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Abstract: In this study, the drag coefficient and lift-to-drag ratio variation with angle of
attack and velocity are analyzed by numerical simulation of the hydrodynamics of the initial
shape of an autonomous underwater vehicle (AUV). Based on this, the response surface
method (RSM) and multi-objective genetic algorithm (MOGA) are used to optimize the
geometric parameters of the shape, aiming to improve the lift-to-drag ratio and reduce the
mass. In the study, a second-order response surface model was constructed to analyze the
relationship between the target variables and the structural geometric parameters, and the
MOGA algorithm effectively searched for the globally optimal solution. The optimization
results show that the lift-to-drag ratio is increased from 0.684 to 0.778 and the mass of the
shell is reduced from 26.6 kg to 24.06 kg, which significantly improves the hydrodynamic
performance of the AUV. The optimization method not only improves the performance of
the AUV, but also provides a valuable reference for its hydrodynamic design, which has a
good application prospect.

Keywords: AUV; shape optimization; multi-objective optimization; response surface method

1. Introduction

Autonomous underwater vehicles (AUVs) are important tools for ocean exploration,
playing a key role in resource development and environmental monitoring. Their efficient
and stable operation is inseparable from good hydrodynamic shape design [1]. By opti-
mizing the shape of AUVs, not only can their anti-interference ability be enhanced and
energy consumption reduced, but they can also better adapt to the needs of diversified
tasks. Many scholars have conducted in-depth research on the motion performance of
AUVs. For example, in [2], aiming at the problem of large wave resistance of traditional
torpedo-shaped AUVs operating near the free surface, the first-order Rankine panel method
and simulated annealing algorithm were used to optimize the hull shape, successfully re-
ducing the wave resistance and verifying the optimization effect through experiments. Sun
et al. studied the body shape of humpback whales and used the response surface method
to optimize the bionic hull shape from the perspectives of drag and volume, improving
the spatial utilization rate and range of AUVs [3]. The optimization effect was verified in
both simulations and towing tests. Gao et al. proposed an AUV hull shape optimization
platform based on the multi-island genetic algorithm (MIGA), using unstructured 2D grids
and adaptive strategies to improve computational efficiency and accuracy [4]. In the field
of underwater gliders, Wang et al. designed a new type of underwater glider based on the
BWB configuration. Through high-precision numerical analysis and surrogate models, and
by applying particle swarm optimization algorithms for hydrodynamic optimization, the
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hydrodynamic performance was improved by 9.1% [5]. Yang et al., based on approximate
model techniques, optimized the shape of the underwater glider with the goal of mini-
mizing the drag coefficient. They considered the size coupling relationship and analyzed
the effects of load and pitch angle on the shape. The effectiveness of the CFD simulation
method was verified through circulating water channel experiments [6]. Li et al. aimed
to maximize the lift-to-drag ratio of the glider and established a Kriging surrogate model,
using the EGO algorithm to optimize the shape of the tandem-wing glider [7]. Zhang
et al. proposed a shape optimization framework based on NURBS parameterization and
Kriging models, aiming to maximize the lift-to-drag ratio and improve optimization effi-
ciency [8,9]. By using the NURBS method to achieve flexible shape deformation, a Kriging
optimization framework with dynamic filling of sample points was established, further
improving the optimization efficiency. Wang et al. [10] used Kriging as a surrogate model
and, based on the free deformation parameter method and a sequential Bayesian optimiza-
tion algorithm, optimized the hydrofoils of an underwater glider, thereby enhancing its
hydrodynamic performance.

In other fields, the effect of vortex generators (VGs) on the hydrodynamic performance
of a submarine at a high angle of attack has been studied using multi-objective optimiza-
tion and computational fluid dynamics (CFD) [11]. The results showed that the optimal
geometry of VGs could significantly improve the submarine’s hydrodynamic performance
by reducing drag and lift coefficients. Similarly, the optimization of roof-flap geometry
and position for simultaneous drag and lift reduction has been explored using CFD-based
multi-objective optimization [12]. The study demonstrated that the optimized roof-flap
design could effectively reduce the drag and lift coefficients of a vehicle. In the field of
automotive aerodynamics, the impact of canard design on wake control behind a car has
been investigated using artificial neural networks (ANN) and genetic algorithms (GA) [13].
The research indicated that the optimized canard design could reduce the drag and lift coef-
ficients, thereby improving the car’s fuel efficiency. Additionally, advanced computational
techniques such as ANN and evolutionary algorithms have been utilized to predict the
viscosity and thermal conductivity of nanofluids [14]. These studies highlight the potential
of multi-objective optimization and CFD in enhancing the hydrodynamic performance of
various vehicles, which can be leveraged to improve the design of AUVs.

Despite advancements in AUV optimization, a gap remains in the comprehensive
application of multi-objective optimization techniques, particularly in balancing the trade-
offs between lift-to-drag ratio and mass reduction. To address this, this study conducts
a hydrodynamic numerical simulation of an AUV’s initial shape, analyzing the variation
of drag coefficient and lift-to-drag ratio with respect to the angle of attack and velocity.
Based on this analysis, the response surface method (RSM) and a multi-objective genetic
algorithm (MOGA) are applied to optimize the geometric parameters of the AUV’s shape.
A second-order response surface model is constructed to examine the relationship between
the target variables and the geometric parameters, while the MOGA algorithm efficiently
searches for the global optimal solution. This approach enhances the AUV’s hydrodynamic
performance by improving the lift-to-drag ratio and reducing its mass.

The remainder of this paper is organized as follows: Section 2 presents the hydro-
dynamic parameter calculations, including the validation of numerical methods and the
numerical calculations and analysis of results. Section 3 details the optimization analysis,
covering the optimization of design methods and the multi-objective genetic algorithm
and result analysis. Finally, Section 4 concludes the study and provides an outlook for
future research.
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2. Hydrodynamic Parameter Calculations

A detailed model of the AUV was constructed on the basis of the laboratory program.
The model comprehensively considers the key structural parameters of the AUV, as shown
in Table 1. During the mission, AUV inevitably encounters challenges from multiple
environmental factors, such as waves and currents, and its hydrodynamic performance
becomes a key indicator of the success or failure of AUV design, as well as the root of
realizing precise control and fine operation. In the design process, the bow curve AB of
AUV adopts a two-parameter elliptic curve, while the stern curve CD adopts a conical
curve design, with overall simple lines and low processing cost, as shown in Figure 1,
in which the radius of gyration Q is 84 mm and the total length Lt is divided into four
parts: the length of bow section Lj, the length of stern section L, the length of middle
section L, and the length of the stern propeller protrusion. To facilitate the convergence
of the calculation results and enhance the computational speed, the AUV model was
simplified before meshing. Specifically, parts that have less influence on the hydrodynamic
performance but are prone to complex meshing were omitted, without changing the overall
shape and structure of the AUV. The simplified features mainly include small chamfers
and bolt heads, which are known to create meshing difficulties and significantly increase
computational complexity. These features have minimal impact on the overall flow field
and hydrodynamic performance of the AUV. A right-handed inertial coordinate system is
adopted, with the center of buoyancy of the AUV at static as the coordinate origin, where
the x-axis positive direction is along the origin to the bow, the y-axis positive direction is
along the origin to the left, and the z-axis positive direction is perpendicular to the fuselage
upward. As shown in Figure 2, the hydrodynamic model and coordinate system of the
AUV are presented.

Table 1. Structural parameters.

Parameters Symbol Value
total mass of the vehicle m 35.52 kg
total length Lt 1725 mm
maximum diameter Dm 178 mm
drainage volume 14 34.5 dm?
length of bow section Ly 165 mm
length of stern section Ly 245 mm
length of middle section L 1235 mm
maximum speed v 3.5m/s
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Figure 1. AUV linetype.

2.1. Validation of Numerical Methods

In order to ensure the reliability of the numerical calculation results, the validity of
the calculation method used in this paper is verified using the “SEAGULL” underwater
glider developed by Shanghai Jiao Tong University. The “SEAGULL” glider, designed for a
maximum depth of 500 m, features a total length of 2.04 m and a weight of 68.00 kg in air.
It comprises a buoyancy adjustment mechanism, attitude adjustment mechanism, control
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system, communication and positioning system, and a general structure. The “SEAGULL”
glider has been validated through lake trials, demonstrating stable performance and ma-
neuverability [15]. The “SEAGULL” glider and its mesh division are shown in Figure 3.
The drag values of the model were calculated at an angle of attack of 0° and velocities
of 0.2 m/s, 0.3 m/s, 0.4 m/s, and 0.5 m/s, respectively. These values were compared
with the results of the pool towing test. The comparison curves are shown in Figure 4,
demonstrating that the differences between the two sets of values are relatively small,
thereby validating the numerical computation method used.

Z

Yy

Figure 2. Hydrodynamic model and its coordinate system.

(a) (b)

Figure 3. Schematic diagram of model meshing: (a) overall meshing diagram, (b) detailed meshing
of the model.
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Figure 4. Comparison of numerical simulation results and experimental results.

2.2. Numerical Calculations and Analysis of Results

The speed requirement of our designed micro vehicle does not exceed 4 m/s, which
falls into the category of low-speed navigation. At this speed, the viscous drag of water has
a particularly significant effect on AUVs, and the proportion of viscous drag in the total
drag increases as the speed decreases. Therefore, the key to the hydrodynamic performance
of AUVs lies in the calculation and analysis of water resistance.
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The CFD solver used in this study is ANSYS Fluent 2021, employing the finite volume
method (FVM) for numerical discretization. A second-order upwind scheme is applied to
the convective and diffusive terms to reduce numerical diffusion and improve accuracy in
boundary-layer and flow-separation predictions. Pressure-velocity coupling is handled
using the SIMPLEC algorithm, while a least-squares cell-based method is used for gradient
reconstruction. The residual convergence criterion is set to 10~#, ensuring iterative errors
for all governing equations are reduced to below 0.01% of their initial values.

To accurately simulate turbulent flow at low Reynolds numbers, this study employs
the Reynolds-Averaged Navier-Stokes (RANS) method with the k-w SST turbulence model,
avoiding the need for complex damping functions required in the k-¢ model.

The computational domain is divided into two regions:

1. Global Computational Domain: simulating the ocean environment using a
16 L x 10 L x 10 L cuboid region;

2. Local Computational Domain: modeling the AUV’s position as a 5 L diameter sphere,
with the center of buoyancy set as the sphere’s center.

For the complex and irregular geometry of the AUV, an unstructured tetrahedral mesh
is applied. To enhance the accuracy of drag coefficient predictions, the boundary layer
near the AUV surface is locally refined. Prism-layer meshing is used, with 10 layers of
prism elements expanding in a geometric progression. The first-layer mesh height is set
to 0.05 mm, ensuring a y* value of approximately 6 for accurate resolution of the viscous
sublayer. The computational mesh consists of approximately 1.1 million unstructured
tetrahedral elements, ensuring sufficient resolution for accurate flow predictions while
maintaining computational efficiency. The average cell quality is 0.85, which is considered
good for CFD simulations, as values above 0.8 typically indicate a well-structured mesh
with minimal numerical errors. This quality metric, ranging from 0 to 1, is based on factors
such as aspect ratio, skewness, and orthogonality, where 1 represents an ideal equilateral
element.

Boundary conditions:

1. Inlet: defined as a uniform velocity inlet, simulating seawater at 15 °C (density
1026 kg/m?, dynamic viscosity 0.0009 Pa-s);
2. Outlet: set as a pressure outlet with a pressure of 0 Pa;

W

AUV Surface: treated as a no-slip wall;
4.  Computational Domain Boundaries (Far-field): assigned specified pressure gradient
boundary conditions.

The angle of attack « ranges from —20° to 20° in the numerical calculation; the velocity
v ranges from 0.5 m/s to 4 m/s. The lift-to-drag ratio Z is defined as the ratio of the lift
coefficient Cj to the drag coefficient Cq. The drag coefficient Cq with a and the lift-to-drag
ratio Z with a are obtained by 100 sets of simulations and summarizing the data, as shown
in Figures 5 and 6.

From Figure 5, it can be seen that the drag coefficient Cy increases with the increase
of « and v. When a = 0°, the head-on area of the AUV is the smallest, so the drag force
is the smallest at this time; the head-on area increases correspondingly with the increase
of w, and the drag force of the AUV increases as well. Since the AUV is not a completely
symmetrical structure, the trend of the drag coefficient Cq4 is not completely symmetrical at
x < 0°and a > 0°.

Figure 6 shows that the lift-to-drag ratio increases with the angle of attack, but the
peak value does not exceed 0.9, implying that the AUV consumes more energy in sustaining
the motion, so the shape optimization is particularly important. The growth of the lift-to-
drag ratio curve slows down when the angle of attack is less than —15° or more than 15°.
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Combined with the drag coefficient change in Figure 5, we select v = 4 m/s and & = 15° as
the key point for optimization; at this time, C4 = 0.282 and C; = 0.193.
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Figure 5. Variation curve of drag coefficient with angle of attack.
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Figure 6. Lift-to-drag ratio curve.

3. Optimization Analysis

Considering the substantial workload and the extensive time required for optimization
calculations when directly employing Computational Fluid Dynamics (CFD) methods, we
opted to develop a response surface model. This model establishes a relationship between
the AUV’s profile structural parameters and its hydrodynamic characteristics [16]. By
leveraging the objective function and the optimization algorithm, our goal is to achieve
the most optimal hydrodynamic shape. The optimization process is elaborately depicted
in Figure 7. The core objective of the optimization design is to adjust the shell geometry
to enhance the lift-to-drag ratio, improve the hydrodynamic performance, and reduce the
weight of the AUV. The mathematical formulation of this multi-objective optimization
problem is as follows:
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Figure 7. Optimization flow chart.

Objective function: maxZy(x), minWy(x), Constraints: a; < x; < b;.

Where the design variables x = [x1, X2, X3, x4] are the main geometrical parameters
[L1, Lo, Q, L] of the shell, the objective function Z, and Wy are the lift-to-drag ratio and the
structural mass, respectively. In the study, 4; and b; represent the upper and lower limits
of the values of each geometric parameter, respectively. These limits were set to 10% of
the initial parameter values, which provided a reasonable range for optimization without
violating the design constraints.
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3.1. Optimization of Design Methods

Response surface analysis is a statistical method for solving multivariate problems.
In order to clarify the relationship between the design variables and the response values,
the Latin Hypercubic Sampling (LHS) method is used to lay out the test sample points
using the principle of random orthogonal distribution with equal probability [17,18], so as
to obtain a more accurate response surface model by using fewer sample points.

Response surface fitting is used to fit the relationship between the design variables and
the response values by establishing certain functional relationships based on the test sample
points. A second-order polynomial is chosen for fitting and the mathematical expression is

n n n—1 n
9(x) = Bo+ ) Bixi+ ) Buxi+ Yy, Y. Bixiy @
i=1 i=1

i=1 j=i+1

where j(x) is the predicted value of the response surface, x; is the ith component of the
independent variable, and By, i, Bii, and B;; are the regression coefficients. To evaluate the
predictive capability of the response surface, we employ the R? and the root mean square
error ¢ to assess the fitting accuracy of the response surface [19]. The calculation formulas
are as follows:

(2)

)

where y; denotes the observed values at the design points. When R? is close to 1 and ¢ is
close to 0, the fitting precision of the response surface is higher.

The specific evaluation results are shown in Table 2, where R? of all target variables
exceed 0.96 and ¢ are well below 0.1, satisfying the accuracy requirements. The relative
importance of the design variables L1, Ly, Q, and L on the lift coefficient Cj, drag coefficient
C4, mass W, and lift-to-drag ratio Z are given by the localized sensitivity diagram in
Figure 8. Li, Ly, Q, and L have a significant influence on C; and C4. Among them, the
middle section length L has the most significant effect on these parameters; the bow section
length L has a greater effect on the lift and drag coefficients than the stern section length
Ly, and the effect of L, is opposite to that of L. The effect of shell turning radius Q on lift
and drag coefficients is greater than that of Ly, and its effect is also opposite to that of L.
For the lift-to-drag ratio, the effect of Q is greater than that of L;, which in turn is greater
than that of L,. In the case of mass W, the effect of L; is greater than that of L, and the
effect of L is greater than that of Q.

Table 2. Fitting accuracy evaluation results.

Target Variables R? o
Z 0.967 0.053
W 0.992 0.005

Figures 9 and 10 show the trends of lift-to-drag ratio Z and mass W with Lj, Ly, Q,
and L. Figure 9 shows that the lift-to-drag ratio increases with increasing L; and decreases
with increasing L;. In order to maximize Z, L; and L, should be close to the endpoints
of their range of values. The lift-to-drag ratio is very sensitive to changes in the length
of L and Q, and Z is maximized at the right endpoint of the range of values, where L has
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the most significant effect on Z. Figure 10 shows that mass W is linearly related to these
variables and is particularly affected by L. All variables should be taken close to the left
end of their range.
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Figure 8. Sensitivity diagram.
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Figure 9. Response surface when output is Z.
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Figure 10. Response surface when output is W.

Through the above analysis, it can be seen that there is a mutually exclusive relation-
ship between the four design variables, and taking into account the actual processing and
manufacturing and internal assembly of some spatial constraints, Z and W cannot reach
the optimal value at the same time, so it is necessary to carry out algorithmic optimization
to constitute all possible solutions into the optimal solution set of Pareto [20], which is
a set of solutions that improves a certain objective variable at the expense of the other
objective variables.

3.2. Multi-Objective Genetic Algorithm and Result Analysis

In order to find the optimal equilibrium point between the target variables, 400 sample
points are selected by using the offset Hammersley sampling (SHS) technique, and the
optimization design problem is optimized by a multi-objective genetic algorithm. The
multi-objective genetic algorithm was selected for this study due to its efficiency in han-
dling multi-objective optimization problems and its ability to provide a well-distributed
set of Pareto optimal solutions. Compared to NSGA-II, MOGA offers a simpler and more
efficient approach, providing a good balance between exploration and exploitation while
maintaining a diverse set of solutions. This makes MOGA particularly suitable for op-
timizing the AUV’s geometric parameters to achieve the desired trade-offs between the
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lift-to-drag ratio and mass reduction. The other parameter settings of the MOGA algorithm
are shown in Table 3. Calculate whether Z and W satisfy the termination condition. If they
do, the termination population is generated; if they do not, the next generation population
is obtained through the process of fitness assignment and so on. Continue to judge until
the termination condition is satisfied [21]. The convergence behavior of the algorithm is
illustrated in Figure 11, which shows the evolution of the lift-to-drag ratio Z and mass W
over successive iterations. Initially, Z increases rapidly as the genetic algorithm explores the
search space, while W decreases significantly. As the number of generations increases, the
changes in both parameters gradually stabilize, indicating convergence toward an optimal
solution. The convergence graph demonstrates that the optimization process reaches a
stable solution after a sufficient number of iterations, ensuring that further increases in
generations provide minimal improvements. This validates the efficiency of the optimiza-
tion framework. The distribution of the Pareto optimal solution set is obtained through
several iterations, as shown in Figure 12. The color of the dots represents the quality of the
results, with dark blue indicating the optimal solutions and yellow indicating the worst.
The red ellipse region marks the optimal boundary. Table 4 shows the three Pareto optimal
solutions selected based on merit.

Table 3. MOGA parameters.

Parameters o
percentage of convergence stabilization 100%
maximum allowable Pareto percentage 75%
crossover rate 0.9
variation rate 0.1

0.8 ‘ 27
126
0.75
£
N 125 =
=
0.7
24
0.65 ‘ \ ‘ ' 23
0 10 20 30 40 50

[terations

Figure 11. Convergence graph.



Machines 2025, 13, 194 12 of 15
0800 | E— T T T T T T T T
0.785 - @ M A A A a
A AR A L 4 , a
0.770 - A "M Mh ah A 4y A 2 |
. AA A AA A A A* AA Ard
i A ' A
0.755 - al 2N AA .
ad & At
0.740 an 1
A
N
0.725 + AL w: =
A
0.710 + % -
0.695 - ‘& .
'
0.680 | A“‘ .
A . A
A
0.665 - A =
230 235 240 245 250 255 260 265 270 275 280
W/ (kg)
Figure 12. Distribution of Pareto solution sets.
Table 4. Pareto optimal solutions.

Title Z Wikg Li/mm Ly/mm Q/mm L/mm
optimization point 1 0.788 24.06 174.5 2274 85.1 1203.4
optimization point 2 0.787 2411 173.1 227.9 85.6 1208.3
optimization point 3 0.786 24.28 170.9 229.1 86.6 12121

Optimization point 1, which exhibits the largest lift-to-drag ratio and a relatively small
mass in the calculation, was selected as the final design result. This selection was based on
a balanced consideration of both hydrodynamic performance and structural efficiency, with
each objective weighted equally at 50%. At this time, the drag coefficient Cq = 0.274 and the
lift coefficient C; = 0.216; the detailed data comparison before and after the optimization
design is shown in Table 5. The optimized lift-to-drag ratio Z and mass W are both better
than the initial values, indicating that the hydrodynamic performance of the optimized
AUV profile is better than the original profile.

Table 5. Comparison of data before and after optimization.

Title Z W/kg Li/mm L, Q/mm L/mm
result before optimization 0.684 26.6 165 245 84 1235
optimized results 0.788 24.06 1745 2274 85.1 1203.4

In order to verify the accuracy of the optimization results, numerical calculations were
re-performed using the data of the design variables from the optimization points [22]. The
validation results for the lift-to-drag ratio are shown in Table 6, and it can be seen that
the optimization gives a maximum relative error of 1.399% with respect to the numerical
calculations. The observed deviations between the optimization results and the numerical
calculations can be attributed to several factors. First, the response surface model used
in the optimization process is based on a second-order polynomial fit, which inherently
introduces some approximation errors. This model is constructed using previously ob-
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tained data points and may not perfectly capture the complex nonlinear relationships in
the actual system. Second, numerical approximations in the finite volume method (FVM)
and the second-order upwind scheme used for discretization can also contribute to minor
discrepancies. Despite these minor deviations, the overall agreement between the optimiza-
tion results and the numerical calculations demonstrates the reliability of the optimization
method. The final shape produced is shown in Figure 13.

Table 6. Verification results of lift-to-drag ratio.

Title Optimal Value  Calculated Value  Relative Error
optimization point 1 0.788 0.778 1.269%
optimization point 2 0.787 0.776 1.397%
optimization point 3 0.786 0.775 1.399%

Figure 13. Final shape.

4. Conclusions

Through comprehensive CFD numerical calculations and hydrodynamic performance
analysis of the AUV profile, this study investigates the trends of the drag coefficient and
lift-to-drag ratio while employing response surface analysis for profile optimization. By
integrating orthogonal test design, response surface fitting, sensitivity analysis, and a
multi-objective genetic algorithm, the optimization study of the profile parameters was
successfully conducted. The results indicate that within the defined parameter range, a
larger slewing radius enhances the lift-to-drag ratio but also increases structural mass.
Additionally, an increase in AUV length leads to a significant rise in drag coefficient, which
negatively impacts both lift-to-drag ratio enhancement and structural mass reduction.
Therefore, optimizing the AUV length appropriately is crucial. Under identical radius and
length conditions, increasing the bow section length or decreasing the stern section length
contributes to an improved lift-to-drag ratio.

While this study primarily focuses on optimizing the lift-to-drag ratio and mass,
several critical factors remain unaddressed and warrant further exploration. Future research
should consider the following aspects:

1.  Dynamic Stability: The current optimization does not incorporate dynamic stability
considerations. Future studies should integrate dynamic stability analysis to ensure
that the optimized design maintains stable motion across various operating conditions;

2. Performance in Varied Flow Conditions: The AUV’s performance under different
flow conditions, such as varying flow velocities and directions, should be examined.
Numerical simulations and experimental tests can help validate the robustness of the
optimized design;

3.  Experimental Validation: This study primarily relies on numerical simulations to
confirm the optimization results. However, practical experiments are essential for
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evaluating the AUV’s real-world performance. Future work should include experi-
mental validation in a towing tank or open-water environment to verify numerical
predictions and enhance the design’s reliability.
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