sensors

Article

Autonomous Sea Floor Coverage with Constrained Input
Autonomous Underwater Vehicles: Integrated Path Planning

and Control

Athanasios K. Gkesoulis *(J, Panagiotis Georgakis

2D, George C. Karras >**

and Charalampos P. Bechlioulis 1

check for
updates

Academic Editor: Zheng Chen

Received: 2 January 2025
Revised: 3 February 2025
Accepted: 7 February 2025
Published: 9 February 2025

Citation: Gkesoulis, A.K.; Georgakis,
P,; Karras, G.C.; Bechlioulis, C.P.
Autonomous Sea Floor Coverage with
Constrained Input Autonomous
Underwater Vehicles: Integrated Path
Planning and Control. Sensors 2025, 25,
1023. https://doi.org/10.3390/
525041023

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Department of Electrical and Computer Engineering, University of Patras, 26504 Patras, Greece;
gkesoulisth@upatras.gr (A.K.G.); up1067233@ac.upatras.gr (P.G.); chmpechl@upatras.gr (C.P.B.)

2 Athena Research Center, Robotics Institute, 15125 Marousi, Greece

Department of Informatics and Telecommunications, University of Thessaly, 35100 Lamia, Greece
Correspondence: gkarras@uth.gr

Abstract: Autonomous underwater vehicles (AUVs) tasked with seafloor coverage require
a robust integration of path planning and control strategies to operate in adverse real-world
environments including obstacles, disturbances, and physical constraints. In this work, we
present a fully integrated framework that combines an optimal coverage path planning
approach with a robust constrained control algorithm. The path planner leverages a priori
information of the target area to achieve maximal coverage, minimize path turns, and
ensure obstacle avoidance. On the control side, we employ a reference modification tech-
nique that guarantees prescribed waypoint tracking performance under input constraints.
The resulting integrated solution is validated in a high-fidelity simulation environment
employing ROS, Gazebo, and ArduSub Software-in-the-Loop (SITL) on a BlueROV2 plat-
form. The simulation results demonstrate the synergy between path planning and control,
illustrating the framework’s effectiveness and readiness for practical seafloor operations
such as underwater debris detection.

Keywords: coverage path planning; autonomous underwater vehicles; robust control;
input saturation; ROS; Gazebo; BlueROV2; underwater robotics

1. Introduction

Marine pollution, mainly composed of synthetic polymers [1,2], the need to regularly
inspect vital underwater infrastructures, such as pipelines and cables [3], and the explo-
ration of the deep sea, which represents the least explored area of Earth [4], underscore
the importance of accurate seafloor coverage and mapping. Traditional methods reliant
on divers or remotely operated vehicles are costly, time-consuming, and potentially haz-
ardous. In contrast, autonomous underwater vehicles can offer a more efficient and secure
solution [5]. However, the ability to operate independently and continuously in remote
and adverse environments is still an open topic and poses great technical challenges.

1.1. Optimal Coverage Path Planning

To this effort, an issue of central importance is the development of robust path plan-
ning and control strategies that enable AUVs to navigate complex terrains, completely
cover regions of interest avoiding obstacles, and counter disturbances such as undersea
currents. Coverage Path Planning (CPP) is the problem of determining a trajectory that

Sensors 2025, 25,1023

https://doi.org/10.3390/s25041023

https://doi.org/10.3390/s25041023
https://doi.org/10.3390/s25041023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2783-9661
https://orcid.org/0009-0000-2707-3494
https://orcid.org/0000-0002-4045-4715
https://orcid.org/0000-0001-9850-2540
https://doi.org/10.3390/s25041023
https://www.mdpi.com/article/10.3390/s25041023?type=check_update&version=2

Sensors 2025, 25, 1023

2 0f 22

ensures full coverage of a target area while avoiding obstacles. It is a fundamental task
in various undersea and oversea applications such as underwater exploration [6], mo-
saicked imaging of the ocean floor [7], inspection of complex structures [8], autonomous
cleaning [9], agricultural operations [10], and search and rescue missions [11]. The main
requirements for a CPP algorithm are ensuring a complete coverage of the target area,
avoiding overlapping of paths and collision with obstacles, providing as simple as possible
trajectories, and applying optimality criteria when possible [12]. A variety of CPP strategies
have been developed to address the requirements of robotic applications. CPP methods are
categorized into heuristic, complete, offline, and online approaches [13]. Heuristic methods
and complete algorithms differ on whether they are provable or not. Offline approaches
assume prior knowledge of the environment, whereas online methods leverage real-time
sensor data to adjust paths dynamically.

A prevalent approach to CPP is the exact cellular decomposition methodology. It
consists of a method to decompose the target area into cells, a second method used to cover
each cell, and a third one that computes a sequence to visit each cell exactly once. The two
main decomposition strategies are trapezoidal and boustrophedon [12]. The trapezoidal
decomposition is an offline method that decomposes the target area into trapezoidal cells.
The coverage of each trapezoidal cell can be achieved through simple back-and-forth
motions and the complete coverage is ensured by guaranteeing an exhaustive walk through
all cells. However, the path length provided by trapezoidal decomposition becomes longer
with the number of cells, which is the main disadvantage of such methods. In seminal
work [14], boustrophedon decomposition was introduced to overcome this limitation of
the trapezoidal decomposition. The main advantage is that it reduces the number of cells
and therefore the length of the obtained paths. Other approaches include Morse methods,
Grid- and Graph-based coverage, and Reinforcement Learning, and the interested reader is
referred to the survey papers [12,15,16].

Another ubiquitous topic in the CPP literature is ensuring optimality of the constructed
paths. A measure of optimality is the length and /or the completion time of the path and is
possible only for target areas that are a priori fully or partially known [12]. For 2D spaces, a
well-known optimal line-sweep based method was presented in [17]. The central optimality
idea is to minimize the number of turns of the path as each turn is associated with added
energy cost for the robot. This is achieved by choosing an appropriate sweep direction for
each cell that corresponds to the normal of the minimum generalized width direction of the
cell. The algorithm is then completed by utilizing dynamic programming to minimize the
cost of visiting every cell. The idea of optimality through minimizing the number of turns
is further investigated in work [18], where the turns are further categorized and associated
with different costs. In work [19], the authors generalize the idea of [17] to non-convex
polygons and follow a global approach to the minimization. A method for calculating the
minimum generalized width for non-convex cells is developed that is iterated to become
more optimized and parallel line segments are placed in each region. Then, a minimum-
length tour of the segments is computed via posing the problem as a generalized trading
salesman one and using Dubins’ car model as a means to calculate transition costs between
segments. A brief comparison of the line-sweep based CPP methodologies is provided in
Table 1.

Sensors 2025, 25, 1023 30f 22
Table 1. Comparison of related CPP methods.
Decomposition Minimum Minimum Line-Sweep Obstacle Avandance Cell
. Connecting .
Approach Turns Length Connection . Connection
Line-Sweeps
Boustrophedon [14] No No Back and Forth No Cell Adjacency
Sweeps Graph
Line-Sweep-based [17] Yes No Back and Forth No Dynam@
Sweeps Programming
GTSP with
Iterated [19] Yes Yes Dubins’ paths No Redundant
Proposed Yes Yes GTSP with A* Yes Redundant

1.2. Prescribed Performance Control with Input Constraints

Building on the foundations of CPP, the integration of robust control strategies is
pivotal to addressing the challenges of autonomous coverage in real-world robotic applica-
tions. Autonomous robots often operate in highly dynamic and uncertain environments,
and robust control algorithms can ensure the system’s ability to adhere to the planned
paths. In practice, most autonomous systems are governed by nonlinear dynamics, and the
magnitude of inputs is limited either by physical hardware constraints or operational safety
considerations. In addition, it is desirable to control the states of these nonlinear systems so
that they track the generated paths while adhering to performance constraints, such as rate
of convergence, maximum overshoot, and steady-state error. The development of control
schemes, capable of managing system uncertainties, nonlinearities, and prescribed perfor-
mance has been an area of research for several decades, and approaches such as prescribed
performance control (PPC) and funnel control (FC) are well explored in the literature [20,21].
The goal of the aforementioned methodologies is to design control laws that guarantee
that the tracking error of the system’s output remains within predefined performance
bounds. To achieve this, the control effort is designed to increase as the error approaches
the performance boundary, which can lead to practically infeasible control magnitudes.

Recent advancements in PPC and FC have proposed robust control schemes to ensure
prescribed performance even under input constraints. In work [22], FC under input satu-
ration is studied, and a lower bound for the input saturation level is extracted to ensure
adherence to performance constraints. Nonlinear systems of arbitrary relative degree are
studied in work [23], where a bang-bang FC methodology is proposed. Neural network
approximation is utilized in [24,25] for nonlinear systems, which guarantees prescribed
performance under input saturation. Saturation-tolerant PPC is studied in works [26,27] uti-
lizing fuzzy-logic estimators for systems with unknown control directions and time-delay
systems, respectively. Approximation-free schemes are utilized in [28-34]. Tracking with
adaptive performance is achieved in [28,30,31], where the prescribed performance specifica-
tions adapt to the tracking error in order to accommodate the input constraints. While this
ensures the stability of the closed-loop system under input saturation, the prescribed perfor-
mance guarantees may be relaxed. As a result, undesirable performance can occur in CPP
scenarios, such as excessive overshoot, which in turn translates to covering the same area
twice. Switching the controller that maintains stability despite input saturation is studied
in [33]. Properly adapting the tracking signal to make prescribed performance achievable
under control saturation is studied in [32,34], where the performance specifications are
correlated to the saturation level. Specifically, in [32], the desired tracking trajectory is
modified to remain feasible under input saturation. While this modification achieves the
goal of stability, the system’s output is then guaranteed only to track the modified trajectory

Sensors 2025, 25, 1023

40f22

rather than the originally desired one, which might prove problematic in CPP scenarios.
This issue is alleviated in [34], where only the velocity trajectory is modified and the actual
position tracking error is guaranteed to be prescribed, provided that proper conditions for
the input saturation level are met. A concise comparison of the PPC methodologies under
input saturation that are of low complexity (approximation-free) is provided in Table 2.
Although simulation experiments are conducted in the aforementioned works, they are
often limited to numerical environments. To fully evaluate and refine a control strategy, it
is essential to employ high-fidelity simulations that accurately capture the complexities
and uncertainties of real-world conditions and to test the interplay between planning and
control under realistic scenarios, ensuring robustness and reliability before deployment in
physical systems.

Table 2. Comparison of related low-complexity PPC methodologies that consider input constraints.

Approach

Prescribed Performance

Reference Methodology Under Saturation

Virtual Performance

PPC augmented with virtual

Constraint Control [29] performance constraints Relaxed specifications
Adaptlye PPC that modifies PPC with adaptive -
prescribed performance to [30] . Relaxed specifications
. performance constraints
account for saturation
Adaptive Performance Control [31] PPC with adaptlvg Relaxed specifications
performance constraints
Reference Modification [32] PPC with m9d1f1ed Mod1f1§d tracking
reference trajectory trajectory
o Switching controller when the e
Switching Control Approach [33] input becomes saturated Relaxed specifications
Virtual Reference Modification [34] PPC with modlﬁfsd velocity Prescribed output
reference trajectory performance

1.3. Limitations of Existing Methodologies

Implementing a robust framework that integrates path planning and control for AUVs
is vital to overcoming challenges in real-world applications like seafloor mapping and
underwater debris detection. However, notable limitations remain in the integration of
coverage path planning and prescribed performance control approaches.

Regarding coverage path planning, methods that focus on minimizing the number of
turns, motivated by the additional energy expenditure required for each turn, often fail
to incorporate workspace boundaries and obstacles when connecting the generated back
and forth paths. In [19], for instance, the authors consider connecting the sweeping lines
using Dubins’ paths that do not explicitly factor in the boundaries of the target area or the
presence of obstacles. Consequently, even though such approaches minimize the number
of turns in theory, they can yield infeasible paths in cluttered or irregular regions.

On the control side, PPC and FC strategies have demonstrated considerable promise
for managing the nonlinear dynamics of AUVs under input saturation constraints. How-
ever, most of these approaches still require thorough validation in environments that
accurately capture the complexities of real-world underwater operations. Although the
authors of [34] provide a rigorous mathematical proof and numerical simulations for Euler-
Lagrange systems with input saturation, its effectiveness remains untested in high-fidelity
settings that incorporate realistic hydrodynamic effects. Additionally, to ensure efficient
coverage, minimal overshoot is essential so that planned paths are not traversed multiple

Sensors 2025, 25, 1023

50f22

times. Achieving this level of precision typically demands careful parameter tuning and
iterative testing, especially when time and energy use are critical concerns in AUV missions.

The challenge of unifying coverage path planning and prescribed performance control
becomes apparent when considering external disturbances, sensor uncertainties, actua-
tor limitations, and the need for consistent performance. In practice, the controller must
accurately track the planned paths without sacrificing convergence speed or overshoot con-
straints, while the planning algorithm must produce trajectories that remain feasible under
the vehicle’s hardware and dynamic restrictions. Balancing these intertwined requirements
calls for a design process where algorithms for path planning and control are developed and
thoroughly tested in environments that closely approximate real underwater conditions. By
addressing the existing gaps, such as obstacle-aware path connectivity, robust performance
under saturation, and precise calibration to limit redundant coverage and mission time,
future research can move toward a more comprehensive and validated methodology for
autonomous coverage tasks in challenging underwater scenarios.

1.4. Contribution

Motivated by the above discussion, in this work, we present a fully integrated frame-
work for path planning and control, validated in a high-fidelity simulation environment
using ArduSub SITL, ROS, and Gazebo. For path planning, we build on the approach
in [19], introducing a key implementation difference: the costs for traveling between line
segments are calculated using an A* algorithm with obstacle avoidance, which considers
the actual path length to compute weights for the generalized traveling salesman prob-
lem (GTSP). This enhancement provides more realistic path connectivity while ensuring
obstacle avoidance. On the control side, we adopt the method from [34], designed for
Euler-Lagrange systems, which ensures input saturation constraints are respected without
modifying the output error, as in [32], which renders it appropriate for safety and precision
critical applications. This choice allows for accurate and reliable tracking of the generated
paths. The framework is implemented on a simulated BlueROV2 platform, where the
environment closely mirrors real-world conditions.

1.5. Organization

The remainder of this paper is organized as follows: Section 2 outlines the problem
setting. Section 3 describes the proposed methodology, detailing the path planning algo-
rithm, the reference modification system, and the control design. Section 4 presents the
simulation setup and results, demonstrating the effectiveness of the proposed approach in a
high-fidelity underwater environment. Finally, Sections 5 and 6 provide a discussion of the
findings, highlight the contributions of this work, and outline directions for future research.

2. Problem Formulation

The problem considered in this work is the complete and robust coverage of a prede-
fined underwater 2D region using an autonomous underwater vehicle. The workspace,
denoted as W C R3, is assumed to be a connected, static region with obstacles. The goal is
to generate a complete coverage path with minimal turns that avoids obstacles and imple-
ments a robust control design that respects the AUV’s dynamic and physical constraints to
follow the aforementioned path.

The CPP problem involves dividing JV into non-overlapping subregions, generating
collision-free paths for the AUV within each subregion, and determining a sequence for
visiting these paths. To create these paths, we implement the methodology of [19], and to
connect them we incorporate a generalized traveling salesman Problem framework, where
the cost of traveling between paths is dynamically calculated using an A* algorithm to

Sensors 2025, 25,1023

6 of 22

account for obstacles and the workspace boundary. This ensures a realistic estimation of
the transition costs, essential for optimizing the path length and overall efficiency.

In addition to path planning, the AUV has to track the generated paths with high
precision, i.e., minimal overshoot and settling time to avoid overlapping of paths. This
requires addressing the nonlinear and potentially partially unmodeled dynamics of the
AUV, input saturation, and external disturbances such as undersea currents. A robust
prescribed performance control strategy is necessary to ensure the AUV adheres to the
planned paths while maintaining stability and performance specifications. To this end, we
implement a control scheme designed for Euler-Lagrange systems [34], capable of handling
input constraints and adapt it to the problem at hand to ensure accurate waypoint tracking.

The solution is evaluated using a high-fidelity simulation environment that incorpo-
rates realistic robot modeling, underwater dynamic environment, hydrodynamic effects
and disturbances, providing a comprehensive validation of the proposed framework.

3. Materials and Methods

In this section, we provide an overview of the robot dynamics and the methods we
implement as well as the standing assumptions.

3.1. Underwater Vehicle Kinematics and Dynamics

The underwater robot we employ in our coverage scheme is the BlueROV2, a commer-
cial robot created by Blue Robotics (https:/ /bluerobotics.com/). We define two frames of
reference: a body-fixed frame Op attached to the vehicle’s center of gravity and the inertial
frame Oz, as depicted in Figure 1. We denote by g = [qlT q7] T € RO the pose vector of
the vehicle with respect to the body frame B, where g1 = [x y z] represents the position
and g2 = [¢ 0 " represents the orientation of the vehicle. Furthermore, we denote by
v = [vf v]] T ¢ RS the velocity vector with respect to the fixed-body frame B, where

v1 = [u v w]T represents the linear and v, = [p g r]” the angular velocity of the vehicle.

Figure 1. The inertial and body-fixed frames.

https://bluerobotics.com/

Sensors 2025, 25, 1023 7 of 22

The kinematics and dynamics of the vehicle are given by the following equations:

g = v+dtq) 1)
M(q)0+ C(q,v)v +da(t,q,v) = sat(T), ()

where M(q) € R®*® represents the inertia matrix, C(g,v) € R is the centrifugal and
Coriolis forces vector and vectors d; € R®, i = 1,2 are included to represent bounded
external disturbances, unmodeled dynamics, and include gravitational force. Vector
sat(t) = [sat(Ty)-- ~sat(Tm)]T € R® is the saturated control input vector of the vehi-
cle, where T = [17 - - - 76]T € RO is the total propulsion force/torque generated by the
thrusters. We make the following assumptions regarding the model:

Assumption 1. All matrices and vectors are assumed to be continuous functions with respect to
time and locally Lipschitz with respect to the rest of their arquments.

Assumption 2. Functions d;, i = 1,2 are uniformly bounded with respect to time, thus incorpo-
rating the effect of time-dependent bounded disturbances.

Assumption 3. The inertia matrix M(q) is diagonal and uniformly positive definite for all ¢ € R™.

The continuous saturation function sat(-) : R — R is defined as

sat(t) = T, if || < Timax .
1 T, max * Sgn(Ti), otherwise,

where Tj max > 01is the saturation level for each input component 7;, i = 1,...,6, and sgn(-)
is the signum function.

Remark 1. The vehicle used in this article is using the “No Heavy Configuration Add-on” thruster
configuration [35], which uses 6 thrusters and has no thruster positioned with a pitch component;
therefore, it has no pitch control. Thus, we consider that t5(t) = 0, ¥Vt > 0.

3.2. Coverage Path Planning

In this subsection, we introduce the relevant workspace definitions and examine the
path planning algorithm. The strategy we follow in the present work is the following:
the target area is initially subdivided into smaller sections (subregions). Each subregion
is then assigned a coverage orientation based on its generalized width, and a set of line
segments aligned with this orientation is generated to ensure complete coverage. Finally, a
combination of a generalized traveling salesman problem and an A* algorithm is employed
to link these line segments into a single continuous path.

In the literature [17,19], minimizing the total number of turns is widely regarded as the
optimality criterion utilized for an efficient coverage solution. Because the number of turns
is directly linked to each subregion’s generalized width (measured in the sweep direction),
our decomposition approach seeks to minimize these widths. Moreover, to enhance overall
optimality, the generalized traveling salesman algorithm employed to connect the line
segments prioritizes minimizing path lengths while avoiding obstacles, further expanding
the optimality and enhancing the applicability of the algorithm.

Remark 2. In work [19], the authors refer to the “generalized width” as “altitude”. However, we
opt to call it “generalized width” to avoid unnecessary confusion between the notion of polygon

Sensors 2025, 25, 1023

8 of 22

altitude and the distance between the robot is operating at and the seafloor, which is often called
altitude in the AUV literature.

3.2.1. Minimum Turn Decomposition

We assume that the robot is seeking to completely cover an underwater region rep-
resented by a polygonal workspace W C R3. More specifically, we study a top-down
cross-section of W, for which we make the following assumptions:

Assumption 4. The CPP algorithm is performed on a top—down cross-section P C R? of W that
corresponds to a fixed distance from the seabed.

Assumption 5. P = {Zy, ..., Zy} is a 2D polygon, defined by an exterior simple polygon Z
that represents the workspace boundary, and interior simple polygons {Z1, ..., Zy} that represent
obstacles in the workspace, as shown in Figure 2.

Z)

Zy

O

Figure 2. Cross-section P of the underwater workspace, comprising an exterior polygonal boundary
Zp and interior polygonal obstacles {Z1, ..., Zy}.

The reason we focus our work on a 2D environment instead of the full 3D workspace
is because many underwater applications, such as surveying, garbage mapping and under-
water cable inspection, are efficiently operating at a specific depth level or with specific
vertical constraints, reducing the CPP requirements to a 2D space.

The complete coverage path of the polygonal workspace P is a so-called polygonal
sweeping path comprising two types of path segments. The first type is a set of parallel
straight line segments R that cover the largest portion of the workspace. The second type is
a set of arbitrarily shaped paths T, called turns, each of which connects two straight line seg-
ments R. An example coverage path is shown in Figure 3, wherein turns T are straight lines.
We assume that the robot has a circular footprint and that two successive parallel segments
R are distanced one footprint diameter from each other to avoid coverage redundancies.

Since performing turn T requires the acceleration and deceleration of the underwater
robot, as noted in the literature [17,19], we posit that an energy-efficient CPP algorithm seeks
to minimize the number of turns | T|. Minimizing the number of turns |T| is equivalent to
minimizing the number of straight paths |R| required for coverage, since every two straight
paths R are connected by at most one turn T as can be seen in Figure 3. Therefore, as the first
step of out CPP methodology, we seek to partition P into polygonal subregions, such that
the number of straight sweeping paths |R| required for complete coverage is minimized.

Sensors 2025, 25, 1023

9 of 22

—_— —_— —_— —_— ——
Avv Y
P— o L — - L1 X

Figure 3. Complete coverage of polygon P with straight polygonal segments R connected by turns T.

For optimizing the workspace decomposition, we follow the methodology introduced
in [19], which we briefly describe. First, a measure of the generalized width of a general non-
convex polygon is defined for a given direction. An example polygon and its corresponding
generalized width at a given direction is shown in Figure 4.

Open Split Open Merge Merge Close

T " x99 ' xy3 | my Ty

Figure 4. Example process of calculating the generalized width of non-convex polygon {Zy, Z, } at
angle 0°. The generalized width is equal to x; 4 2x7 + 3x3 + 2x4 + x5. The algorithm is based on the
“Open”, “Close”, “Split”, and “Merge” events described in [17].

The authors observe that the sweeping direction for which the number of straight path
segments |R| in a polygon is minimized is related to the direction of minimum generalized
width of the polygon. With this in mind, they define a cost function for a given partition of
P as follows:

Z; a*(P;) 4)

where a* is the minimum generalized width of a polygon and P, is a polygonal subregion
of partition D = {Py, Py, ..., Pc}, where U?:l Pi="P.

P is initially decomposed into a set of convex sub-polygons D, following the convex
decomposition algorithm introduced in [36]. Then, each cut formed by the initial partition
D is successively re-optimized, such that the cost (4) of the current partition is less than
that of the previous. This procedure is executed iteratively until it converges to a partition
that minimizes the cost. Finally, by filling each sub-polygon of the optimal decomposition
with its corresponding straight sweep segments R according to the direction of minimum
altitude, we place the minimum number of straight segments required for the complete
coverage of P. Figure 5 shows a demonstration of the minimum turn decomposition
algorithm on a non-convex polygon.

Sensors 2025, 25, 1023 10 of 22

Y-axis
w
|

Y-axis
w
)

Y-axis
w
s

-1 0 1 2 3 4 5 6 7
X-axis

Figure 5. Demonstration of the minimum turns decomposition algorithm acting on a non-convex
polygon. No decomposition |R| = 49 (top), initial convex decomposition |R| = 47 (middle) and
optimal decomposition |R| = 44 (bottom).

Sensors 2025, 25, 1023

11 of 22

3.2.2. Minimum Cost Path

After generating the minimum amount of straight segments R for each polygonal
subregion in P, we have to appropriately connect them with turn segments T in order
to complete the coverage path. Note that each straight segment path Ry € R has two
possible traversal directions, denoted as RL, R,%. We define J (R;f, R?) as the transition
cost from segment Ry, in direction m to segment R; in direction 1, where m,n € {1,2} and
k1€ {1,...,M} withk # [and M = |R|. Here, J (R}, R}) is taken to be the arc length
of the turn segment T(R}", R}'), which connects the end point R} [2] of R} and the start
point R}'[1] of R, as illustrated in Figure 6. Calculating the cost J for each pair R}, R?
enables the construction of a complete graph G = (V, E,w), following [19]. Here, each
vertex v € V represents a straight path direction R} for m € {1,2} and k € {1,... M},
each edge ¢ = (v,z) € E represents a transition between vertices v and z, and weights w
represent the respective transition costs between vertices. Because each edge is a straight
path direction, it holds that | V| = 2|R|. Finally, V is partitioned into clusters of directions
{R},R?} where k = {1,..., M}. The graph with the clusters forms a GTSP instance, whose
solution leads to the complete coverage path.

j(Zlaern) — length(T(ZlaR?))

Figure 6. Calculation of transition cost J (R}, R}') of the turn segment T(R}", R}') from R} to R}'.

To calculate transition costs J (R}, R}') of the GTSP instance, we employ a conven-
tional A* algorithm, which enables robust obstacle avoidance and a fully connected graph.
First, we construct a grid from the geometry of P, as described in Algorithm 1. Then,
we use A* to compute the shortest path between the end point p; = R}'[2] of directional
segment R]" and the start point p; = R}'[1] of R}, where i,j € N = 4|R|, i # j. Then, we
calculate the distance traveled following the path produced, and we assign that distance
as the cost of the transition. As such, in order to complete graph G, we need to compute
the transition cost matrix W. The calculation procedure is described in Algorithm 2. An
example transition cost calculation inside a uniform A* grid is illustrated in Figure 7.

Sensors 2025, 25, 1023

12 of 22

Algorithm 1 A* Grid Construction

Input: P = {Zy,Z;, ..., Zp}, straight segments R, robot footprint diameter d
Zyy <+ Zy buffered inwards by d/2
for each inner polygon Z;,i =1,2,..., M do
Zy; < Z; buffered outwards by d/2
end for
Py < {Zv0, Zp1, - -+ Zom }
Cax + set of points produced by any mesh generation algorithm of choice on P,
for each R, € Rdo
add points Rg[1], Rg[2] to Cax
end for
: Return Grid Cyu,

O X NGy

—_ =
= O

Algorithm 2 GTSP-A* Transition Cost Matrix Calculation

1: Input: Straight segments R, A* grid
2: Add start and end points p of R} in grid and connect with neighbors
3: for each end point p; = R}'[2] € p do

4 foreach start point p; = R}'[1] € p do

5: Generate A* path T;; = T(R}!, R}') between p; and p;

6: Jij < distance traveled from end point p; to start point p; following Tj;
no Wil -

8: end for

9: end for

10: Return Transition Cost Matrix W

= Polygon P
—-—-- Buffer p,
A* Grid Points Ca*
—— A*Turn Segment T
Straight Segments R

101

Figure 7. Calculation of the transition cost between two straight segments R inside a uniform A* grid
with a resolution of 0.5 and robot footprint size of 0.5. The transition cost is equal to the length of the
turn T produced by A* and is calculated to be 9.238.

3.3. Control Design

The controller design involves two modules in the spirit of [34]. First, a reference
modification module is designed that alters the virtual velocity references to render them

Sensors 2025, 25, 1023

13 of 22

feasible under input saturation. Then, a prescribed performance controller is designed
employing the modified velocity reference in the velocity error calculation.

3.3.1. Reference Modification Module

We design a module that distorts velocity reference signals to make them reachable
under input constraints, as dictated by vector ¥4 = [Umod, - - 'Umod,6]T € R® with the
following dynamics:

Z.7mod,i(t) = _.Bivmod,i(t) + AT, zJmod,i(o) =0, (5)
where AT; = sat(7;) — 7; and B; > 0 are design constants forall i =1,...,6.

3.3.2. Waypoint Tracking Control Design

The control design follows a two-step procedure:

Step 1: Definition of the normalized position error variable vector G := [¢p1 -+ - Gpj6) T as:

&p(t) = RN (1) (q(t) — q4), (6)

where Ry (t) = diag(p,1(t),...,0p6(t)) and g, is the target waypoint with respect to the
local frame B. To incorporate the transient and steady-state position error performance
requirements, we utilize the prescribed performance functions p; ;, which are considered to
be continuously differentiable, positive, decreasing, have a constant positive limit as time
tends to infinity, and satisfy p,,;(0) > |g,,/(0) — 44,

. An example for the definition of the
functions is p,(t) := (P?J,i - p‘;‘fi>e7)‘p'it + 05, where A, > 0, pg,i > |qp,i(0) — gq,i| and
p;’;’i > 0 are designable parameters, foralli = 1,...,6. Then, we design the virtual control

reference signal vg := [v471 - - Udlé]T as
Ud,i(t) = _kp,iT(gp,i>/ i= 1, .. .,6, (7)
where k), ; are positive design constants and T : (—1,1) — R is a strictly increasing, contin-
uously differentiable function, satisfying lim,_, 1+ T(x) = —oo0 and lim,_,;- T(x) = oo.
Step 2: Definition of the normalized velocity error variable vector &, =[Gy - - - 50,6]T as
§o(t) = Ry () (0(t) — va(t) — Vmoalt)) ®)

where Ry (t) = diag(py1(f),...,p06(t)). To incorporate the transient and steady-state
modified velocity error performance requirements, we utilize the prescribed performance
functions p,, ;, which are considered to be continuously differentiable, positive, decreasing,
having a constant positive limit as time tends to infinity, and satisfy p,;(0) > |v;(0)|. An
example for the definition of the functions is p,;(f) := (pgli - p;”ji)e*/\vrft + p5.» where
Ayi >0, pg,i > |v;(0)| and pg; > 0 are designable parameters foralli = 1,...,6. Then, we
design the control law components as

(t) =~y T)

Pv,i(t) a’:v,i

where k; ; are positive design constants for everyi =1,...,6.

T(év,i)/ (9)

Here, we recite Theorem 1 of [34] for completeness of presentation.

Theorem 1. We consider an Euler—Lagrange system described by (1) and (2) and Assumption 3.
We define Fy,;(q,v,t) := |(CD);| + |dai(q v, t)| + m;|0g| 4+ m;|pyi(t)| and sets S, := S, x

Sensors 2025, 25, 1023

14 of 22

{vlloi(t)| <3,i=1,...,6} with S, := {q||q:(t)| <F;,i =1,...,6}, where (CD);,04;,7; and
q; are constants defined in [34] that depend on the system model parameters.
If Control Law (9) is employed and the input constraints satisfy the following conditions,

Ti max > max Ti,max(o)/sup max Fv,i(q/V/ t) ’ (10)
>0 (q,v)€Sy

foreveryi =1,...,6, then all closed-loop signals remain bounded and the generalized position
tracks the desired trajectory with prescribed performance in the sense that

19i(t) — qa,il < pp,i(t). (11)

In addition, velocity tracks the modified virtual velocity with prescribed performance in the sense that

[0i(t) — 0a,i(t) — Vmoa,i(£)] < po,i(t), (12)
forallt >0andi=1,...,m.

Remark 3. Although specific knowledge of the system parameters is not strictly required for the
control design, having more precise parameter identification would simplify the accurate calculation
of the control limits (see (10)). In the absence of a full system identification, we leverage simulation-
based trial and error to determine feasible and realistic saturation limits, thus laying a solid
foundation for eventual real-world implementation.

4. Results

In this section, we present the exact materials and methodologies as well as the
parameters involved in the implementation of the aforementioned scheme.

4.1. Simulation Software

The proposed framework was implemented using a combination of tools and software
platforms to simulate and validate the path planning and control strategies. The control
algorithm and path planner were developed in Python, leveraging its flexibility and exten-
sive libraries for mathematical computation and algorithm design. The entire system was
integrated into the Robot Operating System (ROS), a widely used framework for robotic
applications, ensuring modularity and communication between components.

To simulate the underwater environment and validate the proposed methods, Gazebo
was employed as the high-fidelity simulation platform. The ArduSub SITL was utilized
to emulate the BlueROV2’s onboard control architecture, ensuring realistic hydrodynamic
behaviors and sensor feedback. Additionally, the ROS package “bluerov_ros_playground”
was used to interface the simulated BlueROV2 with the ROS environment, providingaccess
to virtual actuators. For testing the controller in this simulation, we leveraged readily
available velocity and position odometry data. This integration enabled seamless testing of
the control and planning algorithms under realistic underwater conditions.

4.2. Coverage Path Planning

We implement the decomposition algorithms developed in [19] and our own algorithm
for transition cost computation in Python 3.11, along with the libraries Shapely [37] and
Py2D [38]. For the solution of the GTSP instance, we leveraged the solver GLKH [39,40].

We demonstrate our methodology on the two polygonal workspaces shown in Figure 8.
For the CPP problem, we assume a footprint diameter of 1 m for BlueROV2, which is greater
than its length of 0.457 m. This choice of footprint diameter was made to account for the

Sensors 2025, 25, 1023

15 of 22

fact that a coverage footprint usually represents the field of view of a sensor rather than
physical dimensions.

17.54
25
15.0
204
12,54
9 R
% 10.0 15 4
>
10 A
(] 7
5

T T T T T T T T T T T T T T
0 5 10 15 20 =5 0 5 10 15 20 25 30 35
X-axis X-axis

Y-axis

Figure 8. Two polygonal workspaces used to demonstrate the GTSP-A* CPP algorithm. The left-side
workspace focuses on the non-convexity of the exterior boundary, while the right-side workspace
focuses on the presence of obstacles.

First, both workspaces are decomposed into sub-polygons that minimize the number
of turns for coverage, and then each sub-polygon is filled with the minimum amount
of straight sweep segments. Then, a grid is generated with respect to each polygonal
workspace geometry using Algorithm 1 in order to facilitate the A* path generation. The
grid is uniform and structured, with a resolution of 0.5 m for the left workspace in Figure 8,
and 0.6 m for the right workspace. Here, we construct the grid so that each grid point
has eight points as neighbors, allowing for horizontal, vertical, and diagonal movement
between nodes, as can be seen in Figure 7. Finally, the rest of Algorithm 2 is executed in
order to compute the costs of the turns between the straight sweep segments, leading to
the generation of the complete coverage path.

In Figure 9, we provide comparison between the results of the proposed algorithm
and two different scenarios. In the first scenario presented in the first row, we utilize a
“greedy” convex decomposition algorithm to construct the straight segments R, use our
GTSP-A* scheme to form the complete coverage path, and calculate the transition costs. In
the second scenario presented in the second row, we employ the methodology used in [19].
We perform the turn-minimizing partition and utilize Dubins’ vehicle to construct turns T
and formulate the corresponding transition costs. Finally, in the third row, we demonstrate
the results of our implementation.

It is evident from Figure 9 that the coverage paths produced from all methodologies
indeed cover almost the entirety of the polygonal workspaces. Additionally, it is worth
noting that because all three methods solve a GTSP problem to construct the coverage path,
the entry points and finishing points of the coverage paths lie adjacent to each other. This
is the case due to the fact that the GLKH implementation produces a looping path. This is
in line with our use case, since we want BlueROV2 to return to its initial docking position
after performing complete coverage of the target area.

The differences in the performance of each methodology can also be observed from
Figure 9. The greedy convex decomposition algorithm from the first row produces 30 and
51 paths for the left- and right-side workspaces, respectively. This is in contrast to the
29 and 41 paths produced by the minimum turns decomposition algorithm for the left-
and right-side workspaces, respectively, from the second and third rows. This comparison
shows that depending on the geometrical characteristics of the polygonal workspace, as
well as the size of the robot’s footprint, the differences in the produced number of turns
between a naive convex decomposition and an optimized, turn-minimizing workspace
partition can vary from marginal to substantial. Comparing the results from the second

Sensors 2025, 25,1023

16 of 22

row employing Dubins’ transition costs and the third row which utilizes A* to compute the
transition costs, it becomes apparent that the GTSP-A* methodology is better equipped to
handle the presence of obstacles and non-convex workspaces.

30

25

30

Figure 9. First Row: Greedy convex partition and A* transition cost. Second Row: Minimum turn

partition and Dubins’ transition cost. Third Row: Minimum turn partition and A* transition cost. “O”

marks the entry point while “X” marks the finishing point of the complete coverage paths.

4.3. Controller Design and Parameter Selection

Since our objective is to achieve 2D area coverage, the most critical modes of motion

are the horizontal surge and sway, corresponding to movement in the x and y directions.

Sensors 2025, 25, 1023

17 of 22

While the BlueROV2 can also be commanded in vertical and yaw degrees of freedom [41],
engaging these additional controls would introduce unnecessary complexity and increase
the risk of disturbances. By focusing on horizontal planar motion, we simplify trajectory
planning and control, reduce computational overhead, and maintain more stable and
predictable vehicle behavior for achieving consistent map coverage. Consequently, we
set the remaining thrusters to neutral to avoid coupling effects that do not contribute to
our planar coverage goals. The controller is set to receive waypoints g, from the path
planner, initialize the prescribed performance variables, and track the first waypoint. After
satisfactory tracking is achieved, the controller is reinitialized and the next waypoint is
targeted. The local position error is defined as q(t) — q;4.

The controller parameters are chosen as follows:

Modification Module Parameter §;: This parameter controls how fast the modification
signal vy,04,; adapts to changes in At;, which represents the deviation of the desired control
effort 7; from the saturated satt;. A larger 8; > 0 causes faster adjustments to the velocity
reference whenever the control input becomes saturate, adding to the controller’s effort.
In our simulation scenario, the reference modification module parameters are chosen as
Bi=01i=1,2

Prescribed Performance Functions for Position p,, ;(t): These directly bind the position-
tracking error. In our simulation scenario, we choose p,,i(t) as p,i(t) = (pg,i — 0y e it 4 O
for alli = 1,2. The steady-state position error allowance is set by p;, while the allowable
initial deviation is captured by pgri. The parameter A, ; dictates the rate of exponential
decay, thereby defining how quickly the system converges to its steady state. Larger A,
values shorten convergence time but may increase control effort. These parameters are set
as Ap; = 0.15, P[;):,i =2and P;O,i =01foralli =1,2.

Prescribed Performance Functions for Velocity p, ;(t): These bind the modified velocity-
tracking error and must remain consistent with the actuator’s saturation levels (Equation (10)).
In our simulation scenario, we choose p,;(t) as p,;(t) := (pgli - p$i>e_)‘vﬂ't + p5; for all
i = 1,2. The steady-state modified velocity error allowance is set by pg*;, while the allowable
initial deviation is captured by Pg,i' The parameter A, ; dictates the rate of exponential
decay, thereby defining how quickly the system’s modified velocity converges to its steady
state. Larger A, ; values shorten convergence time but may increase control effort and lead
the controller to saturation, impacting the modification module and in turn modifying the
velocity reference. These parameters are set as A, ; = 0.05, pg,i =5andpy; =02i=1,2

Controller Gains kp/i and k; ;: These gains scale the overall control action. As in many
PPC frameworks, k,; and k;; are associated with the size of the bound of the desired
velocity reference and the control effort, respectively. In the simulation scenario, we opt for
kpi=1land k,; =1foreveryi=1,2.

Finally, function T(-) is chosen as T(-) = In %, and therefore

1+¢p
vai(t) = —kp, ln< CW,), i=1,2

Then, the control law components are designed as

1 2
0= R &) 1“(

1+ gv,z’)
1- gv,i

The saturation limits are chosen as T max = 0.3 and Tj max = 0.5.

Remark 4. In practice, the above parameters are determined through iterative simulations in a high-
fidelity environment (ArduSub SITL, ROS, and Gazebo). While some trial and error is involved,

Sensors 2025, 25, 1023

18 of 22

each parameter directly corresponds to a distinct aspect of performance and feasibility. For instance,
if excessive overshoot is observed, translating to covering the same region multiple times, either P(;,i
or)\p,i,
thus lowering the risk of overshoot. An iterative simulation procedure is also followed to determine
how strict the performance bounds can be according to Equation (10). Specifically, one might start
by fixing the desired input saturation levels, then fine-tune the performance functions via trial and
error until an acceptable balance is reached. Alternatively, by fixing the prescribed performance
functions first, the minimum saturation levels needed to meet these performance objectives can be
derived. Ultimately, the chosen parameters can be tailored to meet specific mission goals, such as
faster coverage or tighter tracking precision. Due to the fact that this process can be involved and
time-intensive, a potential direction for future work might be the development of an auto-tuning
mechanism to streamline and optimize parameter selection.

can be decreased to impose stricter initial performance or slower convergence, respectively,

4.4. Simulation Results

The CPP methodology designed in Section 4.2 along with the controller designed
in Section 4.3 are combined, and the results are demonstrated in a simulated Gazebo
workspace. The simulated workspace is equivalent to the left-side polygonal workspace
constructed in Figure 8 and is equipped with the package “freefloating-gazebo” [42] that
simulates underwater buoyancy and viscous forces. The simulated workspace is shown in
Figure 10. The results of the proposed controller and path planner are demonstrated in the
accompanying video [43].

Figure 10. Top view of polygonal workspace and BlueROV2 inside simulated Gazebo world.

5. Discussion

The proposed framework for integrating coverage path planning and robust control
for autonomous underwater vehicles demonstrated promising results in efficiently covering
2D areas. By employing a cost-minimizing decomposition algorithm and leveraging an A*

Sensors 2025, 25, 1023

19 of 22

search for path connectivity, the approach generates coverage paths that reduce unnecessary
turning and alleviate obstacle avoidance challenges. The prescribed performance control
scheme ensures that the vehicle accurately tracks the planned paths without exceeding
input saturation limits. High-fidelity simulations in Gazebo and ArduSub SITL provide
a realistic testing environment, incorporating hydrodynamic effects and disturbances,
thereby highlighting both the robustness and feasibility of the proposed method.

Notwithstanding, several limitations emerge. First, in real-world applications, sensing
constraints may undermine formal assumptions about the localization of the robot. The
BlueROV2 does not possess full sensing capabilities and localization error risk, causing the
vehicle to miss the coverage path. A simple mediation measure involves upgrading the
sensing equipment of the BlueROV2 and utilizing sensor fusion techniques. Additionally,
in scenarios with dynamic obstacles, e.g., moving marine life or other underwater vehicles,
a static preplanned path may be insufficient. Real-time obstacle detection and online re-
planning are required to adaptively maintain coverage while avoiding collisions. These
considerations become even more critical when scaling to larger domains, where increased
uncertainty and the higher likelihood of encountering unforeseen obstacles demand robust
path planning and updating.

Furthermore, extending this coverage framework from planar to fully three-dimensional
environments introduces significant challenges. The coverage methodology needs to
be properly adapted for addressing 3D regions. Moreover, developing a sensor fusion
technique for accurate 3D localization becomes paramount, as depth and orientation
uncertainties can severely impact coverage accuracy. Robotic motion in the water also
requires robust control of pitch and roll; therefore, the whole version of the presented
controller is to be employed. Additionally, 3D obstacle detection and avoidance involve
extra degrees of freedom and potentially faster re-planning to evade moving objects that
may approach from above or below. Addressing these new dimensions of 3D partitioning,
sensor requirements, control complexity, and dynamic obstacle handling is crucial for
extending the results of the present work to 3D environment, and it would pave the way
for more comprehensive underwater coverage missions.

Finally, the use of model-free controllers necessitates careful parameter tuning to
ensure adequate path tracking. Though manageable in simulation, this process can become
more complex when operating over extensively large areas. While the associated tuning
effort proved manageable in practice, a conservative choice of the prescribed performance
functions is often required to guarantee stability, potentially prolonging total mission dura-
tion. Future research could focus on developing automatic tuning strategies to streamline
this process without compromising safety.

In sum, while the presented framework demonstrates robust and effective coverage
capabilities in simulation environments that approximate real-world conditions, addressing
these localization constraints and controller tuning remains essential for scaling up to larger
domains and further strengthening the method’s reliability for real-world deployments.
By enhancing sensing and localization to address environmental uncertainties, integrating
real-time path adaptation to manage dynamic obstacles, and refining controller tuning, the
method can maintain its efficiency and robustness at larger scales. These improvements
would extend its scalability and resilience, thereby further advancing the viability of
autonomous underwater coverage operations in practice.

6. Conclusions

This study presented a comprehensive framework combining coverage path planning
and robust control for autonomous underwater vehicles. By leveraging a cost-effective
decomposition algorithm, obstacle-aware path connectivity, and prescribed performance

Sensors 2025, 25, 1023 20 of 22

control, the framework ensured complete and efficient 2D area coverage while maintaining
robustness to disturbances and respecting input constraints. The results highlight the
potential of the proposed approach for practical applications such as underwater mapping,
debris detection, and infrastructure inspection.

Future work will focus on conducting field trials to further validate the approach.
Additional extensions could include exploring volumetric coverage using 3D partitioning
strategies, e.g., by utilizing octrees [44] to capture complex underwater structures more
thoroughly, as well as multi-vehicle coordination, e.g., by employing machine learning [45]
to reduce mission time and increase fault tolerance.

Author Contributions: Conceptualization, G.C.K. and C.P.B.; methodology A.K.G., P.G. and G.CK;
software, A.K.G. and P.G,; validation, A.K.G., P.G. and G.C.K,; formal analysis A.K.G. and P.G.,
writing—original draft preparation A.K.G. and P.G.; supervision G.C.K. and C.P.B.; project adminis-
tration, G.C.K. and C.P.B; funding acquisition, G.C.K. and C.P.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the project “Applied Research for Autonomous Robotic
Systems” (MIS 5200632), which is implemented within the framework of the National Recovery and
Resilience Plan “Greece 2.0” (Measure: 16618-Basic and Applied Research) and is funded by the
European Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Galgani, F; Souplet, A.; Cadiou, Y. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol.
Prog. Ser. 1996, 142, 225-234. [CrossRef]

2. Moore, CJ. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008,
108, 131-139. [CrossRef] [PubMed]

3. Zhang, H.; Zhang, S.; Wang, Y.; Liu, Y.; Yang, Y.; Zhou, T.; Bian, H. Subsea pipeline leak inspection by autonomous underwater
vehicle. Appl. Ocean. Res. 2021, 107, 102321. [CrossRef]

4. Danovaro, R; Fanelli, E.; Aguzzi,].; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark,
S.; et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020,
4,181-192. [CrossRef] [PubMed]

5. Wibisono, A.; Piran, M.].; Song, H.K.; Lee, B.M. A survey on unmanned underwater vehicles: Challenges, enabling technologies,
and future research directions. Sensors 2023, 23, 7321. [CrossRef]

6. Galceran, E.; Carreras, M. Efficient seabed coverage path planning for ASVs and AUVs. In Proceedings of the 2012 IEEE/RS]
International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7-12 October 2012; pp. 88-93.

7. Hert, S.; Tiwari, S.; Lumelsky, V. A terrain-covering algorithm for an AUV. In Underwater Robots; Springer: Berlin/Heidelberg,
Germany, 1996; pp. 17-45.

8. Englot, B.; Hover, F. Sampling-based coverage path planning for inspection of complex structures. In Proceedings of the
International Conference on Automated Planning and Scheduling, Sao Paulo, Brazil, 24-28 June 2012; Volume 22, pp. 29-37.

9. Zhu,].; Yang, Y.; Cheng, Y. SMUREF: A fully autonomous water surface cleaning robot with a novel coverage path planning
method. J. Mar. Sci. Eng. 2022, 10, 1620. [CrossRef]

10. Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines.]. Field Robot. 2009,
26, 651-668. [CrossRef]

11. Cho, S.W,; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.Y. Coverage path planning for multiple unmanned aerial vehicles in maritime
search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [CrossRef]

12. Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258-1276. [CrossRef]

13. Choset, H. Coverage for robotics—A survey of recent results. Ann. Math. Artif. Intell. 2001, 31, 113-126. [CrossRef]

http://doi.org/10.3354/meps142225
http://dx.doi.org/10.1016/j.envres.2008.07.025
http://www.ncbi.nlm.nih.gov/pubmed/18949831
http://dx.doi.org/10.1016/j.apor.2020.102321
http://dx.doi.org/10.1038/s41559-019-1091-z
http://www.ncbi.nlm.nih.gov/pubmed/32015428
http://dx.doi.org/10.3390/s23177321
http://dx.doi.org/10.3390/jmse10111620
http://dx.doi.org/10.1002/rob.20300
http://dx.doi.org/10.1016/j.cie.2021.107612
http://dx.doi.org/10.1016/j.robot.2013.09.004
http://dx.doi.org/10.1023/A:1016639210559

Sensors 2025, 25, 1023 21 of 22

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

Choset, H.; Pignon, P. Coverage path planning: The boustrophedon cellular decomposition. In Field and Service Robotics; Springer:
London, UK, 1998; pp. 203-209.

Cabreira, T.M.; Brisolara, L.B.; Paulo, R.E]. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019,
3, 4. [CrossRef]

Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and
heuristic algorithms. IEEE Access 2021, 26, 119310-119342. [CrossRef]

Huang, W.H. Optimal line-sweep-based decompositions for coverage algorithms. In Proceedings of the 2001 ICRA, IEEE
International Conference on Robotics and Automation, Seoul, Republic of Korea, 21-26 May 2001; Volume 1, pp. 27-32.

Jin, J.; Tang, L. Optimal coverage path planning for arable farming on 2D surfaces. Trans. ASABE 2010, 53, 283-95. [CrossRef]
Bochkarev, S.; Smith, S.L. On minimizing turns in robot coverage path planning. In Proceedings of the 2016 IEEE International
Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA, 21-25 August 2016; pp. 1237-1242.
Bechlioulis, C.P,; Rovithakis, G.A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed
performance. IEEE Trans. Autom. Control 2008, 53, 2090-2099. [CrossRef]

Ilchmann, A.; Ryan, E.P. High-gain control without identification: A survey. GAMM-Mitteilungen 2008, 31, 115-125. [CrossRef]
Hopfe, N.; Ilchmann, A.; Ryan, E.P. Funnel Control With Saturation: Nonlinear SISO Systems . IEEE Trans. Autom. Control 2010,
55,2177-2182. [CrossRef]

Liberzon, D.; Trenn, S. The bang-bang funnel controller for uncertain nonlinear systems with arbitrary relative degree. IEEE Trans.
Autom. Control 2013, 58, 3126-3141. [CrossRef]

Li, S.; Xiang, Z. Adaptive prescribed performance control for switched nonlinear systems with input saturation. Int. J. Syst. Sci.
2018, 49, 113-23. [CrossRef]

Wang, Y.; Hu, J.; Li, J.; Liu, B. Improved prescribed performance control for nonaffine pure-feedback systems with input saturation.
Int.]. Robust Nonlinear Control 2019, 29, 1769-1788. [CrossRef]

Ji, R.; Li, D.; Ma, J.; Ge, S.S. Saturation-tolerant prescribed control of MIMO systems with unknown control directions. IEEE Trans.
Fuzzy Syst. 2022, 30, 5116-5127. [CrossRef]

Ji, R; Li, D.; Ge, S.S. Saturation-tolerant prescribed control for nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 2022,
31, 2495-2508. [CrossRef]

Yong, K.; Chen, M.; Shi, Y.; Wu, Q. Flexible performance-based robust control for a class of nonlinear systems with input saturation.
Automatica 2020, 122, 109268. [CrossRef]

Mishra, PK.; Jagtap, P. Approximation-free prescribed performance control with prescribed input constraints. IEEE Control Syst.
Lett. 2023, 7, 1261-1266. [CrossRef]

Trakas, P.S.; Bechlioulis, C.P. Robust adaptive prescribed performance control for unknown nonlinear systems with input
amplitude and rate constraints. IEEE Control Syst. Lett. 2023, 7, 1801-1806. [CrossRef]

Trakas, P.S.; Bechlioulis, C.P. Adaptive Performance Control for Input Constrained MIMO Nonlinear Systems. IEEE Trans. Syst.
Man, Cybern. Syst. 2024, 54, 7733-7745. [CrossRef]

Fotiadis, F; Rovithakis, G.A. Input-constrained prescribed performance control for high-order mimo uncertain nonlinear systems
via reference modification. IEEE Trans. Autom. Control 2023, 69, 3301-3308. [CrossRef]

Bikas, L.N.; Rovithakis, G.A. Prescribed performance under input saturation for uncertain strict-feedback systems: A switching
control approach. Automatica 2024, 165, 111663. [CrossRef]

Gkesoulis, A.K.; Georgakis, P.A.; Karras, G.C.; Bechlioulis, C.P. Prescribed Performance Control for Uncertain Euler-Lagrange
Systems with Constrained Inputs via Virtual-Only Reference Modification. Eur. Control Conf. 2025, submitted .
BlueROV2—Affordable and Capable Underwater ROV. Available online: https:/ /bluerobotics.com/store/rov/bluerov2/ (ac-
cessed on 25 January 2025).

Fernéndez, J.; T6th, B.; Canovas, L.; Pelegrin, B. A practical algorithm for decomposing polygonal domains into convex polygons
by diagonals. TOP Off.]. Span. Soc. Stat. Oper. Res. 2008, 16, 367-387. [CrossRef]

GitHub—Shapely/Shapely. Available online: https://github.com/shapely/shapely (accessed on 25 January 2025).
GitHub—Sseemayer/Py2D. Available online: https://github.com/sseemayer/Py2D (accessed on 25 January 2025).

Helsgaun, K. Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm.
Math. Program. Comput. 2015, 7, 269-287. [CrossRef]

GLKH (Keld Helsgaun). Available online: http:/ /webhotel4.ruc.dk/~keld /research/GLKH/ (accessed on 25 January 2025).
GitHub—Patrickelectric/Bluerov_ros_playground. Available online: https://github.com/patrickelectric/bluerov_ros_playground
(accessed on 25 January 2025).

GitHub—Freefloating-Gazebo/Freefloating_gazebo. Available online: https://github.com/freefloating-gazebo/freefloating_gazebo
(accessed on 25 January 2025).

Autonomous Sea Floor Coverage with Constrained Input AUVs: Integrated Path Planning and Control. Available online:
https:/ /www.youtube.com/watch?v=2HFjW-Ka2]J8 (accessed on 25 January 2025).

http://dx.doi.org/10.3390/drones3010004
http://dx.doi.org/10.1109/ACCESS.2021.3108177
http://dx.doi.org/10.13031/2013.29488
http://dx.doi.org/10.1109/TAC.2008.929402
http://dx.doi.org/10.1002/gamm.200890000
http://dx.doi.org/10.1109/TAC.2010.2051735
http://dx.doi.org/10.1109/TAC.2013.2277631
http://dx.doi.org/10.1080/00207721.2017.1390706
http://dx.doi.org/10.1002/rnc.4466
http://dx.doi.org/10.1109/TFUZZ.2022.3166244
http://dx.doi.org/10.1109/TFUZZ.2022.3227984
http://dx.doi.org/10.1016/j.automatica.2020.109268
http://dx.doi.org/10.1109/LCSYS.2022.3233723
http://dx.doi.org/10.1109/LCSYS.2023.3281346
http://dx.doi.org/10.1109/TSMC.2024.3462728
http://dx.doi.org/10.1109/TAC.2023.3322619
http://dx.doi.org/10.1016/j.automatica.2024.111663
https://bluerobotics.com/store/rov/bluerov2/
http://dx.doi.org/10.1007/s11750-008-0055-2
https://github.com/shapely/shapely
https://github.com/sseemayer/Py2D
http://dx.doi.org/10.1007/s12532-015-0080-8
http://webhotel4.ruc.dk/~keld/research/GLKH/
https://github.com/patrickelectric/bluerov_ros_playground
https://github.com/freefloating-gazebo/freefloating_gazebo
https://www.youtube.com/watch?v=2HFjW-Ka2J8

Sensors 2025, 25, 1023 22 of 22

44. Vidal, E.; Palomeras, N.; Carreras, M. Online 3D underwater exploration and coverage. In Proceedings of the 2018 IEEE/OES
Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6-9 November 2018; pp. 1-5.

45. Apuroop, K.G,; Le, A.V,; Elara, M.R; Sheu, B.]. Reinforcement learning-based complete area coverage path planning for a
modified hTrihex robot. Sensors 2021, 21, 1067. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s21041067
http://www.ncbi.nlm.nih.gov/pubmed/33557225

	Introduction
	Optimal Coverage Path Planning
	Prescribed Performance Control with Input Constraints
	Limitations of Existing Methodologies
	Contribution
	Organization

	Problem Formulation
	Materials and Methods
	Underwater Vehicle Kinematics and Dynamics
	Coverage Path Planning
	Minimum Turn Decomposition
	Minimum Cost Path

	Control Design
	Reference Modification Module
	Waypoint Tracking Control Design

	Results
	Simulation Software
	Coverage Path Planning
	Controller Design and Parameter Selection
	Simulation Results

	Discussion
	Conclusions
	References

