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Abstract: The task allocation of autonomous underwater vehicles (AUVs) is a crucial
aspect of ocean exploration and mission execution tasks. In a mine countermeasures
(MCM) combat scenario, when a new suspicious mission point is detected in the mission
area, the heterogeneous multi-AUV system requires reallocation in real time. To address
this, a soft time windows consensus-based bundle algorithm with partial reallocation
(SWCBBA-PR) is designed. Based on the consensus-based bundle algorithm (CBBA), this
algorithm comprehensively considers the underwater communication limitations and
introduces the soft time window mechanism and partial reallocation mechanism. Its
aim is to solve the partial reallocation problem that arises when new task points appear
under the temporal-coupling constraints of complex underwater tasks. The SWCBBA-PR
algorithm has been validated through simulation, demonstrating its ability to generate an
optimal allocation scheme in the scenario of MCM mission emergence, and it exhibits good
convergence performance.

Keywords: autonomous underwater vehicles (AUVs); mine countermeasures (MCM);
consensus-based bundle algorithm (CBBA); task allocation

1. Introduction
The current research on MCM mission scenarios focuses on the collaborative task allo-

cation of heterogeneous AUVs. This allocation is based on prior information on suspicious
task points. When executing MCM tasks in practice, the multi-AUV system has to start by
searching for suspicious task points. After confirming that these points indicate mines, the
AUVs then need to neutralize them. Finally, it is necessary to verify if the mine threat has
been fully eradicated. That is, different types of AUVs need to execute corresponding sub-
tasks according to the process, which poses complex problems of task temporal coupling.
In addition, due to the dynamic nature of the actual combat environment, new tasks may
emerge at any time. Therefore, how to achieve rapid and effective task reallocation is also a
very important issue.

Centralized task allocation has the advantage of strong global solving capability. How-
ever, since data transmission has to go through a single control center, the amount of
information to be processed is huge. This makes it difficult to meet real-time requirements
and prone to single-point failures during task allocation. Especially in underwater environ-
ments, it has poor reliability, maintainability, and anti-interference ability. Distributed task
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allocation is an approach where intelligent agents within a cluster communicate and nego-
tiate to resolve conflicts based on their respective decision results. Currently, distributed
task allocation algorithms basically cover three major types: market-like mechanisms,
distributed constraints, and multi-agent decision-making theory. The specific classification
is shown in Figure 1. Distributed constraint algorithms can be transformed into the form
of a constraint network in which each variable has a separate discrete value range, and
there are constraint relationships among them. In the solving process, the goal is to find a
certain combination of variables so that the sum of all constraints reaches the maximum or
minimum value. The core idea of market-like mechanism algorithms is to use communica-
tion and negotiation to solve each problem so as to avoid possible conflict situations. The
contract net algorithm includes four steps of “tendering-bidding-winning-confirmation”
involving bidders and publishers. The auction algorithm takes tasks as auction items and
sells them to the highest bidder through open bidding to complete the allocation.
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Figure 1. Classification of typical distributed task allocation algorithms.

In reference [1], aiming at the problems of low overall efficiency, unreasonable distri-
bution, and coexistence of multiple bids in the traditional contract network, an improved
contract network algorithm was designed by integrating the token ring network and the
AUV task load rate standard, which improved the overall effectiveness of the system. In
reference [2], for the target search scenario in a complex environment, by combining the
improved contract network algorithm (BSE-CNP) with the introduction of a bidder selec-
tion mechanism and an improved bid value evaluation mechanism, and the construction of
a task reallocation mechanism with the introduction of a virtual decision-maker, the effi-
ciency of the multi-AUV system can be effectively improved, and the global coordination
of tasks can be achieved in unforeseen situations. In reference [3], aiming to make up for
the deficiencies of the current auction algorithms that do not conform to market laws and
ignore the interests of auctioneers, taking the task allocation of heterogeneous multiple
AUVs in the situation of limited energy and time-varying ocean currents as the scenario, an
improved auction algorithm based on the task reward feedback mechanism was designed.
By introducing the robust optimization theory, the adaptability of the multi-AUV system
in the complex and changeable marine environment was improved, thus ensuring the
utility of the AUV system and reducing the resource consumption of task allocation. In
reference [4], a new Consensus-based Adaptive Optimization Auction (CAOA) algorithm
was proposed. By introducing an optimization scheme based on the improved particle
swarm optimization algorithm, the step size of the price update rule in the distributed
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auction algorithm was adaptively adjusted, and the key control parameters in the price
update function of the bidding algorithm were optimized, reducing the search complexity
and thus obtaining better bids. It can obtain higher system gains while greatly reducing
the computational amount. In reference [5], after the initial task allocation, a dynamic
adjustment strategy was introduced, that is, when to give up or continue the cooperative
task. Different from the traditional insistence on impossible tasks, it maximally ensures the
benefits of the multi-robot formation, minimizes unnecessary losses and wastes, reduces
the task allocation time to the greatest extent, improves the efficiency of task allocation,
ensures the safety of task allocation, and increases the stability of the multi-AUV system at
the same time.

Currently, distributed task allocation is usually carried out under the assumption of a
perfect communication link with infinite bandwidth, and it requires that each member of
the system has the same Situation Awareness (SA). In an underwater environment with
limited communication, AUVs are unable to interact with information in a timely manner.
This causes each AUV to use different information sets for task allocation optimization,
thus leading to task allocation conflicts. Therefore, various algorithms evolved from the
auction algorithm have been receiving increasing attention, such as the Consensus-Based
Bundle Algorithm (CBBA) [6]. This algorithm is realized through iterative processes in two
stages: the task bundle stage and the conflict resolution stage. It can reasonably select and
arrange the task sequence while taking into account time and other resource constraints,
ensuring that the obtained solution achieves at least 50% optimality.

The CBBA algorithm can, to some extent, avoid a large amount of algorithm-related
communication. It can also be applied to multi-constraint and dynamic task scenarios. In
terms of solving communication problems, reference [7] considers a more realistic cluster
that uses asynchronous communication protocols for communication. It proposes the
Asynchronous CBBA algorithm (ACBBA) and introduces a replay strategy as a new local
conflict resolution rule. These rules do not require access to the global information state.
They have the characteristics of consistently processing unordered messages and detecting
redundant information, minimizing the communication load while maintaining conver-
gence characteristics. In reference [8], the CBBA based on group consensus (G-CBBA)
was proposed. It groups drones based on the task preferences represented by the initial
guesses created by the drones. At the same time, nested iterations between local and
global planning consensus were introduced. The local stage aims to reach a consensus on
the shared task list within the team, while the global stage ensures that the entire cluster
reaches a consensus on the entire task set. The proposed two-layer scheme can reduce the
propagation of irrelevant bids, maintain the robust convergence of CBBA, and thus improve
communication efficiency. In reference [9], an importance ranking model was constructed
based on the degree centrality, eigenvector centrality, and mediation centrality of com-
munication UAVs. Then, a set of key nodes was selected from the communication UAVs,
and the shortest path principle was used to group and cluster these UAVs. This enables
dynamic task allocation among multiple UAVs under limited communication conditions.
In Reference [10], the static CBBA was improved into an online algorithm. By integrating
the dynamic update of UAV positions and the task convergence flag mechanism, online
CBBA (OL-CBBA) was designed to improve the task allocation efficiency of multiple UAVs
under weak communication conditions. However, there is currently limited research on
non-ideal communication environments such as communication delay, high bit-error rate,
and high packet-loss rate. Further exploration is needed on how to improve the adaptability
and performance of the CBBA algorithm in non-ideal communication environments while
maintaining its basic characteristics and advantages.
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Regarding the solution of complex task requirements, in reference [11], considering
the critical tasks in the monitoring system, a third phase is introduced. By releasing tasks
that exceed the actual capacity, task constraints are met to address the distributed task
allocation problem with functional heterogeneity, resource constraints, and critical task
allocation guarantee. In reference [12], based on the distance between UAVs and the
number and type of payload resources per UAV, the entire UAV cluster is divided into
multiple sub-clusters. This simplifies large-scale task allocation into several interrelated
small-scale task assignments. The algorithm uses different consensus rules both between
and within clusters, ensuring that the drone swarm can obtain conflict-free task allocation
solutions in real time. In reference [13], to address the problem of UAV clusters arriving
at and executing tasks simultaneously, the CBBA with Time Window (CBGA-TW) was
developed. However, this algorithm may generate potential solutions that could lead to
deadlocks. In reference [14], a consensus coalition algorithm is proposed. It is used to
solve the problem of heterogeneous multi-agent collaborative task allocation under the
constraints of load resources and time windows. First, each agent applies the principle of
maximizing marginal gain. Meanwhile, it comprehensively considers the time-varying gain
of the task and the navigation cost to choose a task combination that suits its characteristics.
Second, based on the improved conflict resolution rules, the task conflict problem in task
allocation is resolved. In Reference [15], a load distribution matrix was introduced into the
CBBA to track the load of robots and task requirements in real time, and a consensus-based
payload algorithm (CBPA) was proposed. It aims to solve the problem that when multiple
robots execute complex tasks, the decrease in their capabilities due to load consumption
makes it difficult for the robot coalition to meet the task requirements in real time. However,
the fault tolerance of this algorithm needs to be improved. In reference [16], the Graph
Convolutional Network (GCN) is combined with CBBA, and the AI-enhanced CBBA (AI-
CBBA) is proposed. This algorithm optimizes the task allocation efficiency of multiple
robots by predicting the effectiveness of heuristic extensions through GCN. In reference [17],
a non-deadlock sequential extended Consensus-Based Bundle Algorithm is designed.
Directed graph depth-first search is introduced to detect and correct deadlock situations
in the task plan, aiming to achieve conflict-free and deadlock-free task allocation. At the
same time, a sequential layering strategy is adopted to address the temporal constraints of
coupled tasks. Moreover, path planning is integrated into task allocation through Dubins
curve routes, which enhances the reliability of the task allocation results.

Regarding the solutions to problems in dynamically uncertain task scenarios, in
reference [18], when dealing with new online tasks that emerge during the process of
solving the task-allocation problem, the CBBA with partial resetting (CBBA-PR) can strike
a balance between convergence time and increased cost. It does this by resetting a part of
the previously allocated tasks in each round of task bidding. This approach further reduces
the communication burden and running time. In reference [19], building on the research in
reference [14], the issues arising from new tasks are taken into account. The CBBA with
no resetting (NR-CBBA), the CBBA with full resetting (FR-CBBA), and the CBBA with
partial resetting (PR-CBBA) are improved. When unknown new tasks appear in the task
area, NR-CBBA adds these new tasks after the previously obtained task-allocation plan.
FR-CBBA completely abandons the previously obtained task-allocation plan and re-assigns
the task sequence upon the addition of new tasks. PR-CBBA re-assigns tasks with the
lowest gain released by each agent. All these algorithms can promptly respond to sudden
new-task situations. However, the above reallocation algorithms do not fully utilize the
original task allocation results and cannot guarantee optimal task reallocation performance
in different unexpected situations.
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Currently, the improvements based on the CBBA algorithm mostly focus on UAVs,
and there is a lack of research on handling complex task coupling constraints and real-time
task reallocation in non-ideal communication environments. Due to the communication
limitations in the underwater environment, the task allocation of AUV swarms is more
particular and challenging. Although many efficient and intelligent task allocation models
and algorithms have been proposed and implemented in previous studies, there are still
many potential problems that need further exploration; in particular, after considering
constraints such as underwater communication, ocean currents, and dynamic targets,
the task allocation problem gradually becomes more complex. When designing task
allocation algorithms for AUV swarms, the following aspects of problems are generally
considered comprehensively:

(1) Real-time issue: The coordinated execution of tasks among multiple AUVs usually
requires timely and reliable communication for coordination, which helps ensure the
smooth execution of tasks. Since accidents may occur during task implementation,
task reallocation is often required. Therefore, how to reallocate tasks in a timely
and effective manner to ensure task completion efficiency has become a problem
that cannot be ignored. Currently, most of the research focuses on pre-arranged task
allocation schemes before task execution; that is, pre-generated schemes. Given the
real-time changes in the environment and the real-time updates of task completion
status, real-time task reallocation will become an indispensable condition for the
intelligent operation of AUVs.

(2) Computational complexity issue: With the increase in the number of AUVs in a
multi-AUV system, some of the currently studied task allocation algorithms face
the challenge of large computational complexity. For example, the process of task
allocation using the auction algorithm involves a single auctioneer and multiple
bidders, and the number of bidders is determined according to the algorithm process.
The increase in the number of bidders has a direct impact on the system gain and the
quality of the task allocation scheme. As the number of bidders increases, the design
of the task allocation scheme will become better and the overall coordinated gain will
increase, but the computational amount and complexity of the auctioneer will also
increase accordingly. Therefore, effectively reducing the computational amount is
crucial to the efficiency of the task allocation algorithm and the system’s performance.

(3) Communication issue: Communication plays a vital role in the collaborative work
of a multi-AUV system. However, most of the current task allocation algorithms are
troubled by excessive communication overhead. Excessive communication overhead
will directly lead to communication delays, which in turn affect real-time performance
and task synchronization, thus reducing the task completion rate. At the same time,
an increase in communication volume may cause packet loss or bit errors, affecting the
completion of the overall task. Therefore, under limited communication conditions,
how to reduce communication overhead and effectively complete task allocation will
be a challenging problem.

(4) Heterogeneity issue: The composition of a multi-AUV system is flexible and change-
able. Even if the AUVs are homogeneous, there will be certain differences due to the
installation of different types of sensors, different communication protocols or commu-
nication methods, etc. Meanwhile, even AUVs of the same type cannot maintain the
same situation as other members of the system when executing tasks. In this case, the
methods applicable to a certain system may not be successfully transferred to other
multi-AUV systems. Solving the heterogeneity problem brought about by heterogeneous
AUVs is also a major challenge in the task allocation of multi-AUV systems.
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In response to the above problems, this paper makes improvements based on the
CBBA algorithm and proposes the SWCBBA-PR algorithm. The architecture diagram of
the algorithm is shown in Figure 2, and its main contributions are as follows:

(1) Considering the issue of underwater communication limitations, when the trusted
communication topology changes, each AUV whose trusted communication status
changes is reassigned to ensure effective task allocation.

(2) The time-coupling problem of various subtasks when heterogeneous AUVs execute
MCM missions is solved by introducing soft time window constraints.

(3) When new suspicious task points emerge, the relationship between the new tasks
and the original task allocation plan can be comprehensively considered, and partial
reallocation can be carried out based on the original plan. This improves the efficiency
and speed of task reallocation.
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2. Problem Description and Modeling
2.1. Description of the Problem

When executing MCM tasks in practice, it is necessary to sequentially perform three
subtasks: search, mine neutralization, and confirmation. In this paper, we mainly consider
the task assignment scenario in which AUVs discover new suspicious task points within
their detection range while performing the search subtasks of the MCM mission. The
mission area is assumed to have NA heterogeneous AUV, denoted as Ai(i = 1, 2, . . . , NA),
NT known mission points and n∗ unknown mission points. Multiple AUVs collaborate to
perform the subtasks corresponding to each known task point, i.e., the search task TS

j , the

mine-neutralizing task TE
j , and the confirmation task TV

j have a total of Nt subtasks, and
some AUVs will detect n∗ unknown task points in the execution of the search subtasks,
which is denoted as Tj(j = 1, 2, . . . , NT + 3n∗), and each subtask can only be accomplished
by one AUV with a matching type. Also, each AUV is capable of executing at most Li tasks.
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To ensure that Nmin∆min{Nt + 3n∗, NALi} tasks are assigned at the same time, equalize
the utilization efficiency of each AUV.

In order to more effectively solve the problem of task allocation for heterogeneous mul-
tiple AUVs, this paper will conduct task allocation for mission tasks in a two-dimensional
marine environment. That is, all AUVs and task points are at the same depth and regarded
as mass points. For the analysis in this paper, to enhance the adaptability of the task
allocation model without losing generality, the following assumptions are proposed:

(1) The initial position information (xi, yi), speed information vi, and power consumption
per unit time ei of all AUVs are known.

(2) The position information
(

xj, yj
)
, fixed gain Rj0, initial gain Rj, time discount factor

λj, and task execution duration of all task points are known.
(3) No account is taken of the collisions among AUVs.
(4) Every AUV has an equivalent probability of choosing any task.
(5) The resource-carrying capacity of each AUV is applicable to every task.
(6) The actual energy consumption during the navigation of an AUV is approximately

linearly correlated with the distance it travels; thus, the concept of normalized energy
consumption is employed.

(7) AUVs of the same type share identical basic conditions, including navigation speed
and energy consumption.

In summary, the mission task allocation problem for heterogeneous multiple AUVs in
the MCM scenario can be described as follows: In a two-dimensional plane, there are NA

available heterogeneous AUVs, NT known task points to be allocated, and n∗ unknown
task points. Each task point consists of three subtasks: search, mine-neutralization, and
confirmation, and each subtask needs to be completed by the corresponding type of AUV.
By using the SWCBBA-PR algorithm proposed in this paper, the task execution sequence
for each AUV is determined. This ensures that the task allocation scheme for heterogeneous
multiple AUVs can satisfy the task timing coupling constraints while maximizing the total
revenue and minimizing the total time cost.

2.2. Mathematical Modeling
2.2.1. Description of Heterogeneous Multi-AUV Systems and
Mission-Coupling Constraints

The heterogeneity of multi-AUV systems is critically reflected in different functional
characteristics and maneuvering performance:

(1) AUVs carry different resource payloads, such as sensors, cameras, anti-mine torpe-
does, etc., to perform different types of subtasks. The matching matrix between AUVs
and tasks is shown in Equation (1).

matchij =

{
1, Ai can perform Tj

0, otherwise
(1)

(2) The differences in AUV maneuverability are reflected in different sailing speeds and
standardized energy consumption. In addition, in the mission assignment results,
the heterogeneous AUVs must not only satisfy the needs of the assigned mission
tasks with their own mission execution capabilities but must also satisfy the relevant
constraints that the mission tasks need to satisfy.

During an anti-mine mission, there are three subtasks that need to be performed
at each mission point, i.e., the search subtask, the mine-neutralizing subtask, and the
confirmation subtask. The task coupling constraints are reflected in three aspects:
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(I) The anti-mine mission is considered accomplished only when all three subtasks are
executed, so the total number of subtasks is Nt = 3NT .

(II) The execution of subtasks should follow strict priority constraints, i.e., the mine-
neutralizing subtask can only be executed after the search subtask has been completed,
and the confirmation subtask can only be executed after the mine-neutralizing subtask
has been completed.

(III) In practical applications, each subtask takes a certain amount of time to execute, and
different subtasks have different execution times. Since the whole anti-mine task
must be completed within a certain timeframe, a time window

[
tstart

j , tlast
j , tend

j

]
is

introduced. tstart
j is the time when the task can start executing, tend

j is the time when

the task must finish executing. tlast
j = tend

j − tstart
j is the time window size for the

task. tduration
j is the duration of executing the task. Assuming that the start time of the

execution of the search subtask, the mine-neutralizing subtask, and the confirmation
subtask are t1

j , t2
j , and t3

j respectively, and the durations are tS
j , tE

j , and tV
j respectively,

the conditions should be satisfied as follows:

tstart
j ≤ t1

j ≤ t2
j ≤ t3

j ≤ tend
j (2)

t1
j + tS

j ≤ t2
j (3)

t2
j + tE

j ≤ t3
j (4)

t3
j + tV

j ≤ tend
j (5)

2.2.2. Objective Functions and Constraints

Considering the emergence of the new task point T∗, the partial task reassignment is
modeled as follows:

(1) Global objective function

max
NA

∑
i=1

(
Nt+3n∗

∑
j=1

rij(xi, pi)xij

)
(6)

xij, xi(j+(Nt+3n∗)/3), xi(j+2(Nt+3n∗)/3) ∈ {0, 1} is the decision variable for task assign-
ment, xij = 1 indicates that task j is performed by the i-th AUV, otherwise xij = 0.
pi ∈ ({1, . . . , M} ∪ {∅})Li is the sequence of paths for tasks performed by Ai. When
the k-th element of pi is m ∈ {1, . . . , M}, it indicates that the k-th task point traveled to
by the i-th AUV is the m-th task point, and when it is ∅, it indicates that the i-th AUV
is assigned less than k tasks. rij(xi, pi) ≥ 0 represents the gain that the i-th AUV gains
from executing task Tj at the k-th position on its path, which is related to factors such as
navigation distance cost and task completion time.

(2) Constraint conditions

Limit the maximum number of tasks that Ai can execute to Li.

s.t.
Nt+3n∗

∑
j=1

xij ≤ Li, ∀i = 1, . . . , NA (7)

Limit the maximum total number of tasks that all AUVs can execute to Nmin.

NA

∑
i=1

Nt+3n∗

∑
j=1

xij ≤ Nmin∆min{Nt + 3n∗, NALi} (8)
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Limit each task to be executed by a maximum of one AUV, and the task will only be
considered completed after all subtasks at each task point have been executed.

Nt+3n∗

∑
j=1

xij ≤ 1, ∀i = 1, . . . , NA (9)

NA
∑

i=1
xij ≤ 1, ∀j = 1, . . . , (Nt + 3n∗)/3 (10)

NA
∑

i=1
xi[j+(Nt+3n∗)/3] ≤ 1, ∀j = 1, . . . , (Nt + 3n∗)/3 (11)

NA
∑

i=1
xi[j+2(Nt+3n∗)/3] ≤ 1, ∀j = 1, . . . , (Nt + 3n∗)/3 (12)

Task coupling constraint:

tstart
j ≤ tj ≤ tj+(Nt+3n∗)/3 ≤ tj+2(Nt+3n∗)/3 ≤ tend

j ∀j = 1, . . . , (Nt + 3n∗)/3 (13)

tj + tS
j ≤ tj+(Nt+3n∗)/3 ∀j = 1, . . . , (Nt + 3n∗)/3 (14)

tj+(Nt+3n∗)/3 + tE
j ≤ tj+2(Nt+3n∗)/3 ∀j = 1, . . . , (Nt + 3n∗)/3 (15)

tj+2(Nt+3n∗)/3 + tV
j ≤ tend

j ∀j = 1, . . . , (Nt + 3n∗)/3 (16)

Power limit:
L(pi)

vi
ei ≤ Ei ∀i = 1, . . . , NA (17)

The initial power of the multi-AUV system is assumed to be E =
{

E1, E2, . . . , ENA

}
,

and L(pi) denotes the sailing distance for Ai to perform the task along the path pi. Thus,
the energy consumption of the task allocation scheme for Ai to execute the corresponding
task sequence voyage must not exceed its initial power.

Under multiple constraints, it is necessary to dynamically adjust the task bundles
of multiple AUV systems based on the emergence of new tasks to achieve an optimal
task allocation scheme with maximum comprehensive gains. The algorithm enhances the
flexibility and efficiency of the system, ensuring rational task assignment and the best
execution results.

3. SWCBBA-PR Algorithm
Currently, the commonly used improved CBBA algorithms for the task assignment

problem arising from new tasks are the no-reset consensus-based bundle algorithm (CBBA-
NR), the single-task reset consensus-based bundle algorithm (CBBA-SR), and the full-reset
consensus-based bundle algorithm (CBBA-FR). To ensure the speed of the CBBA-NR
algorithm, the previously assigned task plan is not reset. Although the convergence is
almost unaffected by new tasks, the flexibility of the algorithm is limited, especially in
complex, constrained scenarios. If AUVs have payload resource constraints or only a few
AUVs can perform specific tasks, the AUVs that can perform the new task T∗ may not
have sufficient resources to perform T∗; thus, they are unable to guarantee the optimal
task allocation plan. In order to solve the problem of new tasks not being assigned due
to insufficient resources in CBBA-NR, CBBA-SR will reset the last task added to the task
bundle, which is also the one with the lowest gain value, and reassign the task. However, it
does not consider the relationship between the new task and the AUV type and the original
task allocation scheme. In dynamic environments, when the situational awareness changes
significantly, CBBA-FR re-solves the new task allocation problem by re-running CBBA.
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However, the disadvantage of this algorithm is that in a task assignment scenario with nt

tasks and a communication topology network of diameter D, the new task response time
for a single task is O(ntD). Moreover, CBBA-FR ignores the already obtained conflict-free
solutions, wastes the computation and communication used to allocate the original tasks,
and does not guarantee the convergence of the original task allocation problem. In order
to better balance the quality of task allocation and convergence speed, this paper designs
SWCBBA-PR, which allows each AUV to reset a portion of its existing allocation scheme
after a new task point is discovered and then reallocates it.

3.1. Algorithm Key Elements

In the SWCBBA-PR algorithm, the first step is to explicitly define the crucial elements
of the task assignment information for the i-th AUV:

(1) Task bundle list bi

bi∆
{

bi1, . . . , bi|bi |

}
(18)

The task bundle list bi is the task bundle assigned to the i-th AUV. The tasks in the list
are assigned in order of the tasks added. |bi| is the length of the task bundle list, i.e., the
maximum number of tasks assigned to each AUV, and bi = ∅ means that the task bundle
is empty.

(2) Path list pi

pi∆
{

pi1, . . . , pi|pi |

}
(19)

The path list pi is the bundle of path sequences for the i-th AUV pending task, and
the task sequences are arranged based on the execution order during the task assignment
process. |pi| is the length of the path list, pi = ∅ means the path list is empty.

(3) Winning bid value list yi

yij ∈ yi(j = 1, 2, . . . , NT) (20)

It indicates the highest bid for the task Tj from each AUV, derived from the information
exchanges of Ai with its fellow AUVs. However, yij = 0 when Ai believes that Tj does not
have a winning bidder.

(4) Winning AUV list zi

zij ∈ zi(j = 1, 2, . . . , NT) (21)

zij = 1 denotes that the corresponding AUV that the i-th AUV considers to have the
highest bid for the task Tj is the i-th AUV, otherwise zij = 0.

(5) Timestamp list si

si∆{si1, . . . , siN} (22)

The timestamp list si records the moment at which Ai gets updated information from
the rest of the AUVs in the trusted communication range, where sik indicates the moment
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when Ai gets the latest information from Ak, as specified in the update rule in Equation (23).
This list is a key element of communication in the conflict resolution phase.

sik =

 τr gik = 1
maxslk
l:gil=1

otherwise (23)

Here, gik = 1 indicates that Ai lies within the reliable communication range of Ak,
while gik = 0 in other cases. τr is the time at which Ai gets the message.

3.2. Improved Task Bundle Construction Phase

Given the energy consumption and limited maximum operating range of AUVs in a
practical environment, a refined marginal function Spi

i is developed.

Spi
i = ∑

j∈pi

(
e−λj(tij−tstart)Rju(tij)− ei

∆Dij

vi

)
(24)

u(tij) =

{
1 tstart

j ≤ tij ≤ tend
j

0 otherwise
(25)

λj < 1 represents the time discount factor. tij is the execution time of the task Tj in
the Ai path bundle list pi. Rj is the initial gain of being assigned to complete the task Tj at
the start time, with the first term decreasing as the actual start time of the task increases
from the initial start time. The exponential function is chosen here because it has a smooth
variation characteristic, which can reflect the impact of task time changes on gains more
delicately. Compared to some simple linear functions, it is closer to the complexity of
time value changes in tasks in reality. u(tij) is the binary variable that checks whether tij

meets the time window condition as depicted in Equation (25). ei is the normalized power
consumption per unit time, and ∆Dij is the distance from Ai to task Tj.

In the multi-AUV cooperative mission tasking problem, the marginal function in
Equation (24) is composed of the time discount gain minus the power cost. This makes the
marginal function a DMG function. The introduction of the marginal function achieves the
convergence of the conflict-free allocation.

Nevertheless, this refined specification of the marginal function harbors a potential
drawback. In certain situations, due to the slow movement of AUVs in underwater
environments, the time discount gain may be less than the electricity cost, resulting in a
negative marginal function result. Consequently, task Tj will not be selected during the
task package construction phase, thus failing to achieve the goal of improving the task
allocation rate. Therefore, Equation (26) is modified.

Spi
i = ∑

j∈pi

(
Rj0 + e−λj(tij−tstart)Rju(tij)− ei

∆Dij

vi
·0.1
)

(26)

Rj0 is the fixed gain of the task Tj. To balance the fixed gain with the initial gain, the
voyage cost term is multiplied by 0.1. Also, in order to maximize the participation of AUVs
in the task, it should be ensured that Spi

i > 0. Thus, Rj0 should satisfy the following:

Rj0 > ei∆Dij − e−λj(tij−tstart)(Rj − Rj0)u(tij) ≥ ei
∆Dij

vi
(27)

The refined marginal function takes into account the heterogeneity of AUVs. Firstly,
AUVs of various types have distinct navigation velocities, which leads to varying arrival
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times at the target. Secondly, AUVs of different types feature different levels of standardized
power consumption.

Since the task coupling constraint also involves the temporal coupling relationship
between tasks, a soft time window is employed to update the task start time dynamically to
address this issue. The mechanism of task-specific soft time window updating is presented
in Algorithm 1.

Algorithm 1. SWCBBA-PR: task soft time window update mechanism in the t-th iteration

Inputs: list of winning AUVs at the t-th iteration zi(t), task start time tstart
j , execution time tduration

j .

Output: updated task start time tstart
j .

1: for j = 1 to Nt do
2: if i ≤ NA makes zi(j−Nt/3)(t) = 1 do
3: tstart

j = tstart
j−Nt/3 + tduration

j−Nt/3

4: end
5: end for

To meet the complex task coupling constraints, each AUV needs to update matchij

before constructing a task bundle to ensure that the resulting task allocation scheme satisfies
the resource constraints of a heterogeneous multi-AUV system. During initialization, the
start time of the lower-level task is the specified end time of the upper-level task. After the
algorithm starts running, it determines whether the upper-level task has been assigned.
This determination is based on the AUV list zi(t) obtained at the t-th iteration. If it has been
assigned, the end time of the upper-level task is used as the start time of the lower-level
task, and the task timing constraint is transformed into a task soft time window constraint.

Consequently, Algorithm 2 describes the enhanced phase of task bundle construction.

Algorithm 2. SWCBBA-PR: task bundle construction phase for the i-th AUV in the t-th iteration

Input: the result at the (t−1)-th iteration bi(t − 1), pi(t − 1), yi(t − 1), zi(t − 1), si(t − 1), tstart
j , tduration

j .

Output: the result at the t-th iteration bi(t), pi(t), yi(t), zi(t), si(t), tstart
j .

1: bi(t) = bi(t − 1), pi(t) = pi(t − 1), yi(t) = yi(t − 1), zi(t) = zi(t − 1), si(t) = si(t − 1)
2: while |bi(t)| ≤ Li do

3: cij(bi) = max
n≤|pi |

Spi⊕n{j}
i − Spi

i , ∀Tj ∈ T\bi

4: hij = I I
(
cij > yij

)
∀j ∈ NT

5: Ji = argmaxj
(
cij(bi)× hij

)
6: ni,Ji = argmaxjS

pi⊕n{Ji}
i

7: bi = bi ⊕end {Ji}, pi = pi ⊕ni,Ji
{Ji}

8: yi,Ji (t) = ci,Ji , zi,Ji (t) = i
9: Update the task time window in accordance with Algorithm 1
10: end while

Line 9 has been added to the base CBBA algorithm in order to satisfy the task coupling
constraints while u(tij) of Equation (25) has been added to the marginal function in line 3.
This is done so that only task solutions satisfying the timing constraints can be added to the
task bundles. Added in an optimal position, they should have non-negative marginal gains.

In summary, the improved mission bundle construction phase with a soft time window
update mechanism can select mission scenarios. These scenarios are for heterogeneous
multi-AUV systems and satisfy the AUV characteristics and mission coupling constraints
in the MCM mission scenario.
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3.3. Improved Conflict Resolution Stage

To address the complex task coupling constraints, the conflict resolution phase is
divided into local conflict resolution and global conflict resolution. The global conflict
resolution stage is the conflict resolution stage in the CBBA algorithm. The specific process
of resolving local conflicts is presented in Algorithm 3.

Algorithm 3. SWCBBA-PR: local conflict resolution phase for the i-th AUV in the t-th iteration

Input: result to be updated in the t-th iteration yi(t), zi(t), si(t) and sender’s message yk(t), zk(t), sk(t)
Output: Update results for the t-th iteration yi(t), zi(t), si(t)
1: for Tj ∈ bi do
2: if j ≤ Nt/3 do %Update assignment information for search subtasks
3: Updated in accordance with CBBA conflict resolution rules yi(t), zi(t), si(t)
4: else if j ≤ 2Nt/3 and si(j−Nt/3)(t) = sk(j−Nt/3)(t) do %Update the assignment of the mine-neutralizing subtasks
5: Updated in accordance with CBBA conflict resolution rules yi(t), zi(t)
6: else if si(j−2Nt/3)(t) = sk(j−2Nt/3)(t) do %Update the assignment information of the confirming subtasks
7: Updated in accordance with CBBA conflict resolution rules yi(t), zi(t)
8: else
9: yij(t) = 0, zij(t) = ∅, sij(t) = 0
10: yi(j−Nt/3)(t) = 0, zi(j−Nt/3)(t) = ∅, si(j−Nt/3)(t) = 0
11: yi(j−2Nt/3)(t) = 0, zi(j−2Nt/3)(t) = ∅, si(j−2Nt/3)(t) = 0
12: end
13: end
14: end
15: end for

From Algorithm 3, it can be seen that in order to satisfy the task coupling constraints of
the MCM mission scenario, the assignment of the mine-neutralizing subtask is constrained
by the assignment of the search subtask, while the assignment of the confirmation subtask
is constrained by the assignment of the mine-neutralizing subtask. Lines 2–3 indicate that
the search subtask is a first-level subtask and is not constrained by any other subtasks.
Thus, the local conflict resolution phase of the search subtask is only influenced by the
communication message update. Lines 4–7 indicate that when the allocation information
for the upper-level subtasks is consistent, the allocation information for the lower-level
tasks will be updated according to the CBBA conflict resolution rules. Otherwise, all
subtasks related to this upper-level task in the task bundle will be released. Therefore,
the local conflict resolution phase can ensure that the task allocation scheme satisfies the
coupling constraints of task timing.

3.4. Improved Task Reassignment Program

Due to the limited trusted communication range, SWCBBA-PR’s core concept is to
convert the overall allocation process into multiple static task allocations at discrete time
steps; that is, the motion process of a multi-AUV system is discretized and processed by
the time step T. When T = 0, the AUV converges to a task allocation scheme with partial
conflicts based on its own and the initial position information of the task, constrained by
the trusted communication range Dcd, by iterating between the task packet construction
stage and the conflict resolution stage. As the discrete time step increases towards the
current mission-goal location, all individual AUVs follow the planned mission sequence
and path. The topological state of the communication network of the AUV cluster changes
when different AUVs enter the communication range, or the task state changes when
the task is completed. Based on its own and the current status of the task, the AUV
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exchanges intermediate and winning AUV information with fellow AUVs present in its
communication coverage area, resolves task conflicts in previous allocation schemes, then
reassigns tasks and updates the discrete time step T → T + 1 . It iterates until all AUVs
complete all tasks in their task bundle or exceed the maximum task completion time Tmax.
The detailed procedure is described in Algorithm 4.

Algorithm 4. SWCBBA-PR: trusted communication throughput map altered task reassignment scheme

Input: T = 0, G(0) = O, POSi(0), POSj, pi(0) = ∅, Tmax.
Output: the result of the task assignment bi, pi, yi, zi, si.
1: while T < Tmax and T = 0 or pi(T) ̸= ∅ do
2: for i = 1 to NA do
3: for k = 1 to NA do
4: if i ̸= k and D(Ai, Ak) ≤ (Dcd/2) do
5: gik(T) = 1
6: gki(T) = 1
7: else
8: gik(T) = 0
9: gki(T) = 0
10: end
11: end for
12: end for
13: if G(T) ̸= G(T − 1) do
14: for i = 1 to NA do
15: Using CBBA to reallocate unallocated tasks in the new trusted communication graph
16: end for
17: end
18: for i = 1 to NA do
19: Tj = pi

i(T)
20: if D(Ai, Tj) ≤ |vi(T)| · ∆T do

21: pi(T + 1) = p2:|pi |
i (T)

22: POSi(T + 1) = POSj

23: else
24: POSi(T + 1) = POSi(T) + vi(T)∆T
25: end
26: end for
27: T = T + 1
28: end while

In Algorithm 4, T is the discrete time step, G is the trusted communication topology
map of the AUV cluster, POSi(T) denotes the real-time location of Ai, POSj denotes the
location of the task Tj, and pi denotes the real-time path sequence of Ai. Lines 2–12
demonstrate that at every discrete step, the AUV cluster needs to update its trust-based
communication topology map determined by distance. Lines 13–17 indicate that when
the communication topology map changes, the AUV cluster will perform partial task
reassignment. Tasks completed or in progress before the discrete step T must be the
optimal plans. This is because they result from communication and conflict resolution with
other AUVs. Therefore, each reallocation only involves tasks that were unassigned before
the discrete step T. AUVs engaged in task execution do not participate in the reallocation
phase, preventing duplicate allocation. Lines 18–26 show that during every discrete time
step, every AUV will follow its pre-planned route to update its location.
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3.5. Partial Reset Mechanism Design

For the above task scenarios, a partial reset mechanism is introduced. First, a reset
task candidate set Jreset

i is established. This is based on the relationship between the time
and location of the discovery of the new task point and the time series and distance of the
original task allocation result. Second, nreset

i tasks with the lowest return value are selected
for reset and denoted as Treset

i . Also, the lower-level tasks related to Treset
i are reset. Then,

constraint-violation tasks and task conflicts are resolved through local and global conflict
resolution stages. Meanwhile, the size of nreset

i can be adjusted by integrating the number
of new tasks and the response speed requirement.

The specific algorithm for the partial reset mechanism is presented in Algorithm 5.

Algorithm 5. SWCBBA-PR: partial reset mechanism for the i-th AUV in the t-th iteration

Input: the result in the (t−1)-th iteration bi(t − 1), pi(t − 1), yi(t − 1), zi(t − 1), si(t − 1).
Output: the input bi(t), pi(t), yi(t), zi(t), si(t) in the t-th iteration.
1: bi(t) = bi(t − 1), pi(t) = pi(t − 1), yi(t) = yi(t − 1), zi(t) = zi(t − 1), si(t) = si(t − 1)

2: nreset
i = tres

2·tcom
+

n∗
i

2
3: if matchi∗ = 1 do
4: Jreset

i = ∅
5: for Tj ∈ bi(t) do

6: if
(

tstart
∗ > tij +

∆Dj∗
vi

)
or
(

tend
∗ +

∆Dj∗
vi

< tij

)
do

7: if ∆Dj∗ < Dreset do
8: Jreset

i = Jreset
i ∪ {j}

9: end if
10: end if
11: end for
12: ysort

i (t) = Sort
(
yreset

i (t)
)

13: Treset
i =

{
j ∈ Jreset

i

∣∣∣yi
ij ∈ ysort

i (t)
[
1 : nreset

i
]}

14: for j ∈ Treset
i do

15: bi(t) = bi(t)/j, pi(t) = pi(t)/j
16: yij(t) = 0, zij(t) = ∅, sij(t) = 0
17: yi(j−Nt/3)(t) = 0, zi(j−Nt/3)(t) = ∅, si(j−Nt/3)(t) = 0
18: yi(j−2Nt/3)(t) = 0, zi(j−2Nt/3)(t) = ∅, si(j−2Nt/3)(t) = 0
19: end for
20: end if

The tres in line 2 is the response speed required by the new task point. It can be
seen that the size of nreset

i combines the number of new tasks and the response speed
requirement. In line 3, Ai determines whether to participate in the partial reset mechanism
based on the matching matrix matchi∗ between AUVs and tasks. Only AUVs capable of
performing the new task T∗ undergo partial reset. Lines 4–11 aim to avoid unnecessary
computational complexity by establishing a reset task candidate set Jreset

i , which includes
tasks with execution time coinciding with the time when the new task T∗ was discovered,
and the end time [tstart

∗ , tend
∗ ], as well as tasks that are less than Dreset away from the new

task point. Line 12 ranks the tasks in the task alternative set Jreset
i according to their gain

value in the list of winning values yi(t), and in line 13, the nreset
i task with the smallest gain

value, i.e., Treset
i , is selected as the reset task since the optimal insertion location of the new

task has a high probability of being either before or after the distance from the execution of
the nearest task. Lines 14–19 reset Treset

i , and also reset the lower-level tasks coupled to this
upper-level task to ensure compliance with MCM task coupling constraints.
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As can be seen in Algorithm 5, after the discovery of the new task point T∗, a reset task
alternative set Jreset

i is created. This set is formed from the tasks in the original assignment
scheme task bundle. The creation is based on the relationship between the time and place
where the new task point was discovered and the time series and distance from the original
task assignment result. The task is reset by deleting tasks from bi(t) and pi(t) and resetting
the values in yij(t) and zij(t). The aim is to achieve better resource allocation by reallocating
existing tasks while still ensuring the convergence of the algorithm. nreset

i can be adjusted
to adapt to the response time required for the new task. In addition, SWCBBA-PR only
selects AUVs that are compatible with the new task type to participate in reassignment.
This can reuse the original allocation in zi(t) and ensure that no reset tasks are “wasted”
on AUVs that did not participate in reassignment. Meanwhile, the algorithm can choose
to reset only some tasks based on the time series and distances between new task points
and original task assignments. It continues to utilize yi(t) and zi(t) to achieve replanning
within the desired convergence range.

The flowchart of the SWCBBA-PR algorithm is depicted in Figure 3, and the step-by-
step instructions are as follows:

Step 1: Initialize the task allocation system, which includes:

(1) Initialize the clock so that all AUVs share a common zero-time instant.
(2) Initialize AUV parameters, such as initial coordinates, speed, and equipment information.
(3) Initialize task information, mainly task coordinates, time windows, and type information.

Multiple AUVs wait at their initial coordinate positions before receiving commands.

Step 2: Establish a communication topology among all AUVs to ensure the accurate
sending and receiving of task bundles and execution status.

Step 3: Each AUV conducts task allocation according to the communication reallo-
cation consensus-based bundle algorithm with a soft time window. Consider the task
coupling constraints of MCM mission. Introduce the parameter of timestamp. Design local
and global conflict resolution stages to resolve conflicts in the task allocation results. Send
the time information and the optimized task bundles of each AUV to the AUVs within the
trusted communication range.

Step 4: Each AUV follows the allocated task bundle and goes to each suspicious point
in sequence to execute tasks. The AUV updates its position according to the set discrete
time. When the communication topology among AUVs changes, re-allocate the tasks that
have not been allocated before time T according to the actual situation, and then execute
the tasks.

Step 5: If new task points emerge, establish a reset task alternative set based on their
temporal and distance relationships with the original task allocation plan. Select the nreset

i
tasks with the lowest gain value from the set for reallocation to obtain a new task allocation
plan and then continue to execute tasks.

Step 6: After exceeding the maximum task completion time Tmax or all tasks in the
task package have been completed, the entire task execution process ends.
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3.6. Convergence Analysis of the SWCBBA-PR Algorithm

The premise for SWCBBA-PR to generate feasible and conflict-free task allocation
schemes that satisfy complex constraints is that the marginal function in the task pack-
age construction phase should satisfy the DMG condition. Resetting nreset

i tasks without
selection or using CBBA-NR or CBBA-FR algorithms may result in reassigned tasks not
meeting the DMG conditions. This may lead to the inability to ensure convergence or
obtain conflict-free task allocation schemes.

Therefore, a key requirement for SWCBBA-PR to select the tasks to be used for reset is
that Treset

i must be the task with the lowest gain value in each AUV task bundle. This ensures
that the marginal function satisfies the DMG condition, guaranteeing the convergence of
the SWCBBA-PR algorithm. If task resets are performed in other orders (such as random
selection or highest bid), the algorithm cannot achieve decreasing bids and converge to a
conflict-free solution.

As a result, each AUV in SWCBBA-PR resets only the nreset
i tasks in the task bundle

with the lowest gain value, and the algorithm can converge to a conflict-free task assignment
solution in finite time. While SWCBBA-PR is more stable compared with CBBA-FR in
terms of convergence, there is no guarantee that performance will improve in the worst
case. Suppose there is only one task that needs to be reset for an AUV, and that task
happens to be the first one in the task bundle of the original allocation scheme, it may lead
to complete replanning.

However, if the algorithm converges on the first Nt tasks before the new task T∗ is
discovered, then it can ensure a worst-case performance of O(nresetDcd), where nreset =

NAnreset
i denotes the total number of tasks that need to be reset for a multi-AUV system.

In this case, the algorithm can then select the lowest bid task from the entire multi-AUV
system. Since the algorithm has reached a consensus on the initial task allocation scheme,
these nreset lowest-bid-value tasks are actually the last nreset tasks allocated during the task
bundle construction phase. As higher-value tasks continue to be assigned, the algorithm is
able to converge within O(nresetDcd) communication rounds after the partial reset.

4. Simulation Results and Analysis
Simulate and validate the designed SWCBBA-PR algorithm in the process of discover-

ing new suspicious task points during the search, mine neutralization, and confirmation
tasks of light and heavy AUVs to complete anti-mine missions. Section 4.1 validates the
feasibility of SWCBBA-PR and Section 4.2 validates the algorithm performance under
different discovery conditions during the execution of search subtasks and compares it
with the introduction of SWCBBA-NR and SWCBBA-FR.

Within a two-dimensional area of 1 km × 1 km, heterogeneous AUV clusters need to
perform search, mine neutralization, and confirmation subtasks on multiple suspicious task
points within [0, 3000] seconds, i.e., the maximum discrete time step is Tmax = 3000 s. The
maximum number of tasks that an AUV can execute is Li = 8, and the fixed gain Rj0 = 150.
For the sake of demonstration, the T10 task point is taken as a newly discovered task point
randomly found when the AUV performs the search subtasks of other task points. The
parameter settings for heterogeneous AUVs and various types of subtasks are shown in
Tables 1 and 2, respectively. The matching table of heterogeneous AUVs and various types
of subtasks is presented in Table 3.
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Table 1. Heterogeneous AUV parameters.

AUV Type Speed vi (m/s) Range Ci (m) Standardized Power Consumption ei

Light AUV A1–A3 2 5000 1
Heavy AUV A4–A6 2 10,000 2

Table 2. Subtask parameters.

Subtask Type Execution Time tduration
j (s) Initial Gain Rj Time Discount Factor λj

Search subtasks T1–T10 120 200 0.1
Mine-neutralizing subtasks

T11–T20
180 300 0.1

Confirmation subtasks
T21–T30

120 200 0.1

Table 3. AUV and subtask matching table.

Whether the AUV Can Perform Subtasks
Subtask Type

Search
Subtasks Mine-Neutralizing Subtasks Confirmation

Subtasks

AUV type Light AUV yes no yes
Heavy AUV no yes no

Based on the above parameters, the performance of SWCBBA-PR is verified from
several aspects.

4.1. Feasibility Verification of the SWCBBA-PR Algorithm

For the convenience of simulation effect display, six heterogeneous AUVs are set
to perform anti-mine tasks on nine known suspicious task points, i.e., searching, mine
neutralization, and confirming a total of Nt = 27 subtasks. When executing a random
search subtask, a new suspicious task point, T10, is discovered. The starting positions of
AUVs and the locations of known tasks are randomly dispersed across the task zone, and
the positions of new suspicious task points are randomly distributed within the detection
range of 45.72 m of the detection sonar carried by the lightweight AUV. The start time of
the known task is randomly allocated by the system, and the start time of the new task is
the end time of the search subtask that discovered it. AUVs have a trusted communication
distance of 400 m, which means Dcd = 400 m. In Figures 4–7 blue, green, and red represent
the search subtask, mine neutralization subtask, and confirmation subtask, respectively. In
the left subfigure, blue represents the light AUV and green represents the heavy AUV.

When the discrete time step T = 0, the task paths and task timing assigned to each
AUV are presented in Figure 4. In the initial allocation result, some AUVs are not within
the trusted communication range, leading to the redundant assignment of tasks T13, T14,
T15, T18, T19, T26, and T27. Due to the repeated allocation occupying the AUV task package,
one search subtask was not assigned, resulting in subsequent mine neutralization and
confirmation subtasks being unassignable. From the graph, it can be seen that although
the task allocation scheme satisfies the task coupling constraints of MCM mission task
allocation, the collaborative effect of multiple AUVs is poor, with a task allocation rate of
only 85.19%, a suspicious task point resolution rate of only 77.78%, and a global total gain
of only 5571.40.
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Before and after the new task discovery, i.e., before and after the execution of the
partial task reset mechanism, the task paths assigned by each AUV and the timing of
the specific executed tasks are shown in Figures 5 and 6, respectively. From Figure 5, it
can be seen that as the discrete time T increases, through the SWCBBA-CR algorithm for
reallocation, there is no task reallocation in the task allocation results, and the global total
gain is also higher than the initial allocation, which is 6980.86. From Figure 6, after the
execution of the T3 searching subtask, a new suspicious task point T10 is found within
the detection range, with its start time being the end time of T3 execution. As the new
task point is discovered, A1, A2, and A3 with corresponding task execution capability will
participate in the execution of the partial task reset mechanism. Firstly, based on whether
the task start time overlaps with the task time sequence before the discovery of the new
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task point and the relationship between the distance of the new task point and the other
task points, the reset task alternative set Jreset

1 = {T9}, Jreset
3 = {T8, T4, T7} is established.

Among them, A2 has no alternative reset task because the task execution time of T6 and
T1, although coinciding with the new task time window, is too far away from the new task
point and, therefore, not included in the reset task candidate set. Secondly, the number of
new tasks n∗ = 1 and the response speed requirement tres = 150, tcom = 50 are combined
to determine nreset

i = 2, and then the nreset
i task with the lowest gain value,Treset

1 = {T9},
Treset

3 = {T8, T4}, is selected from Jreset
1 and Jreset

3 for reset. In addition, in order to ensure
that the MCM task coupling constraints are satisfied, the lower-level tasks that are coupled
to this upper-level task, i.e., T14, T18, T19, T24, T28, T29, are also reset.
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After task reassignment by the SWCBBA-PR algorithm, the task paths assigned to
each AUV and the timing of the specific execution tasks are shown in Figure 7.

In Figure 7, it is evident that the heterogeneous AUVs are capable of fulfilling all
the subtasks within the stipulated time, and no task conflicts occur among the AUVs
during task execution. From the color-matching of the AUVs executing the tasks and the
subtask points, it can be seen that the task allocation scheme satisfies the heterogeneous
task execution capability constraints of the multi-AUV system. Specifically, light AUVs
execute search and confirmation subtasks, while heavy AUVs execute mine-neutralizing
subtasks. From the figure, we can also see that there is no duplicate assignment of tasks in
the allocation result, and an AUV can only execute one task at a time, and a task is only
executed by one AUV, which satisfies the collaboration constraints of the heterogeneous
multi-AUV system, improves the system’s collaborative operation capability, and optimizes
the system’s resource allocation. At the same time, the search subtasks, mine-neutralizing
subtasks, and confirmation subtasks of the same suspicious task point meet the required
task coupling constraints, i.e., task priority requirements and task timing requirements.

Subtasks have an assignment rate of 100%, and the suspicious task point resolution rate
also reaches 100%. The total global gain is 8237.28, which is about 1.5 times the rate before
reallocation. Therefore, the SWCBBA-PR algorithm can realize the heterogeneous AUV
collaborative task allocation for searching new tasks in MCM mission tasks. It produces a
feasible and conflict-free task allocation scheme that complies with multiple constraints.

4.2. New Task Simulation of Algorithms for Being Found at Different Time Locations

From the task scenario, new task points are discovered at different times and locations,
indicating they were detected within the detection range during different search-subtask
executions. To verify the performance and superiority of SWCBBA-PR when new tasks
are discovered during different search-subtask executions, this section first simulates
the performance under such discovery scenarios and then introduces SWCBBA-NR and
SWCBBA-FR for comparison.

In order to verify the performance of SWCBBA-PR during the execution of different
search subtasks, Table 4 shows the average task-assignment rate, global total gain, conver-
gence time, and reallocation number for 100 Monte Carlo simulations under the conditions
of NA = 6, Nt + n∗ = 30. Owing to page limitations, only the integer parts of the global total
gain and convergence time are retained in Table 4.

Table 4. Performance under the discovered condition at different search-subtask executions.

Performance Indicators
Search Subtasks in Progress When Discovering New Task Points

T1 T2 T4 T5 T6 T7 T8 T9

Mandate distribution rate 100% 100% 100% 100% 100% 100% 100% 100%
Total global gain 8304 8145 8332 8073 8157 8107 8280 8621

Convergence time (s) 42 41 40 33 41 43 41 32
Number of redistributions 74 72 71 68 70 78 74 62

From Table 4, under different search-subtask execution conditions, the global total
gain is generally stable at over 8100. The convergence time is generally stable at around 40,
and the number of reallocations is generally stable at around 70. The main difference when
executing different search subtasks is that the positions of new suspicious task points are
randomly distributed within the AUV’s detection range. This leads to varying navigation
losses when executing subtasks for new task points, causing fluctuations in the overall
global gain. The closer the distance, the smaller the decay of the subtask’s initial gain
over time and the lower the navigation loss, thus increasing the overall gain. Based on
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the SWCBBA-PR algorithm process, the convergence time is related to the number of
reallocations and the introduction of the partial reset mechanism. From the table, it can
be seen that the convergence time is slightly larger than SWCBBA-CR, which is due to the
introduction of a partial reset mechanism to handle newly emerging task points, increasing
computational complexity. The number of reallocations is basically consistent with the
execution of the SWCBBA-CR algorithm, indicating that the introduction of a partial reset
mechanism has almost no impact on the execution of the communication reassignment
process, and the change in the number of reallocations is mainly related to the position of
the new task point. However, regardless of which search subtask the new suspicious task
point is discovered during execution, the task allocation rate can remain stable at 100%,
and the task allocation scheme can meet the task coupling constraints of MCM mission
tasks, achieving optimal resource allocation for multi AUV systems.

The advantage of SWCBBA-NR is that the convergence of the algorithm is almost
unaffected by new tasks, and the algorithm will never consider reallocating existing task al-
location schemes but only bid to insert new tasks into existing task packages. By effectively
bidding only for new tasks and not allowing bidding for other tasks on its path, multi-AUV
systems can achieve task reallocation very quickly. However, SWCBBA-NR has limited
allocation flexibility, which leads to certain limitations on its global total gain. When a
new task point is discovered, SWCBBA-FR needs to reset all previous task allocation plans
to account for the new task. SWCBBA-FR provides the system with maximum flexibility
when assigning new tasks, as this algorithm is completely unconstrained by previous task
allocation schemes. Although this algorithm increases system collaboration, one drawback
is that it no longer guarantees the convergence of the original task allocation problem,
resulting in longer convergence times.

From Table 5, since SWCBBA-NR lacks a task reset mechanism, tasks in the previous
task allocation scheme may occupy AUV resources. This leads to a poorer global total
gain compared with the SWCBBA-PR algorithm. Due to the task reset of all tasks by
SWCBBA-FR, its global total gain is consistent with the SWCBBA-PR algorithm. Compared
with other algorithms, while satisfying the task priority and timing constraints in MCM
mission tasks, SWCBBA-PR can arrange the optimal task timing for the subtask allocation
of new task points. Thus, it can obtain the optimal average global total gain under different
search-subtask execution conditions. That is, SWCBBA-PR can optimize the configuration
of heterogeneous multi-AUV systems to generate better task allocation schemes.

Table 5. Average global total gain of algorithms under the condition of being discovered at different
search-subtask executions.

Search Subtasks
Arithmetic

SWCBBA-PR SWCBBA-NR SWCBBA-FR

T1 8304.15 7523.49 8304.15
T2 8145. 83 7229.92 8145. 83
T4 8332.21 7529.39 8332.21
T5 8073.19 7123.29 8073.19
T6 8156.58 7242.30 8156.58
T7 8107.32 7209.24 8107.32
T8 8279.89 7301.28 8279.89
T9 8621.30 7618.92 8621.30

From Table 6, it can be seen that SWCBBA-FR needs to reset all tasks; that is, all
task allocation steps need to be re-executed, and the convergence time is about twice that
of the SWCBBA-PR algorithm. Because SWCBBA-NR does not perform task reset, its
convergence time is about 5 s shorter than SWCBBA-PR’s. However, the global total gain
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of the SWCBBA-NR algorithm is 10% worse than that of the SWCBBA-PR algorithm. In
addition, under the condition where a new task is discovered during the execution of the
search subtask T9, the difference in convergence time between the SWCBBA-PR algorithm
and the SWCBBA-NR algorithm is the largest, but their convergence times are both within
the same range of magnitude, and the convergence time has only increased by 6.03 s, which
meets the real-time requirements of the algorithm.

Table 6. The average convergence time (in seconds) of three algorithms under different search-subtask
execution conditions.

Search Subtasks
Arithmetic

SWCBBA-PR SWCBBA-NR SWCBBA-FR

T1 41.67 36.89 81.88
T2 41.37 36.50 81.65
T4 40.39 34.76 79.75
T5 32.58 28.75 70.88
T6 40.60 34.91 79.94
T7 42.69 36.95 82.88
T8 41.49 36.51 81.53
T9 31.80 25.77 69.71

In summary, SWCBBA-PR is found to perform best under different search-subtask
execution conditions and can produce more effective task allocation schemes. To address the
new task allocation problem in the heterogeneous multi-AUV cooperative task allocation
model for the scenario where new tasks emerge during MCM missions, SWCBBA-PR
needs to introduce a partial reset mechanism. This slightly increases the computational
complexity but enables obtaining a more optimal task allocation plan.

5. Conclusions
In this study, we considered the limitations of underwater acoustic communication.

We successfully introduced the soft time window and partial reallocation mechanism into
the CBBA algorithm, thereby creating the SWCBBA-PR algorithm. This algorithm enables
collaborative task allocation for multiple heterogeneous AUVs when new suspicious task
points emerge in the MCM mission scenario. This paper conducts simulation verification
from two aspects:

(1) Verification of the algorithm’s feasibility. A comparative analysis is carried out on
the task allocation situations at four moments: the initial moment of task allocation,
before the discovery of a new task point, after the discovery of a new task point, and
after the completion of task reallocation. The results show that this algorithm can
ensure full coverage of suspicious task points and a subtask allocation rate of 100%.
The change in the global total gain of its allocation scheme conforms to objective laws.

(2) Comparative analysis of algorithm performance. In response to the situation where
new task points are discovered during the execution of different search subtasks,
100 Monte Carlo simulations are conducted on three algorithms: SWCBBA-PR,
SWCBBA-NR, and SWCBBA-FR. The results indicate that the total gain of the al-
location scheme of SWCBBA-PR is consistent with that of SWCBBA-FR, while the
convergence time is approximately half shorter than that of SWCBBA-FR. Although
the convergence time of SWCBBA-PR is slightly higher than that of SWCBBA-NR, its
global total gain is increased by more than 10%.

In conclusion, this algorithm not only meets the complex task time-sequence coupling
constraints in the MCM task scenario but also fully utilizes the original allocation plan
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to efficiently re-allocate tasks when new suspicious task points appear. This algorithm
has better optimization and convergence performance and is suitable for task allocation in
the MCM mission scenario. Meanwhile, it is expected to be improved and expanded in
other fields.

Although this study builds on the CBBA algorithm and has achieved some results in
task allocation of heterogeneous multi-AUVs, the research has not fully considered various
real-world factors. Therefore, significant follow-up research is still required, including
the following:

(1) Collaborative path planning for heterogeneous multi-AUVs. This paper only studies
the execution of mission tasks from the task-allocation aspect. The paths used in
the decision-making process are merely point-to-point straight-line distances. How
to select paths that meet the maneuverability requirements of the heterogeneous
multi-AUV system is another pressing issue.

(2) Task allocation in a three-dimensional complex underwater environment. This study
is conducted in a two-dimensional planar environment. However, the actual area for
mission task execution is a complex three-dimensional underwater region. In this
region, there are many complex and variable factors, such as ocean currents, tides,
and marine organisms, which pose more complex challenges to AUVs in mission
task allocation.

(3) Collision and obstacle avoidance among heterogeneous multi-AUV systems. This
study assumes that all mission task execution areas are in the deep sea without
considering the collisions between obstacles and AUVs in the system. With the
increase in the number of AUVs in the task execution area, further research on collision
and obstacle avoidance in the collaborative task allocation of heterogeneous multi-
AUVs is needed.
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