised by Figure 18, showing
an example reconstruction from a noiseless/noisy image pair included in the prior dataset.

Table 14. Error statistics from 1 x 103 image and state reconstructions from noiseless and
noisy environments.

Feature MAE Standard Error Max Error
Image 9.91 x 1071 1.60 x 1071 1.19 x 102
r 219 x 107! 4.80 x 1072 5.23 x 100
1.04 x 10! 259 x 107! 4.08 x 10!

¢ 7.23 x 10 1.92 x 100 2.86 x 102

Finally, with the prior experiments showcase CMVAE33’s generalisation capabilities,
we perform a new DRL training run using SACswimmy2.0, with alternating noiseless/noisy
episodes (SACE&?{AMVZ-O), using the same seed generating SACsyivmv2.0 (97). We investi-
gate whether SACS&?{AMVM can learn a suitable behaviour policy with the added complex-
ity of the target objective. For the following experiments, ‘Noiseless” denotes environments
containing no noise at all (the prior results), while ‘Noisy’ denotes training run with
alteration noisy episodes.

Figure 19 demonstrates that the noisy environment negatively affects the rover by
decreasing the maximum reward achievable. In the best case, the noisy environment
cannot still obtain a mean episodic reward greater than 7.5 x 10?. While the noisy environ-
ment is susceptible to reward fluctuations, the noiseless environment reaches its plateau
at 7.5 x 10° steps. Still, training reward is better than both PPO and TD3 on noiseless
environments (Figure 13).

2x10"3 -

10)

1.5x10% =

1x10°3 -

5x10"2 -

Mean Episodic Reward (n

0x10%=
0x10% 2.5x10% 5x107 7.5x10% 1 x10%°

Step
Environment SACK 20 SACE w20

Termination Criteria ® Maximum Distance 4  Target Collision ~®  Target Out Of View +  Threshold Reached

Figure 19. Mean episodic reward using SACswimmy2.0 across noiseless and noisy environments.
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As before, evaluation episodes are injected into training. We investigate how the
inference of the best model compares with the previous. Figure 20 shows that SACIS“?\I,KIMvz_O
obtains the best model (8.07 x 10°) at fewer steps than SACEOIsCless | (8.78 x 10°) at the
cost of lower mean episodic reward (1.99 x 10 versus 2.40 x 10). This performance far
exceeds that of PPO and is comparable with the best TD3, both without noise interference

(Figure 14).
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Figure 20. Mean episodic reward using SACgswinmyv2.0 across noiseless and noisy environments
during inference.

Next, we compare how the new environment impacts training time. Figure 21 remarks
that noise slows down the training, taking 6.49 x 10 s against 5.58 x 10% in a noiseless envi-
ronment. The dissimilarity between noisy and noiseless episodes confuses the optimisation
task, thus resulting in a slower improvement in behaviour policy, therefore requiring more
episode resets and optimisation updates. However, this is still a reasonable outcome, as
it outperforms both training times for PPO and TD3 on noiseless environments. The best
models are found at similar timestamps (4.93 x 10% versus 4.78 x 10%).

610 =

410" -

Time (s)

2x10%* =
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noiscless “noisy
SACSWlMM\'Z.O SAC SWiMMv2.0

Environment

Time Type ‘ Total Train Time . Best Model Found

Figure 21. Mean episodic reward using SACswimmy2.0 across noiseless and noisy environments.

Finally, we perform our final model metric experiments from Section 4.4.4 to estimate
the model fulfilment of our training objectives (Figure 22). Both D and A achieve higher
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errors for SACg\?\i/;}\]/[Mvz.o (3.22 x 107! and 6.49 x 102, respectively). SACg\?\ifz}\l/{Mvz.o achieves
lower azimuth smoothness errors S 4 = 1.26 X 10~! with comparable distance smoothness
errors Sp = 9.51 x 1072, Notably, SACg2 arun0 manages to avoid triggering any safety
violations, also achieving D’ /A’ /C' = 0 as with SACEQseless | ' A video (https:/ /youtu.
be/OL-aF9csEPY, accessed on 21 March 2025) showcasing SACE&?{AMVZ-O inference on

noiseless and noisy environments is also available.

3x107"-
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Figure 22. Model metric comparison versus inference rewards across SACOCless  — and

noisy _ isel noisy
SACswinmvao- D'/ A'/C" = 0 for both SACSHRT2.0 and SACsyiivya o-

These experiments showcase CMVAE33’s robustness to the environmental noise of
interest while maintaining meaningful encodings. By this, SAC has also learned an aptly
successful behaviour policy with a comparable training time to noiseless environments.
Most importantly, the lack of violations of safety conditions validates the model’s robustness
to dynamically changing environments. An additional experiment also tested the ability
of the DRL algorithm to generalise under conditions not witnessed during training time.
These are provided in our discussion section, Section 5.4.1).

5. Discussion

To conclude, SACswimmy2.0 is the superior model concerning our metrics. No safety
conditions were breached, avoiding any ‘dangerous’ behaviour and all other errors were
minimal. SACswimmv2.0, Versus SACswinvmvi o, displays a significant reduction in .4 of over
1 magnitude and a significant improvement in D. Interestingly, TD3 is the only algorithm
that displayed the ability to recover from a compromising state; a state which differs greatly
from those exhibited during training. This demonstrates a successful DRL generalisation
that can still provide meaningful behaviour. TD3, while displaying high accuracy, displays
volatile control. SACswimmyv2.0 combines high accuracy with smooth control, capable of
good behaviour while minimising action jitter. A clear negative correlation couples high
reward with low metric errors, thus verifying a well-defined reward function.

5.1. CMVAE/DRL Training Decoupling

Differently from related work [11], which conjoin the training of a feature extractor
and a DRL network, we propose their decoupling. Firstly, this streamlines the DRL training
(no longer requiring a feature extractor) and second, enables the performance monitoring
of each training phase in isolation. Our results demonstrate that such a decoupling allows
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for an optimised CMVAE training process unhindered by running concurrently with a
game engine.

5.2. Headless Mode Optimisations

Unity has the added benefit of being able to be run in batch mode. In this configuration,
no graphics are rendered on the running system, but game logic is executed nonetheless.
The removal of graphical rendering enables a much higher update rate. Normally, such
a setting can be enabled when running an application as, for example, a headless server.
However, we investigate the possibility of exploiting such a mode to provide further
speed-up to training.

However, given that our application relies heavily on camera rendering, running in
a headless mode threatens the reliance on graphical outputs. This was evidenced by our
preliminary experiments, which achieved a 30-40% speedup from an identical run with
graphical rendering, where the training process could not be optimised.

5.3. Seeding and Reproducibility

For our model inference (Section 4.4.5) experiments, 2 seeds are used, as Stable Base-
lines exploits the original model seed also to initialise the random number generators
for PyTorch and Gymnasium operations. To provide a more robust exploration of the
search/state spaces, a second seed initialises all other random number generators (also
exploited in Unity). For example, a Stable Baselines model generated using seed 1 will, on
loading warm-up, also initialise PyTorch/Gymnasium random number generator with 1,
but the rest of SWiMM; (’s pipeline can also exploit another. For these experiments, the
seeds displayed indicate the latter.

5.4. Limitations
5.4.1. DRL Robustness

Given that a sim-to-real pipeline’s ability to generalise in reality is critical for the
success of a learned target policy, we aim to investigate further SWiMM, (’s ability to adapt
in unforeseen circumstances without retraining of both the CMVAE pre-processing pipeline
and the latter DRL. Our previous generalisation experiment (Section 4.4.6) demonstrated
CMVAE’s [31] robustness to our ambiental noise of interest, as this provided accurate image
reconstruction and could be used to re-train a new DRL network.

First, we perform inference directly on SACEQSeless | in a noisy environment. The re-
sulting behaviour shows exceptional behaviour (comparable with Section 4.4.5) in noiseless
environments but poor behaviour otherwise, frequently violating safety conditions and
achieving low reward values. Our current pipeline fails to generate a SAC model robust to
unforeseen noisy environments.

This result was surprising, given that our prior experiments proved the CMVAE
architecture was robust to noise, whereby the image reconstructions appear to ‘denoise’
the noisy images, resulting in highly similar outputs against a noiseless environment. This
result motivated the investigation of the output z from CMVAE33 under such conditions,
given that the compressed latent space is the solitary feature provided to the DRL network.

For the 1 x 10% samples exploited in Section 4.4.6, we also retain the encoded latent
vectors z for both noiseless and noisy compressions, z;jseless Znoisy € R1000x10 " Then, for
each feature z; € z, we calculate the MAE, SE and ME across also samples.

Table 15 displays our findings. The largest errors zg, z1, z» indicate that the cross-modal
features suffer the worst from noise. While these values appear small, each feature in z
is normalised z € [—1, 1], thus even small variations per feature result in a significant
change in state. Thus, even minor discrepancies between z;pse1ess and zyisy yield extremely
different input feature vectors for the DRL algorithm. Then, for noisy episodes, z;sy
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represents an unexplored state space the optimisation objective has not witnessed, thus
explaining the poor behaviour policy.

Table 15. Similarity errors for each feature of z across 1 x 10° samples taken from noiseless and
noisy environments.

zi €z MAE SE ME
0 7.75 x 1073 1.59 x 107* 2.04 x 1072
1 232 %1073 6.09 x 107° 9.87 x 1073
2 8.34 x 1073 225 % 10~* 410 x 1072
3 1.02 x 1073 238 x107° 470 x 1073
4 1.11 x 1073 2.77 x 1073 531 x 1073
5 9.00 x 10~* 215 %1072 3.70 x 1073
6 1.28 x 1073 321 x107° 853 x 1073
7 8.21 x 1074 210 x 1072 3.83 x 1073
8 1.24 x 1073 258 x 107° 493 x 1073
9 1.53 x 1073 353 x 1072 6.90 x 1073

5.4.2. Noise Type Volatility

During the investigation of noise inclusion in the simulated world, we found great DRL
performance variation depending on the types of the former. Concretely, both the noiseless
and noisy worlds contain fog, with the latter under a different and much more exaggerated
function. Previously, the simulated environment existed as an infinitely spanning space,
whereby the majority of the image renders concerns either the underside of the water’s
surface plane or the skybox.

One mechanism we exploited to exaggerate the fog was including quad surfaces
attached to the camera rendered into the far plane. These quads, although untextured,
provide a mesh for post-processing fog effects to be rendered into, thus enabling a much
stronger influence on rendered pixels.

Figure 23 displays an example image render from an environment using the former
effect in isolation. We found that even a SAC algorithm failed to achieve any reasonable op-
timisation when using the former. To determine the causality, we generated 1 x 10° images
(seed = 151) using only fog quad effects. Then, we investigated the image reconstructions
from CMVAE33 from the newly generated dataset.

Figure 24 shows 8 image renders and their reconstructed counterparts. The recon-
structed images yield great dissimilarities with the original renders, thus indicating that
the CMVAE is unable to generalise this environment. In such an environment, while the
shape and size of the target are maintained, the colour is significantly affected. Then, given
that almost all pixels in the image renders are more heavily influenced by this effect than
others. The CMVAE is unable to extract any meaningful features at all, thus providing a
meaningless encoding as input to the DRL optimisation objective.
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Figure 23. An image render taken from an environment using fog and fog quad renders only.

Figure 24. 8 image renders are taken from training episodes in a simulation using distance quad
renders. The resulting reconstructions from CMVAE33 are shown in the right column.

5.5. Additional Sensors

Although image data provides a rich format for which a successful behaviour policy
can be learned, the inclusion of additional sensors, including sonar, could enhance the state
space and benefit the optimisation objective. This is particularly true when some sensors
become unreliable, such as the target escaping the camera’s field of view.

However, while such sensors may also be emulated in simulation (including
sonar [13]), many are a disturbance to wildlife, especially the former, given that many
species of cetacean rely on sonar as their primary communication mechanism. Thus,
we aim to investigate a lightweight approach that has the added benefit of minimising
environmental disturbance.
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6. Conclusions and Future Work

SWiMM; o couples a commercial game engine with DRL to optimise control policy
by emulating joystick commands to BLUEROV. Our trained CMVAE can successfully
reconstruct images and achieve orders of magnitudes of dimensionality reduction, heavily
optimising DRL training. Our experiments demonstrate that SAC achieves exceptional
model behaviour concerning our newly defined custom metrics, able to consistently and
accurately maintain the target within a strict azimuth range while allowing suitable freedom
of movement. We also couple strict control optimisation while minimising jitter, a criterion
not previously considered. By transferring our learned agents onto the physical device(s);
we are confident that the trained networks can generalise sufficiently for sim-to-real transfer,
enabling active target tracking of marine megafauna.

The next step for our project is the transfer of the best DRL models to BLUEROV’s
onboard hardware. Firstly, has our CMVAE achieved sufficient generalisation such that
it can interpret the new images obtained from the real environment and encode them in
a meaningful way? Then, can the DRL network generalise these new encodings? Last,
can these action commands provide behaviour similar to simulation? A pass-through of
the encoder/DRL network(s) is expected to be demanding on the more limited hardware.
However, model post-processing has proven drastically to reduce the sizes of such networks
while still maintaining their accuracy [43].

The existing environment consists of a single target object. Given that cetaceans often
exist in pods (groups of individuals), we shall investigate how to track single/multiple
targets containing any number of distractor objects in addition to the noise already experi-
mented with. This would likely require modifications to the current feature space and thus
extending the CMVAE.

Previous literature [38,44] exploits frame stacking for velocity inference in real-time
simulations. Though our preliminary experiments found this detrimental to SAC behaviour,
we shall investigate any possible optimisations and fine-tuning.

We will extend autonomous control to three dimensions to further facilitate curriculum
learning, where this is constrained by our attempt to achieve realism to emulate impulses
replacing original joystick inputs directly. Instead, we can actuate thrusters directly at
the cost of a more complex action space search. Yet, the former can still be modelled in a
commercial game engine.

Our simulation defaults the rover’s diving mode to modeg,,;, (Section “Action Space’).
Further motivated by the desire for 3-dimensional control, being able to toggle such a mode
via the behaviour policy could further enhance the control response. For the former, we aim
to provide an additional control command m to toggle modegeps,- Thus, supporting both
3-dimension action space with diving modes extends the action space to { x,y,z,y/,m },
with a behaviour policy optimised for x,y,y/, m.

We previously (Section 4.4.6) demonstrated the ability of the CMVAE architecture
from [31] to generalise the environment and be robust to noise. Also, the limitations of
the current pipeline were identified when (1) performing inference on a noisy world not
previously witnessed by a DRL algorithm (Section 5.4.1) and (2) volatility between visual
effects and CMVAE encodings. To address both of these generalisation objectives, an extra
preprocessing step, including both object detection and denoising algorithms prior to image
encoding, would strengthen the pipeline’s ability to deal with noise including distractor
objects and visual effects.

Finally, due to time, we could not thoroughly investigate hyperparameter tuning.
One notable result from our experiments is the extremely poor behaviour of PPO. While
a single-layered DNN may not provide the correct approximation, closing experiments
proved that even an identical network to SAC/TD3 did not aid target policy optimisation.
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Still, PPO is the industry-standard DRL algorithm. A more thorough hyperparameter
search may discover a greater array of behaviours.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ai6040071/s1. , Our supplementary works detail the prelimi-
nary experiments for our CMVAE, inspiring the training environment demonstrated in this paper.
Additionally, all hyperamaterers are provided for the main algorithms exploited in our experiments.
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Abbreviations

The following abbreviations are used in this manuscript:

AUV autonomous underwater vehicle
BLUEROV  BlueROV2

CMVAE cross-modal variational autoencoder
CNN convolutional neural network

DNN deep neural network

DRL deep reinforcement learning

FPS frames per second

L2D learning to drive

MAE mean absolute error

ME max error

ML machine learning

PPO proximal policy optimisation

RL reinforcement learning

ROV remote-operated vehicle

RTF real-time factor

SAC soft actor critic

SE standard error

SWIM SWiMM DEEPeR

TD3 twin delayed deep deterministic policy gradients
uuv unmanned underwater vehicle
UVMS underwater vehicle manipulator system
VAE variational autoencoder

VARG video action recongition networks
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Nomenclature

Notation Description Unit

SWiMMS, SWIM v2.0

SWiMM; g SWIM v1.0

z latent space vector -

s state

r reward R

F reward function

s target policy

d distance R>p

T transform T

Jimg image encoder

Pimg image decoder

s state decoder

0 azimuth R

P target rotation R

0 observation -

a action -

T behaviour policy

€ exploration probability R

ActPrev list of the previous 10 actions (40, ..., an1]

W image width N

H image height N

Ny dimension of z N

mode BLUEROV dive mode { modeyan, modegyay, modegepy, }

opt_d optimum distance R>o

max_d maximum distance R>p

pen, distance penalty R>o

pen, azimuth penalty R>o

Campfyy camera horizontal field-of-view R>p

camy, camera sensor width R>o

f focal length R>o

o half the camera horizontal field-of-view R>p

A Unity-based physics

* custom physics

Meed a model saved with a seed, seed, saved at a timestamp ts

IMAGETRAIN cmvae training set {img,...,img, 7,105 }

IMAGEtgst cmvae test set {imgy, ... imgs,q04 }

IMAGEINTERPOLATE ~ image interpolation set {imgy,...,imge }

IMAGEgvILARITY image validation set {imgy, ... imgy 405 }

C number of colour channels N

vl pixel at a width w and height 1 (r,g,b)

w retain the previous w episodes for early stopping N

CMVAES best trained CMVAE

SACswiMMv1.0 previous best SAC model

SACswiMMv2.0 current best SAC model

stats_window_size retain the previous stats_window_size episodes for monitoring N

net_arch network architecture [hly,...,hl,—4] | hl;eN Vie{0,...,n—1}

D mean distance error Rxo

A mean azimuth error R>o

c target collision count R>p

D' distance threshold exceeded count R>o

A’ target visibility count R>o

Sp surge smoothness error R>p

Sa yaw smoothness error R>o

SACgs\i,iSK,[Mvz_o SACswimmy2.0 model trained on a noisy environment

noiseless
SACSWiMMVZ.O

SACswimmy2.0 model trained on a noisy environment
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