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Abstract: Three-dimensional (3D) dynamic trajectory planning for Autonomous Underwa-
ter Vehicles (AUVs) is associated with significant challenges such as balancing the trajectory
quality, computational efficiency, and environmental adaptability within complex dynamic
environments. To tackle these challenges, this paper proposes a novel trajectory planning
framework by integrating Proximal Policy Optimization (PPO) and an Improved Inter-
fered Fluid Dynamic System (IIFDS). The IIFDS serves as the planning layer, generating
obstacle-adaptive trajectories for AUVs through the dynamic adjustment of flow field pa-
rameters. Meanwhile, PPO functions as the learning and decision-making layer, optimizing
critical parameters in IIFDS, including repulsion response coefficients, tangential response
coefficients, and directional coefficients, to enhance adaptability and real-time decision-
making. To meet specific mission requirements, the IIFDS incorporates dynamics and
kinematics constraints, while the PPO reward function is improved with a multi-objective
dynamic structure. This reward design integrates objectives such as obstacle avoidance,
target distance minimization, trajectory smoothness, dynamics constraints, and energy
efficiency. These enhancements address sparse reward issues effectively and significantly
improve the convergence and practical applicability of trajectory planning. Additionally, a
diverse and dynamically complex obstacle environment is constructed for model training
and performance evaluation. The experimental results demonstrate that the proposed
framework efficiently generates smooth, energy-efficient, and collision-free trajectories
in high-density dynamic obstacle scenarios. The framework exhibits strong robustness,
excellent generalization capabilities, and offers a reliable solution for 3D dynamic trajectory
planning for AUVs.

Keywords: autonomous underwater vehicles (AUVs); trajectory planning; improved
interfered fluid dynamic system (IIFDS); proximal policy optimization (PPO)

1. Introduction

The increasing global demand for marine resource exploration and environmental
protection has driven the widespread application of Autonomous Underwater Vehicles
(AUVs) in fields such as deep-sea exploration, seabed topographic mapping, environmental
monitoring, and resource prospecting [1]. However, the complexity and dynamic nature of
the marine environment—characterized by variable ocean currents, dense moving obstacles
(such as ice floes or marine organisms), and irregular three-dimensional terrains—poses
significant challenges to AUV navigation. Consequently, achieving efficient and reliable 3D
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trajectory planning for AUV in dynamic and complex environments has become a crucial
research topic in ocean engineering and intelligent control.

Existing studies show that AUV trajectory planning tasks encompass three major
categories of algorithms: classical graph search algorithms, heuristic algorithms, and
intelligent algorithms. Each category has its own strengths and limitations and is suitable
for different environmental conditions and performance requirements based on the nature
of the problem and the application scenario. Specifically, classical algorithms, such as
A* [2] and Dijkstra [3], are based on rigorous mathematical theory and are capable of
finding optimal paths in known and stable static environments. These algorithms are
computationally efficient and well-suited for trajectory planning problems. However,
they struggle to handle dynamic obstacles, high-dimensional complex environments, and
the computational burdens of large-scale problems. Heuristic algorithms, such as the
Artificial Potential Field (APF) [4] method and Rapidly Exploring Random Trees (RRTs) [5],
incorporate heuristic functions or random extension strategies. These methods exhibit
good real-time responsiveness and flexibility in dynamic and complex environments,
enabling rapid obstacle avoidance and efficient pathfinding. However, they are prone to
local optima and heavily rely on parameter tuning, which limits their ability to guarantee
globally optimal solutions. Intelligent algorithms, such as Deep Reinforcement Learning
(DRL) [6] and Genetic Algorithms (GAs) [7], mimic biological learning mechanisms and are
well suited to handling complex and dynamically changing environments. They exhibit
strong adaptability and self-learning capabilities, especially for multi-objective optimization
problems. Nevertheless, the training process for intelligent algorithms requires large
amounts of data and computational resources, and their results often lack stability and
convergence, particularly in highly uncertain environments. In practical applications,
these three categories of algorithms have different applications depending on the task
characteristics and performance requirements: classical algorithms are suited for optimal
pathfinding in known environments, heuristic algorithms are ideal for real-time reactions
in dynamic environments, while intelligent algorithms excel at tackling highly uncertain,
complex, and multi-objective dynamic tasks.

The APF method is a commonly used local planning approach, characterized by its
simplicity, low computational complexity, and fast responsiveness, making it suitable for
online planning. However, traditional APF methods may fail to generate feasible or optimal
paths due to issues such as target inaccessibility and local optima. To address this, many
researchers have analyzed and improved the APF method. One notable example is the
work of Ge Shuzhi’s team at the National University of Singapore [8], which enhanced
the repulsive potential field function to address issues such as local minima, unreachable
targets, and the avoidance of moving threats. Despite these improvements, APF still lacks
the concept of obstacle shapes (envelopes) and relies entirely on force field adjustments to
generate paths. As a result, improper parameter tuning may cause AUVs to enter obstacles,
leading to failures in obstacle avoidance. To overcome the limitations of APF, researchers
proposed the stream function method based on the fundamental principles of potential
fields [9,10]. This method provides advantages such as a fast planning speed and smooth
trajectories. However, the concept of stream functions becomes invalid when extending it
from two-dimensional to three-dimensional planning spaces, limiting this method to 2D
trajectory planning.

To address this issue, researchers introduced a 3D trajectory planning method inspired
by the “flowing water avoiding stones” principle [11], which references the macroscopic
behavior of natural water flow: water flows in a straight line in the absence of obstacles,
while it smoothly bypasses obstacles and continues toward its target when obstructions are
present. This method integrates trajectory planning with fluid computation by introducing
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the concept of three-dimensional obstacle envelopes. However, traditional flow-based
methods still have significant limitations: (1) analytical methods can only handle spherical
obstacles; (2) due to the need for computational fluid dynamics simulations, the computa-
tional cost is excessively high, restricting these methods to offline trajectory planning.

To address the limitations of traditional flow-based methods, the Interfered Fluid
Dynamical System (IFDS) algorithm was first proposed [11]. Based on analytical meth-
ods, IFDS avoids solving fluid equations with complex boundary conditions, making it
suitable for handling complex terrains and various obstacle shapes. The planned routes
not only retain the natural characteristics of flow-based methods but also feature simple
environmental modeling and a low computational cost, significantly expanding the appli-
cability of flow-based methods. However, the streamline distribution generated by IFDS
has certain limitations and is prone to local traps and stagnation points, which cannot be
fundamentally resolved by auxiliary strategies alone [12]. The root cause of these issues
lies in the insufficiently objective and comprehensive definition of the perturbation ma-
trix, which limits the spatial distribution of streamlines. To address this, the Improved
Interfered Fluid Dynamical System (IIFDS) algorithm was proposed [13]. By introducing a
tangential matrix into the perturbation matrix, IIFDS effectively addresses these limitations.
Compared to IFDS, IIFDS redefines the perturbation matrix by incorporating tangential
velocity components into the perturbation flow, allowing it to point in any direction. By
adjusting the repulsion response coefficients in the repulsion matrix and the tangential
response coefficients and directional coefficients in the tangential matrix, IIFDS generates a
variety of streamline shapes distributed throughout the planning space. These streamlines
are then filtered to select paths that avoid local traps and stagnation points. However,
some of these streamlines fail to meet AUV dynamics constraints or incur excessively high
trajectory costs. Therefore, it is necessary to optimize the coefficients to select a trajectory
that satisfies environmental and kinematic constraints while ensuring optimal performance
under specific metrics or multiple objectives.

In recent years, new-generation artificial intelligence methods represented by DRL
have been widely applied to the optimization and control of complex systems. These
machine learning methods have several advantages [14-16]: (1) they do not rely on environ-
mental models or prior knowledge, and policies can be improved solely through interaction
with the environment; (2) the deep neural networks used in DRL have powerful nonlin-
ear approximation capabilities, making them effective for optimizing high-dimensional
continuous state-action spaces, which is fundamental to 3D trajectory planning in com-
plex dynamic environments; and (3) the policies obtained through DRL require only a
forward pass during inference, making them highly suitable for decision-making tasks
with high real-time requirements. Based on these advantages, some researchers have
explored the application of DRL in planning. For example, [17] proposed an end-to-end
perception—planning—execution framework based on a two-layer deterministic policy gra-
dient algorithm to address challenges related to training and learning in end-to-end control
approaches. Similarly, [18] proposed an online collision avoidance planning algorithm
based on active sonar sensors for obstacle detection. While these methods achieve good
planning results, three key issues warrant further investigation:

First, DRL, as a general decision-making framework, may struggle to simultaneously
ensure safety and trajectory smoothness when addressing the specific problem of AUV 3D
dynamic trajectory planning. The simulation results indicate that directly using DRL to
generate control inputs for trajectory planning ensures fast and safe obstacle avoidance
but often produces trajectories lacking smoothness, which hinders precise tracking by
low-level controllers. Combining DRL with classical heuristic methods could leverage
their respective optimization speed and trajectory quality, leading to improved planning
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results. However, designing a hybrid framework that effectively handles complex dynamic
obstacles (e.g., 3D obstacles with varying sizes and trajectories) remains a challenge.

Second, DRL-based trajectory planning methods require agents to interact with sim-
ulated task environments and update the weights of deep neural networks based on
environmental feedback. The trained deep action networks are then deployed for online
planning in real-world environments. Therefore, designing simulation environments tai-
lored to the trajectory planning methods being used is essential for improving training
efficiency and ensuring the policy’s generalization in complex obstacle scenarios. Unfortu-
nately, existing studies lack targeted research on systematic modeling methods for training
environments.

Finally, high-quality trajectories must consider multiple objectives simultaneously,
such as obstacle avoidance effectiveness, target reachability, trajectory smoothness, energy
consumption within acceptable ranges, and adherence to AUV dynamics and kinematics
constraints. Most current studies focus on single-objective optimization, which does not
align with the practical requirements of AUV trajectory planning.

Contributions of This Paper:

(1) A trajectory planning framework integrating PPO and IIFDS:

This paper designs a 3D dynamic trajectory planning framework for AUVs, integrating
PPO with the IIFDS. In this framework, IIFDS serves as the planning layer, dynamically
adjusting the flow field parameters to generate obstacle-adaptive trajectories in dynamic
environments. PPO acts as the learning and decision-making layer, optimizing the flow
field disturbance parameters and dynamically adjusting planning strategies, enabling
efficient coordination between the two algorithms in dynamic obstacle environments.

(2) Key improvements to the PPO and IIFDS algorithms:

PPO algorithm improvement: For the trajectory planning task, a multi-objective dy-
namic reward function is designed, incorporating obstacle avoidance, target distance,
trajectory smoothness, dynamic constraints, and energy consumption. This approach effec-
tively addresses the sparse reward problem in traditional methods, significantly improving
the algorithm’s convergence and the practicality of trajectory planning.

ITIFDS algorithm improvement: Task-specific dynamic and kinematic constraints for
AUVs are introduced into the IIFDS planning layer. This ensures that the generated
trajectories not only satisfy environmental constraints but are also executable, enhancing
the reliability and applicability of the planning results in real-world scenarios.

(8) Construction of a dynamic and complex obstacle environment for model training and
framework validation:

A diverse dynamic obstacle environment model is developed, capable of simulating
various obstacle behaviors and complex scenarios. This environment supports interactions
between the agent and the environment while dynamically generating training data of vary-
ing complexity. As a result, it improves training efficiency and enhances the framework’s
generalization performance in practical applications. During testing, the environment vali-
dates the framework’s trajectory planning performance in high-density dynamic obstacle
scenarios, including the generation of collision-free trajectories, trajectory smoothness, and
energy efficiency.
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2. A Three-Dimensional Dynamic Trajectory Planning Framework Based
on PPO and IIFDS

To simplify the analysis in this paper, the following assumptions are made:

Assumption 1. All obstacles, including both static and dynamic obstacles, are approximated as
standard convex polyhedrons, such as spheres, ellipsoids, and cylindrical shapes. The mathematical
representation of an obstacle’s boundary can be defined as follows:

oc(P) = (x;x0)2p+ <y_byo)2q+ <Z—CZO)27_1 "

where ¢y (P) represents an implicit expression for the boundary of an obstacle. A value of 0

indicates that point P lies exactly on the obstacle’s surface, a value less than 0 indicates that P is
inside the obstacle, and a value greater than 0 indicates that P is outside the obstacle. (x,y,z)are
the coordinates of pointP, while (xo, Y0 ,20 ) denote the coordinates of the obstacle’s center in the
three-dimensional space. a, b, ccontrol the extent of the obstacle along thex, y, and z directions (i.e.,
the size of the obstacle). p, q, rcontrol the curvature of the obstacle along each direction (i.e., the
exponents of the shape parameters).

Assumption 2. The information on the target location and obstacle status at the current moment
is available online. This information includes, but is not limited to, the position and velocity.

2.1. Introduction to the Improved Interfered Fluid Dynamical System (IIFDS)
2.1.1. Initial Flow Field Velocity Model

The IIFDS algorithm is based on mimicking the characteristics of natural fluid dynam-
ics. Under conditions free from interference, the initial flow field streamlines are directed
straight toward the target point. The model of the initial flow field is shown in Figure 1.

2

goal
0
Figure 1. Initial flow field model.

In the initial flow field, the velocity vector of the fluid passing through each position
P, denoted as U(P), can be expressed as follows:
Vo

U(P> = _d(P,Pd) (P - Pd) )

where U(P) represents the velocity vector of the initial flow field at the current position of
the AUV. V} is a virtual velocity constant, used to determine the intensity of the flow field.
P = (x,y,z) denotes the current position of the AUV, P; = (x,4,Y,4,2,) represents the target
position, and d(P, P;) denotes the Euclidean distance between the current position P and
the target point P;, which is given by the following:

d(P,P) =/ (x = x4)* + (v — ya) + (2 — 24)° 3)
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2.1.2. Obstacle Influence Modeling

When obstacles exist in the environment, their influence on the predefined initial flow
field changes the fluid’s velocity direction, resulting in flow field distortion. The effect of
obstacles on the initial flow field is modeled using an influence matrix, defined as follows:

K
M(P) = ) wi(P)M(P) (4)
k=1

where M(P) represents the overall disturbance matrix, wy (P) denotes the weight coefficient
of the k-th obstacle, M (P) is the disturbance matrix of the k-th obstacle, and K indicates
the total number of obstacles.

The weight coefficient for each obstacle is defined as follows:

1,K=1,
wi(P) = K ¢i(P) —1 ®)
AL e Dr g 7!

where ¢y (P) represents the implicit equation of the obstacle’s surface, defining whether P
is inside, on, or outside the obstacle.

The influence matrix My (P) of the k-th obstacle is defined based on repulsion and
redirection effects, as follows:

nkn[ n tkn,f

M (P) =1— (6)

1 1
|nlng|- TPk |te|-|mg|-T%

where I denotes the 3 x 3 identity matrix, also referred to as the attraction matrix, which
functions similarly to the attractive force in the artificial potential field method. nj repre-
sents the normal vector of the obstacle’s surface, t; represents the tangential vector, and pj
is the repulsion coefficient that controls the intensity of the obstacle’s repulsive effect. A
larger py value enables the disturbed fluid to avoid obstacles in the environment earlier.
ok denotes the tangential response coefficient, which regulates the intensity of tangential
fluid flow. T represents the distance from the obstacle’s center to the current position,
normalized by the obstacle’s radius.

In a three-dimensional environment with obstacles, the presence of obstacles causes
deviations in the original flow field paths, resulting in a disturbed flow field. This disturbed
flow field is capable of avoiding obstacles while converging toward the target point. The
disturbed flow field model is illustrated in Figure 2.

Figure 2. Disturbed flow field model.
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2.1.3. Tangential Vector Modeling

In the practical application of the IIFDS algorithm, the flow lines generated for obstacle
avoidance are often restricted to a single plane, which may result in trajectories becoming
trapped in local minima or stagnating at certain points. To address this issue, the IIFDS
algorithm introduces the concept of a tangential matrix, allowing flow lines to move in
arbitrary directions around obstacles rather than being confined to a single plane. When
approaching stagnation points, the IIFDS algorithm enhances the tangential matrix to
provide tangential momentum along the obstacle surface, effectively preventing the AUV
from lingering at stagnation points.

On the tangent plane defined by the normal vector 7, any tangential vector t; is
generated as follows:

te = Rity @)

where t} represents the tangential vector in the local tangential coordinate system, deter-
mined based on the tangential angle 0. R; denotes the rotation matrix that transforms the
local tangential basis vectors into the global coordinate system, defined as follows:

cos(f) —sin(f) 0
Ry = |sin(@) cos(d) O 8)
0 0 1

In this context, § controls the rotational angle of the tangential direction, determining
the specific direction for bypassing the obstacle.

2.1.4. Influence of Dynamic Obstacles
The velocity of dynamic obstacles affects the flow field through the following equation:

_T
Oops = € A 'Vobs (9)

where v,,; represents the velocity influence of the dynamic obstacle at the current position.
T denotes the normalized distance between the current point and the obstacle. A is the
attenuation factor, which controls the influence range of the obstacle’s velocity on the flow
field. Vs represents the velocity vector of the dynamic obstacle.

2.1.5. Comprehensive Velocity Calculation

The comprehensive velocity of the AUV is calculated using the following equation:
U(P) = M(P)-U(P) — vgps (10)

2.1.6. Trajectory Update

The next trajectory point is determined by integrating the velocity U(P), according to
the following equation:
{P}ipa = {P}; + U(P)At (11)

where At is the time step.

2.1.7. Heading and Pitch Angle Constraints

From the above derivation, it can be seen that traditional IIFDS does not explicitly
consider the motion model and constraints of the AUV during trajectory planning. In 3D
dynamic trajectory planning for AUVs, to ensure that the generated trajectory satisfies both
the optimization objectives of flow-field perturbation and the motion capability constraints
of the AUV itself, we introduce dynamics and kinematics constraints. These constraints
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primarily act on the updates to the heading angle and pitch angle, and by adjusting the
next position, they ensure the physical feasibility of the trajectory.

Based on the current position of the AUV, P; = (x;,y;,z;), the position at the previous
time step, P;_1 = (xj_1,Yi-1,%i—1), and the next position predicted by the flow field,
P11 = (Xi41,Yi+1,2i+1), the heading angle and its variation are calculated as follows:

AY =YY, (12)

where ¥; denotes the heading angle from P;_; to P;, and ¥;, 1 represents the heading angle
from P; to P 1.
If |AY| > ¥max, the heading angle is corrected as follows:

Yoo = ¥; + sign(AY)-¥uax (13)

The correction logic for the pitch angle is analogous to that of the heading angle and is
not repeated here. After completing the corrections for the heading and pitch angles, the
previously planned position for the next time step is updated accordingly. The corrected
position is given by the following:

N cos(Yre)- cos(Fre)
Piyq = P+ As- | cos(Yre)-sin(Fre) (14)
sin(7re)

where P;; 1 = (;Z‘_;'_l, ?i Y ZH_l) represents the next position of the AUV after incorporating
the dynamics and kinematics constraints, and 7. denotes the corrected pitch angle.

2.2. Introduction to the Improved PPO Algorithm

From Equation (6), it can be seen that the influence matrix My (P) is not only related
to the position of the AUV and the implicit equation of the obstacle’s surface, but also to
the repulsion coefficient py, tangential response coefficient oy, and directional coefficient
8y of each obstacle. If these three parameters are fixed, the resulting trajectory may fail
to meet the specific requirements of certain scenarios or obstacles, leading to suboptimal
trajectory planning.

As shown in Figure 3, the plotted trajectories represent different parameter combina-
tions. The orange trajectory in the bottom-right corner corresponds to p = 0.5, ¢ = 0.5,
and 6 = 0. From the bottom-left to the top-left corner, the coefficients increase by 0.2
for each trajectory. Different parameter combinations determine the shape and direction
of the trajectories. In previous research [19], receding horizon control (RHC) has been
used to optimize these parameters online. However, the serial nature of RHC’s solution
mechanism is not well suited to the robustness and real-time requirements of complex
dynamic obstacle environments.

PPO is a policy-based deep reinforcement learning algorithm and an off-policy al-
gorithm. With its high stability and strong real-time performance in complex dynamic
environments, we choose the PPO algorithm to optimize the three parameters of the IIFDS
algorithm: the repulsion coefficient p, the tangential coefficient oy, and the directional coef-
ficient 6. The PPO algorithm comprises five core components: environment, agent, state,
reward function, and action. The following sections will provide detailed explanations of
these five components.

In the 3D dynamic trajectory planning task, the environment is a three-dimensional
space that contains multiple dynamic spherical obstacles with varying radii and trajectories.
In this environment, it is possible to observe the instantaneous velocities of the dynamic
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obstacles at any given moment, the distance between the AUV and the surface of the
obstacles, as well as the relative position of the AUV to the target point. This dynamic
environment simulates various complex scenarios that the AUV might encounter during
real-world navigation, providing a realistic basis for testing and validating the algorithm.

z(m)

Figure 3. The impact of different reaction coefficients and directional coefficient combinations on
planned trajectories.

In the 3D dynamic trajectory planning task, the AUV is considered as the agent.

The state space represents the collection of environmental information perceived by
the agent. It comprises three vectors: the vector pointing to the target point, the vector
pointing to the surface of the nearest obstacle, and the velocity vector of the nearest obstacle.

In traditional deep reinforcement learning methods, the reward function in the PPO
algorithm often suffers from the issue of sparse rewards, which makes the learning process
less adaptive to specific tasks. This issue is particularly pronounced in the 3D dynamic
trajectory planning task for AUVs, where traditional reward designs fail to effectively guide
the AUV in performing fine-grained action control. To address this, the paper introduces
an improved reward function aimed at providing more precise guidance for the dynamic
trajectory planning of the AUV. This reward function comprises five main components:
obstacle avoidance reward, target distance reward, trajectory smoothness reward, dynamics
constraint reward, and energy consumption reward.

(1) Obstacle Avoidance Reward

The obstacle avoidance reward encourages the AUV to remain a safe distance from
obstacles while considering the velocity of the obstacles. The reward is calculated as
follows:

obs

d —R .
dfactor( too‘fzs obs — 1)/ lf dtoobs < Robs
d —R .
dfactor( too?asth th — 0.3),1f Robs < dtoobs < Rth

Ravoid = (1 5 )

where d fue10r =14 0.5 ’5)0;,5‘ represents the dynamic influence factor of the obstacle’s
velocity on the reward. Faster obstacle velocities increase the dynamic impact factor, which
amplifies the reward’s sensitivity to obstacle avoidance. d;y,ps is the distance between the
AUYV and the center of the obstacle. R, is the radius of the obstacle. Ry is the threshold
radius of the obstacle’s influence zone. 5)01,5 is the velocity vector of the obstacle.

(2) Target Distance Reward

The target distance reward encourages the AUV to move closer to the target point,
with the reward increasing as it approaches the target. The reward is calculated as follows:

log (dtogoal +e )

_ 16
log(diotal + €) 16)

Rgoal =

where d, 4,4 represents the distance between the current position of the AUV and the target
point. dyy, represents the total distance from the starting point to the target point.
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€ is a small positive constant added to prevent logarithmic computation errors.
If the AUV is very close to the target (less than a specified threshold value), an
additional bonus reward is given:

ifdipgoal < threshold, Rgoa+ =5 17)

(3) Trajectory Smoothness Reward

The trajectory smoothness reward is designed to encourage the AUV to move along
a smooth trajectory, avoiding abrupt changes in direction, velocity, or acceleration. The
reward is defined as follows:

Remooth = —M-O.S—/\l-Av—AZ"Z‘ (18)
s

where ¢ represents the angle between the current motion direction of the AUV and the
direction toward the target. Av denotes the change in velocity between the current and
previous time steps. a represents the current acceleration of the AUV. A; and A, are
weighting factors penalizing changes in velocity and acceleration, respectively.

(4) Kinematic Constraint Reward

The kinematic constraint reward ensures that the AUV’s motion adheres to kinematic
limits, avoiding excessive heading angles, pitch angles, and over-speeding behaviors. The
reward is defined as follows:

Rkinematic = _(|x1 _‘Yre| + |Zl — ')/re|> - )\3(‘?’ - ZJmax) - /\4<‘E>‘ —ﬂmax) (19)

Y max “Ymax

where x1 andz; represent the AUV’s current heading and pitch angles. Y. and ‘e represent
the corrected heading and pitch angles. ¥max and ymax denote the maximum allowable

variations in the heading and pitch angles.

3’ represents the current speed of the AUV,

and ’Z‘ represents the current acceleration of the AUV. vnax and amax denote the maximum
allowable speed and acceleration of the AUV. A3 and A4 are weighting factors that penalize
excessive speed and acceleration, respectively.

(5) Energy Consumption Reward

This reward penalizes energy-inefficient behaviors and encourages the AUV to adopt
energy-saving motion strategies. It is defined as follows:

Renergy = _/\5"?‘2 (20)
where ‘?‘ represents the current speed of the AUV. A5 is the weighting factor for the energy
consumption penalty.

(6) Total Reward Function

By combining all the individual reward components, the total reward function is
obtained, which comprehensively guides the AUV to accomplish its tasks while ensuring
stable, safe, and efficient motion. The total reward is expressed as follows:

Riotal = Ravoid + Rgoal + Rsmooth + Riinematic + Renergy (21)

The trajectories generated by the IIFDS algorithm are determined by three parameters
within the algorithm: the repulsion coefficient g, the tangential coefficient oy, and the
directional coefficient 6. Therefore, we select these three parameters as the action outputs
of the improved PPO algorithm.



J. Mar. Sci. Eng. 2025, 13, 445 11 of 23

2.3. Optimization of IIFDS Parameters Using the Improved PPO

To enable trajectory planning for AUVs in complex dynamic three-dimensional envi-
ronments, this paper proposes a trajectory planning framework based on the integration of
PPO and IIFDS. In this framework, IIFDS serves as the planning layer, adjusting the flow
field parameters dynamically to generate trajectories that adapt to moving obstacles. PPO
acts as the learning and decision-making layer, optimizing the IIFDS flow field parameters,
including the repulsion coefficient py, the tangential coefficient o, and the directional
coefficient 0. The detailed process of the integrated algorithm is shown in the flowchart in

Figure 4.
[ Start ] [ Start ]
Ci initial flow velocity Parameter initialization
Obtain the current states of
AUV, dynamic obstacles, and
target point Has the maximum iteration
count been reached?
Comp three key p l -
using the trained PPO model :
1 1
Calculate the disturbance : State collection
matrix :
I} . !
1
No Adjl_xst initial flow velocity t_o 1 Yes Action generation
obtain perturbed flow velocity 1
I : !
Determine the trajectory point ! IIFDS-I;a.sed flow field
for the next time step ! adjustment
1
) . i
1 No
IAdjust heading angle and pitch 1 State update
angle based on constraints =-===
Refine the trajectory point for
the next time step as the termination condition for

Has the target point
been reached?

End ]

the current iteration been met?

Compute reward value

i

Store data in the replay buffer

Is the replay buffer full?

PPO-based network
parameter update

as the update threshold
been reached?

IIFDS Planning Layer

PPO Learning and Decision-

Making Layer

Figure 4. Framework of the trajectory planning method integrating PPO and IIFDS.
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Initialization involves setting the IIFDS flow field parameters, constructing the AUV
dynamics model and dynamic obstacle environment, and defining the start and target
points. Simultaneously, the Actor—Critic network of the PPO algorithm is initialized, along
with the replay bulffer (size 4096). Multi-objective reward functions and related hyperpa-
rameters (discount factor, PPO clipping range, learning rate, etc.) are also configured.

Subsequently, the training loop is entered, which primarily includes the main loop
and the PPO network update component.

The main loop constitutes the core part of the interaction between the AUV and the
environment during training. The detailed steps of the main loop are as follows:

Step 1: State Collection

The AUV gathers environmental information through sensors to construct the current
state, including the vector pointing to the target, vy, and the vector pointing to the surface
of the nearest obstacle, v, as well as the velocity vector of the nearest obstacle, Vops,peed-
The current state vector s; is represented as follows:

St = {Vgoalf Vobs Vobsspeed } (22)

Step 2: Action Generation
The action for the current state is generated through the Actor network of the PPO
algorithm. First, the Actor network produces the parameters of a Gaussian distribution:

W0 = T9(st) (23)

where p represents the mean vector of the actions, and ¢ represents the standard deviation
vector of the actions.
Subsequently, actions are sampled from the Gaussian distribution:

ar ~ N (p,0),ar = {ox, 0%, Ok} (24)

Step 3: Flow Field Adjustment and Trajectory Planning

The planning layer of the IIFDS algorithm adjusts the flow field dynamically based
on the action a; = {py, 0%, 6x }. The repulsion intensity of the obstacle is modified through
Ok, the tangential effect range is adjusted through oy, and the flow field direction is altered
via 6, enabling the AUV to avoid obstacles. The next trajectory point is planned using the
following formula:

pe+1 = furps (Pt Pxs Ok, k) (25)
Subsequently, the AUV state is updated:

St+1 = {Vgoal/ Vobs Vobsspeed } (26)

Step 4: Reward Calculation
Based on the current state s¢, action 4, and the next state s; 1, the instantaneous
reward R; is calculated as follows:

Ry = Ravoicl + Rgoal + Rsmooth + Rkinematic + Renergy (27)

Step 5: Data Storage
The current state, action, reward, and next state are stored in the experience replay
buffer:
Buffer < {s¢,at, R, 541} (28)

Step 6: Termination Check for the Main Loop
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The main loop ends when any of the following termination conditions are met: The
AUV reaches the target point. The AUV collides with an obstacle. The number of steps
executed by the AUV reaches the predefined maximum value.

If none of the termination conditions are met, the process continues from Step 1 to
execute the next step. If the termination conditions are met, the current episode ends, and a
new episode begins by reinitializing the environment (including start point, target point,
and obstacle information). Once the experience replay buffer is full (set to a capacity of
4096 in this study), it triggers an update of the PPO network.

First, the Critic network parameters 6, are optimized using the mean square error loss
function:

1Y 2
Lo(6o) = 57 L (Re +7V(s41) = V(st)) (29)

i=

—_

where R; represents the instantaneous reward, V (s;) represents the value function of the
current state, and vy is the discount factor.

Next, the Actor network parameters 0, are optimized using the objective function of
PPO, which includes a clipping mechanism:

LUP(0,) =E
( " 7T601d (ﬂt’St) 7T901d (at’St)

(30)

where Ay = Ry + YV (s1+1) — V(st) represents the advantage function, balancing the action
a; preference.

The training loop continues until the termination condition is met. The termination
condition for the training loop is defined as follows: the variation in the parameters of the
PPO’s Actor and Critic networks falls below the predefined threshold, and the training
iteration reaches the preset value.

During the testing process, the initial velocity of the AUV is first calculated, and
based on the current state information, the pre-trained Actor network of PPO generates
the updated IIFDS flow field parameters. Next, through optimized computation, the
disturbance matrix is determined, and the velocity of the initial flow field is corrected
to obtain the resultant velocity, which determines the trajectory point at the next time
step. Then, based on the dynamics and kinematics constraints, this trajectory point is
further corrected to obtain the final adjusted trajectory point at the next time step. Finally,
whether the adjusted trajectory point reaches the target location is evaluated. If not, the
loop continues. The above testing loop concludes when the target is reached, marking the
end of the testing process.

3. Results

The framework for the three-dimensional dynamic trajectory planning of AUVs pro-
posed in this paper is critical during the training phase. The most important aspect of
training is the construction of a standardized simulated environment. Considering the
uncertainty of dynamic obstacle motion in real-world tasks, the construction of the simu-
lated environment introduces dynamic obstacles with varying motion speeds, radii, and
trajectory changes. During training, each episode begins by randomly selecting an initial
and a terminal point within the predefined range and then randomly selecting a dynamic
obstacle from the set of predefined obstacles.

The main training settings are as follows: the maximum number of steps for AUV
execution is set to 500; the learning rates of the Actor network and Critic network are both
set to 0.0001; the replay buffer size is 4096; the batch size is 512; the number of repeated
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training steps is 8; and the GAE advantage estimation parameter is 0.98. The training
results are shown in Figure 5.
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Figure 5. The reward function during training.

In Figure 5, the reward curve of the PPO-IIFDS framework illustrates the gradual
optimization process from the initial exploratory strategies to the final effective strategies,
demonstrating strong adaptability and robustness. During the initial phase of training,
the reward rises rapidly, indicating that the model establishes its fundamental trajectory
planning capabilities through interaction with the environment. In the middle phase, the
reward growth slows down while the fluctuation amplitude decreases, reflecting the grad-
ual improvement in the model’s adaptability to random initialization and dynamic obstacle
environments. In the later phase, the reward stabilizes, showing that the strategy has
approached the globally optimal or near-optimal level, with minor fluctuations primarily
caused by environmental randomness, exploratory actions, and multi-objective trade-offs.
The statistical results further validate the high efficiency and robustness of the model,
achieving high success rates (5361 successful tasks), low collision rates (39 failures), and
near-zero superfluous stops. Overall, the reward’s minor fluctuation demonstrates the
rationality of the training process, reinforcing the model’s ability to generalize in dynamic
environments while confirming that the PPO-IIFDS framework effectively fulfills the task
of three-dimensional dynamic trajectory planning.

3.1. Static Obstacle Environment Testing

In a static environment, we conducted tests on the IIFDS algorithm and the PPO-IIFDS
framework, as shown in Figure 6. In the left panel of Figure 6, the start point is [0,10,10],
the endpoint is [10,0,5.5], and the center coordinates of the static obstacle are [5,5,5.5]. In
the right panel of Figure 6, the start point is [10,10,6], the endpoint is [0,1,3], and the center
coordinates of the static obstacle are [6,6,5.5]. The influence range of the static obstacle is
uniformly set to 2, and the repulsion coefficient pj, tangential response coefficient oy, and
directional coefficient 6 of the IIFDS algorithm are fixed at 0.2, 0.2, and 0.1, respectively.

As shown in Figure 6, in static obstacle environments, the IIFDS algorithm with fixed
parameters can plan relatively optimal paths in certain scenarios (as shown in the left
panel). However, in other scenarios, it may result in paths passing too close to obstacles (as
shown in the right panel). This is primarily because fixed parameters lack the flexibility re-
quired to adapt to different environmental features. In contrast, the PPO-IIFDS framework,
through enhanced reinforcement learning, dynamically adjusts the repulsion coefficient py,
tangential response coefficient oy, and directional coefficient 6y, enabling it to generate more
desirable trajectories in different scenarios. These trajectories effectively avoid obstacles
while ensuring rationality and smoothness. The experimental results demonstrate that the
PPO-IIFDS framework outperforms the traditional IIFDS algorithm in terms of robustness
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and adaptability. This advantage allows the PPO-IIFDS framework to better accommodate
diverse environmental characteristics and plan more efficient and safer trajectories, ver-
ifying its superior performance and potential for practical application in complex static
obstacle environments.

IFDS
PPO-IIFDS

IIFDS
PPO-IIFDS

z(m)

x(m)

Figure 6. Comparison of IIFDS and PPO-IIFDS in different static environments.

3.2. Testing with Modified Reward Function

To perform a comparison with the results in Figure 5, we conducted experiments
where all settings remained the same except for the exclusion of certain reward components,
including various initialization parameters and the training environment. Specifically, this
test only included obstacle avoidance rewards and target distance rewards. Figure 7 shows
the reward changes during training under these conditions.

—— Episode Reward

-40
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'

-60

[ 1000 2000 3000 4000 5000
Episode

Figure 7. Reward function during training.

The reward variations in Figure 7 indicate that the model’s learning performance was
lower than that in Figure 5 when using only obstacle avoidance and target distance rewards.

From the reward curve in Figure 7, it can be observed that although the reward values
show an upward trend during the initial phase of training, reflecting the model’s gradual
learning of obstacle avoidance and its mov toward the target, the growth rate of rewards
slows significantly compared to Figure 5. Moreover, the reward fluctuations in the later
phase are larger and less stable. This suggests that relying solely on obstacle avoidance
and target distance rewards makes the model more prone to falling into local optima,
resulting in less smooth trajectories and behavior that may fail to meet dynamics and
kinematics constraints.

Next, we tested the trained models in two scenarios. For the single dynamic obstacle
environment test, we first analyzed the movement of the dynamic obstacle.

We set the following reference position:

obsref = [xrefr Yref/ Zref] = [5/ 8, 5] (31)
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The center position of the dynamic obstacle (obsCenter) changes over time. Its position
in a three-dimensional space is defined by the following equations:

xX(t) = Xyef + 3sin(0.5¢) (32)
Y(t) = Yret + 3 cos(0.5¢) (33)
z(t) = zyef + sin(0.5¢) (34)

The velocity vector of the dynamic obstacle is the derivative of its position with respect
to time, calculated as follows:

ox(t) = a’;(tt) — 15c0s(0.5¢) (35)
ox(t) = a’;(tt) — 1.5c0s(0.5¢) (36)
v.(t) = a‘g(tt) — 0.5c0s(0.5¢) (37)

Based on the above equations, the movement of the dynamic obstacle exhibits the
following characteristics:

Spatial trajectory characteristics: The obstacle moves periodically along a circular
trajectory in the x-y plane with a radius of 3, while simultaneously performing small
amplitude oscillations (with an amplitude of 1) in the z-direction.

Velocity characteristics: The magnitude and direction of the obstacle’s velocity vary
over time, governed by the sinusoidal and cosinusoidal functions. The velocity magnitude

is determined by the equation |v(t)| = \/ v3(t) + 0§ (t) +v2(t), and varies periodically
with time.

As shown in Figures 8 and 9, Figure 8 presents the trajectory of the trained model
under the single dynamic obstacle environment using the framework proposed in this
study. Figure 9 shows the results when the trained model only uses obstacle avoidance and
target distance rewards in the same environment. In the figures, the starting point is set
to [0,2,5], and the target point is set to [10,10,5.5]. The blue circle represents the current
position of the AUV, the green sphere represents the AUV’s next position as calculated, the
purple pentagram represents the target position, the yellow cuboid represents the dynamic
obstacle, the red solid line represents the trajectory of the AUV, and the orange dashed line
represents the trajectory of the dynamic obstacle.

Through Figures 8 and 9, it is evident that the model trained in Figure 9 lacks tra-
jectory smoothness rewards, dynamics and kinematics constraint rewards, and energy
efficiency rewards. As a result, the optimization process of the model primarily focuses
on meeting the basic requirements of obstacle avoidance and reaching the target, while
neglecting key indicators such as trajectory smoothness, physical constraints, and energy
efficiency. In contrast, the comprehensive reward function design adopted in Figure 8
incorporates trajectory smoothness and dynamics constraint rewards, effectively guiding
the model to achieve obstacle avoidance and target-reaching tasks while further enhanc-
ing the trajectory’s smoothness and adaptability to dynamic environments. At the same
time, the inclusion of energy efficiency rewards facilitates more energy-efficient trajectory
planning. Thus, the results of Figures 8 and 9 further validate the comprehensiveness
of the reward function design in the PPO-IIFDS framework. They also demonstrate that
considering only a subset of reward terms significantly impacts the model’s robustness and
generalization ability. The comprehensive reward function design not only better aligns the
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model with multi-objective requirements but also improves the global optimization level of
trajectory planning.

(w) Z
(wy z

X (m)
X (m)

Figure 8. Results of the model trained using the framework proposed in this study in the single
dynamic obstacle environment test.

(w) Z
(w) z

(w) z
X (m)

Figure 9. The results of the model trained with a reward function containing only obstacle avoidance
and target distance rewards in the single dynamic obstacle environment test.
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3.3. Testing in Complex Dynamic Obstacle Environments

To more comprehensively validate the robustness and generalization of the proposed
PPO-IIFDS framework, we simulate a dynamic and complex underwater environment and
test our model in an environment containing multiple dynamic obstacles.

First, we introduce the designed set of dynamic obstacles. These dynamic obstacle
environments are intended to simulate the diverse characteristics of underwater dynamic
obstacles, providing a variety of challenging scenarios for AUV 3D dynamic trajectory
planning task training. The motion patterns of dynamic obstacles cover a range of dynamic
characteristics, from simple to complex, including the following;:

Circular motion (Dynamic Obstacle 1): The dynamic obstacle moves in a fixed-radius
circle with a periodically changing speed, simulating underwater objects moving along a
constant trajectory, such as underwater buoys or underwater work equipment.

Linear motion (Dynamic Obstacle 2, Dynamic Obstacle 3, Dynamic Obstacle 7): The
dynamic obstacles move in a straight line with a constant or regularly changing speed.
Dynamic Obstacle 2 and Dynamic Obstacle 3 are accompanied by single-axis oscillation,
while Dynamic Obstacle 7 exhibits uniform drifting. These types of motion can simulate
underwater carriers with uniform flow or obstacles that drift steadily.

Oscillatory motion (Dynamic Obstacle 4, Dynamic Obstacle 5, Dynamic Obstacle 6,
Dynamic Obstacle 9): These dynamic obstacles exhibit complex periodic oscillations, cover-
ing both single-axis and multi-axis oscillations. For example, Dynamic Obstacle 4 combines
planar circular motion with vertical oscillations, Dynamic Obstacle 5 demonstrates a com-
bination of spiral and planar oscillations, Dynamic Obstacle 6 shows planar twisting oscil-
lation characteristics, and Dynamic Obstacle 9 exhibits complex dynamic behavior through
multi-axis oscillations. These movements simulate the behavior of obstacles influenced by
underwater equipment operations or ocean current disturbances.

Spiral ascent motion (Dynamic Obstacle 10): This combines planar circular motion
with axial progressive ascent, simulating the behavior of floating obstacles influenced
by vortices or ascending bubble flows. The position and velocity equations for Dynamic
Obstacle 10 are as follows:

x(t) = 6+ 2sin(0.4t),y(t) = 6 + 2 cos(0.4t),z(t) = 4 + 0.5¢ (38)

v (t) = 0.8cos(0.4t), v, (t) = —0.8sin(0.4t), v, (t) = 0.5 (39)

From the formula, the motion characteristics can be seen: the trajectory exhibits spiral
motion in the x-y plane, accompanied by uniform vertical ascent in the z direction. The
velocity characteristic shows periodic changes in the horizontal velocity, while the vertical
velocity remains constant.

Circular path retreat (Dynamic Obstacle 8): The dynamic obstacle initially moves along
a circular trajectory, then gradually retreats to form a reciprocating motion, simulating the
behavior of obstacles after force disturbances from underwater equipment or within a work
area. The position and velocity equations for Dynamic Obstacle 8 are as follows, when

t < tthreshold:

x(t) =3+ 5sin(§ + O.St),y(t) — 10+ 5cos(§ + 0.3t),z(t) =5 (40)
ox(t) = 1.5cos<g +03t),0,(t) = ~15 sin(g +03t),0:(t) = 0 (41)

After exceeding the critical time, i.e., when t >ty eqhold, the motion trajectory of
Dynamic Obstacle 8 changes, entering a reverse regression phase. At this point, the formula
is symmetrically adjusted, causing Dynamic Obstacle 8 to gradually return to its initial
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state from the circular motion trajectory. From the formula, its motion characteristics can be
observed: the trajectory is dominated by circular motion in the earlier phase and reverses
in the later phase. The velocity characteristic shows that the velocity varies periodically
with time.

These dynamic obstacle motion patterns are designed to replicate various dynamic
obstacle characteristics that may be encountered in underwater dynamic environments,
including floating devices, moving carriers, or dynamic objects affected by ocean currents.
Through this diversified design, these environments comprehensively test the robustness
and adaptability of the proposed algorithm in complex underwater dynamic environments,
laying the foundation for the successful execution of real underwater tasks.

As previously mentioned, when the experience replay buffer is full (with a capacity
set to 4096 in this paper), it triggers the update of the PPO network that we designed.
Now, after updating the PPO network, we conduct tests in a multi-dynamic obstacle
environment. First, we select four dynamic obstacles from the above dynamic obstacle set
to form a dynamic obstacle combination environment. In total, we construct six dynamic
obstacle combination environments, as shown in Figure 10:
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Figure 10. Testing results of the multi-dynamic obstacle environment after each update of the PPO
network.

Figure 10 shows the testing performance of the PPO-IIFDS framework in a multi-
dynamic obstacle combination environment. The reward function curve indicates that,
with each update of the PPO network, the performance of the AUV gradually improves in
each test environment, with the reward value converging to a higher level. This reflects
the AUV’s effective learning ability and adaptability in dynamic and complex scenarios.
The reward curve changes in different environments show some variation. For example,
in environments 2 and 5, the reward values stabilize quickly, indicating that the AUV can
rapidly adapt and plan stable trajectories in these scenarios. However, in environments 4
and 6, there are some fluctuations, which may be due to increased environmental complex-
ity, causing the AUV to require more time for exploration and optimization. Overall, the
trend shows that the PPO network achieves good learning results in diversified dynamic
obstacle combination environments, demonstrating excellent robustness and generalization
abilities. This validates the effectiveness of the proposed method for trajectory planning in
complex dynamic environments.

Finally, we test the trained model in the newly constructed dynamic obstacle combina-
tion environments. From the above dynamic obstacle set, we randomly select four dynamic
obstacles to form a dynamic obstacle combination environment.

In Dynamic Obstacle Combination Environment A, we choose dynamic obstacles
numbered [1,4,9,10] from the set. The starting point is set at [9,2,9], and the endpoint at
[0,10,0]. The trajectory planning results using our trained model are shown in Figure 11. In
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Dynamic Obstacle Combination Environment B, we select dynamic obstacles numbered
[2,5,8,10] from the set. The starting point is set at [0,2,5], and the endpoint at [10,10,5.5].
The trajectory planning results using our trained model are shown in Figure 12.

(w) z

X (m)
o

(wyz
X (m)
a

Figure 12. Testing results in Dynamic Obstacle Combination Environment B.

In the views, the blue sphere represents the current position of the AUV, the purple
pentagram represents the target point, the red sphere represents the starting point, the or-
ange spheres represent the dynamic obstacles, the red curve represents the AUV’s trajectory,
and the orange curve represents the trajectory of the dynamic obstacles.

Figures 11 and 12 show the trajectory planning results of the AUV in Dynamic Obstacle
Combination Environments A and B, which validate the effectiveness of the trained model
in complex dynamic environments. In Environment A, which contains dynamic obstacles
numbered [1,4,9,10], the AUV starts at the point [9,2,9] and plans a collision-free path with
a length of 15.17 m, completing the trajectory planning in 0.17 s. In Environment B, which
contains dynamic obstacles numbered [2,5,8,10], the AUV starts at the point [0,2,5] and
plans a collision-free path with a length of 13.96 m, completing the planning in 0.14 s. This
demonstrates that the trained model can achieve efficient and reliable obstacle avoidance
trajectory planning based on the trajectory characteristics of dynamic obstacles. Specifically,
the AUV’s trajectory can flexibly avoid dynamic obstacles, maintaining a safe distance
from the obstacles, while planning the optimal path length between the target and the
starting point. Additionally, the smoothness of the trajectory curve and the short planning
time further verify the model’s real-time performance and computational efficiency. These
results indicate that the proposed algorithm can achieve robustness, generalization, and
efficiency in various complex dynamic obstacle environments, meeting the demands of
practical applications.
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4. Discussion

The paper proposes a PPO-IIFDS framework for 3D dynamic trajectory planning in
AUVs. The experimental results show that the PPO-IIFDS framework exhibits signifi-
cant advantages in complex and dynamic obstacle environments. During training, the
multi-objective reward function effectively guides the algorithm to optimize collision avoid-
ance, target proximity, trajectory smoothness, dynamics constraints, and energy efficiency.
In comparison, models trained with partial reward terms exhibit reduced optimization
performance and efficacy, further validating the importance of comprehensive reward
function design.

In static and dynamic obstacle environments, the PPO-IIFDS framework consistently
demonstrates superior trajectory planning. Compared to the traditional IIFDS algorithm,
the PPO-IIFDS framework produces smoother and safer trajectories while exhibiting strong
adaptability to dynamic environments. Unlike traditional methods, which are limited by
fixed parameter settings, PPO-IIFDS leverages reinforcement learning to dynamically adjust
parameters such as the repulsion coefficients, tangential response coefficients, and directional
coefficients. This adaptability enhances the trajectory quality and computational balance,
addressing the traditional IIFDS algorithm’s limitations in handling diverse scenarios.

Despite the progress achieved in this research, several directions merit further explo-
ration. The primary focus of future work lies in the following areas:

(1) Theoretically, other continuous deep reinforcement learning methods can also be
applied to the framework presented in this paper. Therefore, future work could
integrate more advanced reinforcement learning algorithms, such as SAC [20] and
TD3 [21], with the improved interfered fluid dynamic system (IIFDS) and conduct
comparative tests with the approach proposed in this study.

(2) The PPO-IIFDS trajectory planning framework proposed in this study demonstrates
strong robustness and adaptability, suggesting its potential for expansion into more
complex autonomous underwater vehicle (AUV) task scenarios. Furthermore, we
recommend conducting corresponding hardware experiments in real underwater envi-
ronments to verify the feasibility and effectiveness of the algorithm in real-world tasks.

(38) The trajectory planning in this study utilizes a simplified AUV kinematic model
and constraints, without incorporating more complex nonlinear dynamic models
and controller characteristics. This could lead to an increased collision risk during
execution due to controller delays or tracking errors. Therefore, future research could
integrate planning, control, and dynamic modeling within the PPO-IIFDS framework
to form a closed-loop system. By considering AUV dynamics and controller response
characteristics in the reward function design, the reliability and safety of trajectory
planning execution can be further enhanced.

(4) Future work will explore extending the PPO-IIFDS framework to UAV trajectory plan-
ning. Given the unique challenges UAVs face in dynamic obstacle environments, the
framework’s ability to dynamically adjust parameters (such as repulsion, tangential
response, and directional coefficients) holds promise for effective obstacle avoidance
and trajectory optimization. Future research will adapt the framework to UAV-specific
needs and experimentally validate its feasibility and performance in complex aerial
environments.
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