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Abstract: Hydropower stations and dams play a crucial role in water management, ecology,
and energy. To meet the requirements of underwater dam defect detection, this study
develops a streamlined underwater vehicle design and operational framework inspired
by bionic principles. A parametric modeling approach was employed to propose the
vehicle’s streamlined configuration. Using CFD simulations, hydrodynamic coefficients
were calculated and validated through towing experiments in a pool. The hydrodynamic
stability of the vehicle was assessed and verified through these analyses. Additionally,
various configurations were generated using a free deformation method. An optimization
function was established with resistance and stability as the objectives, and the optimal
result was derived based on the function’s calculation outcomes. The study designed a high-
metacentric underwater vehicle, inspired by the seahorse’s shape, and introduced a novel
stability evaluation method. Simulations were conducted to analyze the vehicle’s variable
attack angle, drift angle, pitching, and rotational motion at a forward three-throttle speed.
The results demonstrate that the vehicle achieves static stability in both the horizontal
and vertical planes, as well as dynamic stability in the vertical plane, but exhibits limited
dynamic stability in the horizontal plane. After optimizing the original configuration, the
forward resistance was reduced by 2.15%, while the horizontal plane dynamic stability
criterion CH was improved by 35.29%.

Keywords: ROV; bionics; configuration design; CFD

1. Introduction
Hydropower stations and reservoir dams are critical national infrastructure, serving

functions such as water resource management, ecological restoration, flood control, power
generation, and transportation [1–3], as shown in Figure 1. However, prolonged underwater
immersion, combined with environmental erosion, material aging, loading and temperature
variations, chemical corrosion, and hydraulic fracturing, often leads to structural issues
such as cracks [4–7] and cavitation erosion [8]. These types of damage accumulate over
time, reducing structural integrity and potentially causing catastrophic failures [9,10].
Remotely operated vehicles (ROVs) are widely used for the underwater inspection of dams,
offering comprehensive optical and acoustic scanning to monitor and measure key areas
closely. Effective ROV design prioritizes low drag, high maneuverability, and structural
strength [11]. Typically, ROVs feature streamlined or open-frame structures, with the latter
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being the most common for dam inspections [12]. Examples include the French ECA ROV
H800 [13], the U.S.-based Seabotix LBV30, Norway’s Argus Mariner, Spain’s University of
Girona Ictineu ROV [14], Denmark’s MacArtney FOCUS series, and the UK’s Saab Seaeye
Panther Plus. Despite their utility, existing open-frame ROVs often fall short in meeting
the demands of rapid deep-water dam inspections due to posture instability and limited
detection accuracy. Streamlined ROVs, by contrast, excel in fast underwater detection
thanks to their superior attitude control, greater maneuverability, and enhanced resistance
to flow disturbances. This paper focuses on designing a streamlined underwater vehicle
configuration and evaluating its performance through detailed analysis.
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Figure 1. The common defects observed in the dam bodies of hydropower stations include (a) cracks,
(b) water leakage, (c) surface erosion, and (d) tendon leakage.

Over millions of years, highly adaptable creatures have evolved with specialized body
shapes and locomotion patterns suited to their environments. Inspired by these adapta-
tions, bionics provides valuable insights for designing and improving vehicles to operate
effectively in complex working conditions [15,16]. Research in bionics is primarily divided
into two areas: materials and structures. In the field of underwater vehicles, materials
bionics focuses on mimicking the layered surfaces of aquatic organisms. For example,
Li Wen’s team at Beihang University developed a synthetic flexible sharkskin membrane
and conducted hydrodynamic experiments to study its performance [17]. Similarly, David
Kisailus’s research group at the University of California reviewed the development of
multi-scale toughening mechanisms in biological materials and their biomimetic counter-
parts, highlighting the unique strengthening strategies employed by various organisms [18].
Structural bionics, on the other hand, investigates the morphology, motion, and propul-
sion mechanisms of animals like crabs [19], fish fins [20,21], jellyfish [22], manta rays [23],
snakes [24], and octopuses [25,26]. These studies inspire the design of vehicles capable of
adapting to underwater environments by leveraging the structural and functional advan-
tages observed in these species.

This paper focuses on the design of a streamlined ROV for underwater dam inspection,
inspired by structural bionics principles. The ROV is required to move vertically along
dam surfaces with precision, operate efficiently at low speeds, and perform stationary tasks
underwater. As illustrated in Figure 2, three bionic research models were selected to meet
these requirements.
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Figure 2. Bionic models for streamlining: (a) killer whale, (b) seahorse, (c) penguin. 
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Killer whales utilize their vertical tail fins for accelerated swimming, achieving pow-
erful forward and backward propulsion. However, this comes at the cost of reduced
flexibility, limiting their ability to perform agile steering and complex movements. Their
muscular structure supports high-speed pursuits and long migrations but compromises
non-lateral maneuverability. Penguins, on the other hand, have flippers resembling those
of seals—broad and flat to enhance propulsion. Compared to fish fins, however, penguin
flippers have fewer joints and simpler muscle control, resulting in limited flexibility and
reduced capabilities for rapid turns or precise movements.

Considering the design requirements of lightweight construction, high stability, and
modularity, seahorses were ultimately chosen as the bionic model for configuration. Unlike
fast-swimming creatures, seahorses move vertically in the water, a capability supported
by their unique anatomy. Their lack of a swim bladder and rigid bony plates limit their
swimming speed but enable exceptional hovering ability. Seahorses maintain a stable
vertical posture by swinging their dorsal fins and adjusting fin angles for propulsion, while
their flexible tails bend to maintain balance. Their heavy abdomen provides a low center of
gravity, enhancing stability, while their streamlined body minimizes water resistance and
reduces posture disruption.

The preliminary design concept is illustrated in Figure 3 [27]. The high metacentric
design ensures that the underwater vehicle maintains a predominantly vertical posture,
mimicking the upright movement of a seahorse to enhance maneuverability and facilitate
navigation through complex underwater environments. Horizontal and vertical propulsion
devices replicate the seahorse’s dorsal fin vibrations and pectoral fin steering, providing
thrust and enabling precise attitude adjustments. The rigid bony rings of the seahorse,
which protect their internal organs and minimize drag, inspire the vehicle’s structural
design. The internal configuration features a simplified support frame that stabilizes the
entire body while accommodating equipment, ensuring ease of integration and transport.
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Figure 3. Preliminary design of the underwater vehicle’s streamlined configuration.

The remainder of this paper is organized as follows: Section 2 presents the scientific
modeling of the streamlined configuration using specific mathematical equations and
outlines the overall design and operational flow of the underwater robot. In Section 3,
computational fluid dynamics (CFD) simulations are used to evaluate static stability and
dynamic stability. In Section 4, an optimization function is developed to determine the
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optimal configuration and enhance the dynamic stability in the horizontal plane. Finally, a
conclusion is provided based on the above research.

2. Configuration Design of an Underwater Inspection Vehicle for Dams
The above configuration is only a preliminary design, and it is necessary to realize the

scientific modeling of the streamline configuration with specific mathematical equations.

2.1. Fundamental Theory

The B-spline method, originally proposed by Schoenberg and derived from the Bessel
curve, retains the advantages of the Bessel curve while enabling localized modifications
without altering the overall shape. This method allows for efficient curve or surface repre-
sentation using fewer control points, making it one of the most widely used mathematical
approaches today [28,29].

The expression of the B-spline curve of degree k is as follows:

L(u) =
n

∑
i=0

Ni,k(u)ei 0 ≤ u ≤ 1 (1)

Non-uniform rational B-splines (NURBSs) are an important extension based on B-
spline curves. The NURBS curve is defined as follows:

C(u) =

n
∑

i=0
Ni,k(u)eiωi

n
∑

i=0
Ni,k(u)ωi

(0 ≤ u ≤ 1) (2)

NURBS surfaces of degree k in u and degree q in v are two-parameter piecewise
rational functions of the following form:

S(u, v) =

n
∑

i=0

m
∑

j=0
Ni,k(u)Nj,q(v)ei,jωi,j

n
∑

i=0

m
∑

j=0
Ni,k(u)Nj,q(v)ωi,j

(3)

The NURBS interpolation algorithm constructs a NURBS curve by interpolating a
set of arbitrary data, including data point coordinates and guiding vectors. This process
ensures that the generated curve or surface strictly adheres to specified data constraints,
passing through each data point and aligning with the designated guiding vectors at
specific locations.

2.2. Design Procedure

In this paper, the three-dimensional configuration of the non-rotating body is de-
signed, with its contour lines represented mathematically in three principal directions: the
transverse section, horizontal plane, and longitudinal section. Due to the lack of complete
symmetry among these directions, the asymmetric surfaces are divided into multiple seg-
ments to construct the streamlined surface of the vehicle. The coordinate system for this
streamlined configuration is illustrated in Figure 4. The standard rectangular coordinate
system O-xyz is employed, where the origin O is located at the right end of the bottom
surface, and the x, y, and z axes correspond to the forward, vertical, and lateral directions
of the configuration, respectively.
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The asymmetric section curve cannot be represented by a single mathematical equation,
so it is designed in segments. As shown in Figure 4a, the transverse section curve is
composed of three curves (ellipse, circle, and NURBS) and two straight lines, with each
segment defined parametrically. Only one-half of this symmetric curve is expressed, and
the starting and ending tangents are perpendicular to the axis of symmetry. Except for the
cross-section, other curves are symmetric. Irregular segments are represented by NURBS
curves, which are generated through interpolation using specified data points and defined
endpoints. According to the design requirements, these equations for various profile
curves are used to construct the profile lines. Using NURBS surface functions and lofting
techniques, a 3D model of the vehicle is created, as shown in Figure 4.

2.3. Overall Design

Based on the design plan, the underwater vehicle measures 1.3 m in length, 0.9 m
in width, and 1.5 m in height, with an approximate volume of 1 m3 and a total weight of
around 180 kg. The design incorporates micro-positive buoyancy, as illustrated in Figure 5.
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The vehicle is equipped with a self-disconnecting hanger device on its top, facilitating
lifting and protecting the umbilical cable. To ensure underwater stability, the relative
positioning of the center of buoyancy and the center of gravity must be carefully designed.
Ideally, these centers should align vertically, with the center of buoyancy above the center of
gravity, enhancing both static and dynamic stability. Because the underwater vehicle in this
design is not fully sealed, buoyancy is provided by buoyant materials positioned primarily
in the upper section, in line with the vehicle’s configuration to increase metacentric height.
Stability is further improved by lowering the center of gravity, such as by adding weight to
equipment at the bottom.

To handle various dam surfaces, the vehicle is equipped with optical imaging equip-
ment, supported by a light-emitting diode (LED), and various acoustic devices. Communi-
cation equipment is installed on top to minimize interference. The vehicle arms are placed
on each side of the optical equipment within the operational range, keeping the height as
low as possible. Side-scan sonar units are mounted on either side of the vehicle. A sub-unit,
located at the bottom for easy detachment and recovery, connects to the main vehicle via
an umbilical cable, with the main unit having a small winch control. Emergency self-rescue
equipment includes a jettison mechanism and buoys.

The vehicle operation process consists of deployment, diving, dam surface inspection,
dredging, and recovery. As shown in Figure 6, the power buoy and vehicle are initially
deployed together. After disconnecting from the buoy, the vehicle descends to the target
dam surface and begins the planned inspection route. If certain areas are inaccessible, the
sub-unit is deployed for further investigation. In cases of sediment buildup, the vehicle
performs dredging to clear the silt. Finally, the vehicle collaborates with the propulsion
system and umbilical cable for recovery.
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3. Hydrodynamic Simulation
3.1. The Principle of CFD Calculation

The law of conservation of momentum is a fundamental principle that must be fol-
lowed in all flow problems. Within the target fluid system, the rate of change in fluid
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momentum over time equals the sum of external forces acting on the fluid during that time.
The mathematical formulation of this principle is represented by the Navier–Stokes (N-S)
equations, which are expressed as follows:

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= fx −

∂p
∂x

+ div(grad µu) (4)

ρ

(
∂u
∂t

+ u
∂v
∂y

)
= fy −

∂p
∂y

+ div(grad µv) (5)

ρ

(
∂u
∂t

+ u
∂w
∂z

)
= fz −

∂p
∂z

+ div(grad µw) (6)

Here, u, v, and w represent the fluid’s velocity components in the x, y, and z directions
at time t at the point (x, y, z), respectively; ρ denotes the fluid density; p represents pressure;
f is the external force acting on the fluid; and µ is the dynamic viscosity.

The principle of mass conservation applies to all fluid flow problems and is expressed
as follows:

InMass/Time = OutMass/Time (7)

For an incompressible fluid, the above equation simplifies to

∂ui
∂xi

= 0 (8)

3.2. Simulation of Direct Flight

Using a rectangular control domain as the computational area and referencing the rel-
evant literature, as shown in Figure 7, the vehicle length is L. To ensure accurate simulation
of hydrodynamic forces, the model is positioned such that its distance from the boundary
in the x-direction is 6L, in the y-direction it is 4L, and in the z-direction it is 6L.
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Figure 7. The setting of the calculation area and the division of grid: (a) the setting of the calculation
area; (b) results of watershed grid division; (c) results of robot configuration surface meshing.

In the forward three-section working condition, the upstream x-axis boundary is set
as the velocity inlet, while the downstream boundary is set as the pressure outlet; the
remaining four faces are treated as symmetry planes, and the model surface is specified as
a wall. For the transverse two-section condition, the y-axis surfaces are used as the velocity
inlet and pressure outlet.

Based on the operational requirements, simulations were conducted to determine the
straight-line resistance for the forward three-section and lateral two-section conditions. The
results are presented in Table 1 and Figure 8. The direct navigation calculations indicate
that the forward-flow surface experiences high pressure over a small area, resulting in
substantial force and increased resistance when the streamlined configuration moves at
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high speed. In lateral flow, the larger incoming flow area causes a marked increase in the
vehicle’s resistance.

Table 1. Simulation results for straight-line navigation resistance.

Forward Three-Section/N Lateral Two-Section/N

Simulation results for straight-line
navigation resistance 117.818 300.517
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Figure 8. Surface pressure contour of the vehicle configuration: (a) forward three-section; (b) lateral
two-section.

3.3. Hydrodynamic Experiments and Configuration Validation

To validate the hydrodynamic calculations, a scaled physical model based on the
streamlined configuration was constructed, and resistance measurements were taken under
two operating conditions. The full-scale resistance was then determined using a conversion
formula and compared with CFD results. The towing tests were conducted in the towing
pool at Jiangsu University of Science and Technology, which measures 100 m in length,
5 m in width, and 3 m in depth. The physical model was constructed based on the Froude
number scaling law, with a reduction ratio of 1:4.1, in accordance with previous experience

and the constant Froude number formula ( v2
s

Ls
= 1.54322

1.28 = v2
m

Lm
). The main dimensions of the

physical model are provided in Table 2. Data collection was performed using Dewesoft
software, and the assembly test site is shown in Figure 9.

Table 2. Main scale of physical model of vehicle.

Model Scale Value

long 0.312 m
wide 0.211 m
high 0.400 m

volume 0.244 m
Surface area 0.316 m

Three trailing tests, each lasting over 30 s, were conducted for two conditions, namely
forward at 0.76 m/s and lateral at 0.51 m/s, with the average value taken for each. To
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account for the impact of the dead weight of the upper and lower connectors and the
six-component balance on the results, a no-load test was first performed using only these
two components. The final physical model test results were obtained by subtracting the
no-load values from the measurements under the two working conditions.
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As shown in Figure 10, test results with significant errors were excluded, and the
remaining data were averaged. The approximate resistance of the model under the two
working conditions was then obtained by subtracting the no-load resistance from the total
resistance. The calculation results are presented in Table 3.
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Table 3. Calculation results of four groups of experiments.

Forward 0.76 M/S Lateral 0.51 M/S

Number of Trials Integral Resistance No-Load
Resistance Integral Resistance No-Load

Resistance

1 −4.162 N −2.181 N −12.742 N −0.721 N
2 −4.205 N −2.156 N −12.463 N −0.723 N
3 −4.251 N −2.147 N −12.065 N −0.724 N

Mean value −4.206 N −2.161 N −12.423 N −0.723 N

Difference between overall
and no-load resistance −2.044 N −11.700 N

From the above, the forward drag force of the physical model under standard operating
conditions is 2.044 N, which was then used for model drag conversion. The model design
parameters are shown in Table 4.

Table 4. Model design parameters.

Argument Date

The length of the physical model Lm 0.313 m
The surface area of the physical model Sm 0.316 m2

The speed of the physical model Vm 0.760 m/s
The drag force of the physical model Rm 2.044 N

The length of the actual size configuratio Ls 1.280 m
The surface area of the actual size configuratio Ss 5.314 m2

The speed of the actual size configuration Vs 1.543 m/s
Scaling ratio α 4.1

The resistance of the scaled physical model was converted to correspond to the full-
scale configuration, with the final results presented in Table 5. The calculations show
that the error between the resistance conversion result and the CFD calculation under
the forward three-section condition is 4.98%, while the error for the lateral two-section
condition is 3.65%. Both results fall within the acceptable error range, confirming the
accuracy of the CFD calculation method.

Table 5. The results of resistance conversion.

Forward 0.76 m/s Lateral 0.51 m/s

Result of resistance conversion 123.690 N 311.492 N
Result of CFD simulation 117.818 N 300.517 N

Error 4.98% 3.65%

3.4. Stability Analysis

The stability of an underwater vehicle includes both static and dynamic stability. High
stability enhances the vehicle’s maneuverability.

3.4.1. Simulation of Variable Angle of Attack and Variable Angle of Drift

At three throttling speeds, the vertical and horizontal hydrodynamic forces were
calculated using CFD within the range of [−10◦,10◦] for both the angle of attack α and the
drift angle β. The torque distribution of the hydrodynamic center along the x-axis was
analyzed to identify the maneuverability center. Figure 11 illustrates the definitions of the
attack angle α and drift angle β.
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Figure 11. Definition of angle of attack and angle of drift: (a) attack angle α; (b) drift angle β.

The results obtained were dimensionless, leading to the determination of the lift
coefficient and pitching moment coefficient for varying angles of attack, as shown in
Figure 12. Within the range of [−10◦, 6◦], both the lift force and pitching moment exhibit
good linearity, with instability observed beyond 6◦. Fitting a linear relationship for the
range [−10◦, 6◦] yields position derivatives of Z′

w = −0.0002 and M
′
w = −0.0027.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 11 of 23 
 

 

is 3.65%. Both results fall within the acceptable error range, confirming the accuracy of the 
CFD calculation method. 

Table 5. The results of resistance conversion. 

 Forward 0.76 m/s Lateral 0.51 m/s 
Result of resistance conversion 123.690 N 311.492 N 

Result of CFD simulation 117.818 N 300.517 N 
Error 4.98% 3.65% 

3.4. Stability Analysis 

The stability of an underwater vehicle includes both static and dynamic stability. 
High stability enhances the vehicle’s maneuverability. 

3.4.1. Simulation of Variable Angle of AĴack and Variable Angle of Drift 

At three throĴling speeds, the vertical and horizontal hydrodynamic forces were cal-
culated using CFD within the range of [−10°,10°] for both the angle of aĴack α and the 
drift angle β. The torque distribution of the hydrodynamic center along the x-axis was 
analyzed to identify the maneuverability center. Figure 11 illustrates the definitions of the 
aĴack angle α and drift angle β. 

 
 

(a) (b) 

Figure 11. Definition of angle of aĴack and angle of drift: (a) aĴack angle α; (b) drift angle β. 

The results obtained were dimensionless, leading to the determination of the lift co-
efficient and pitching moment coefficient for varying angles of aĴack, as shown in Figure 
12. Within the range of [−10°, 6°], both the lift force and pitching moment exhibit good 
linearity, with instability observed beyond 6°. FiĴing a linear relationship for the range 

[−10°, 6°] yields position derivatives of 0.0002'Zw   and 0.0027'Mw   . 

  
(a) (b) 

Figure 12. The variation in the lift coefficient Z
′
w and pitching moment coefficient M

′
w with the angle

of attack: (a) the variation in the lift coefficient Z
′
w with the angle of attack; (b) the variation in the

pitching moment coefficient M
′
w with the angle of attack.

Similarly, the lateral force coefficient and yaw moment coefficient for varying drift an-
gles were dimensionless, with the final results shown in Figure 13. The vehicle’s lateral force
coefficient exhibits instability between −2◦ and 2◦, but overall, the relationship is approx-
imately linear. Linear fitting of the data gives position derivatives of Y

′
v = −0.0062 and

N
′
v = 0.0040.
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3.4.2. Simulation of Pitch and Turn Motion

The changes in the longitudinal angular velocity q = dφ
dt and turning angle r = dθ

dt of
the hydrodynamic center impact the course stability of the underwater vehicle in both the
vertical and horizontal planes. To evaluate this, the hydrodynamic derivatives Mq, Zq, Yr,
and Nr must be calculated. The angular velocity was varied within the interval [1 deg/s,
3 deg/s] in steps of 0.5 deg/s, and the pitching and rotational motion performance was
simulated using the rotating coordinate system method, as shown in Figure 14.
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The obtained data were dimensionless, and the corresponding hydrodynamic coeffi-
cients were calculated, as shown in Figure 15. Both the lift coefficient and pitching moment
coefficient exhibited an approximately linear relationship with angular velocity. A linear fit
was applied, yielding Z

′
q = −0.0034 and M

′
q = −0.0099.
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Similarly, as shown in Figure 16, the lateral force coefficient and yaw moment coef-
ficient exhibit an approximately linear relationship with the rotational angular velocity.
Fitting a linear model yields Y

′
r = 0.0181 and N

′
r = 0.0247.
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3.4.3. Stability Assessment

This section evaluates the stability of underwater vehicles by considering both static
and dynamic criteria.

Static stability focuses on the change in a single parameter during constant motion,
addressing only the initial motion response after the removal of external disturbances. The
vertical and horizontal stability of the vehicle is determined by the sign of the dimensionless
hydrodynamic center lever:

l′α = −M′
w

Z′w
, l′β =

N′
v

Y′v
(9)

The stability improves as the value of the dimensionless hydrodynamic center lever
decreases. When l′α < 0, the angle of attack α is considered statically stable. Conversely, if
l′α > 0, the system is unstable. This method of determination is also applicable to l′β.

If the relationship between the static instability coefficient in the vertical plane l′α and
the dimensionless pitching lever l′q is satisfied such that

l′α < l′q, (10)

this indicates that dynamic stability can be achieved at any speed in the vertical plane,
where the dimensionless hydrodynamic center lever l′α = −M′

w
M′q

and the dimensionless

relative damping lever l′q = − M′
q

(m′+Z′q)
.

Stability in the horizontal plane is governed by similar criteria:

CH = N′
rYv

′ + N′
v(m′ − Y′

r) > 0 (11)

This indicates that the system possesses dynamic stability in the horizontal plane.
Therein, m

′
= m

1
2 ρL3 .

Based on the above calculations, as shown in Table 6, it can be concluded that the
vehicle configuration exhibits static stability in the vertical plane within the range of [−10◦,
6◦], as both the lift coefficient and pitching moment coefficient become unstable when the
angle of attack exceeds 6◦. Additionally, the configuration shows dynamic stability in the
vertical plane but lacks dynamic stability in the horizontal plane.
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Table 6. Stability analysis results.

Static Stability Dynamic Stability

Argument Result
Determining

Static
Stability

Argument Result
Determining

Dynamic
Stability

Vertical Plane l′α −13.5 Yes
l′α −0.272

Yesl′q 0.0617

Horizontal
Plane l′β −0.645 Yes CH −2.805 No

4. Optimization of Configuration
The vehicle configuration optimization process (Figure 17) utilizes free deformation

technology to modify the original design, establishing an optimization objective function.
This process is divided into four steps: design, deformation, simulation, and optimiza-
tion. CAESES software was used for free deformation, with the vehicle configuration
deformation grid set to 1.5 m × 1 m × 1.8 m, divided into eight equal sections.
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The deformation size corresponds to the change in control points, with the influence di-
minishing as the control points move away from the surface. Based on the grid distribution,
two deformation operations were performed (Figures 18–20), as follows:

1. Control points along the vehicle’s working face in the x-direction were selected, and
their longitudinal tilt angle was adjusted within a range of [−5◦, 5◦], with a step size
of 1◦.

2. The symmetry axis of the vehicle’s working face was selected, and its stretching
parameters along the x-axis (forward direction) were modified within a range of
[0.05 m, 0.25 m], with a step size of 0.05 m.

To optimize the vehicle’s performance, multiple configurations are generated through
local deformation, and the one with the best overall performance is selected. The optimiza-
tion is constrained by a drainage volume variation of ≤2%, with resistance and stability
as the primary objectives. Due to the limited propeller power caused by the umbilical
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cable, the weight of resistance is relatively low, while the weight of stability is higher. The
optimization function is defined as follows:

minF(X) =
1
3

ξ1 +
2
3
(ξ2 + ξ3), (12)

ξ1 =
1
2

Fm − Fp

Fp
+

1
2

Fn − Ft

Ft
(13)

ξ2 = ξx2 + ξy2 (14)

ξx2 =

{
0, l

′
α < 0

0.01, l
′
α ≥ 0

, ξy2 =

{
0, l

′
β < 0

0.01, l
′
β ≥ 0

(15)

ξ3 = ξx3 + ξy3 (16)

ξx3 =

{
0, l

′
α < l

′
q

0.01, l
′
α ≥ l

′
q

, ξy3 =
CH − C0

C0
(17)

s.t
∣∣∣∣Vm − V

V

∣∣∣∣ ≤ 2% (18)

In these equations, Fm and Fp represent the drag forces of the deformed and original
configurations, respectively, under the forward three-segment condition. Fn and Ft repre-
sent the drag forces of the deformed and original configurations, respectively, under the
lateral two-segment condition. ξx2 is the vertical plane static stability criterion, ξy2 is the
horizontal plane static stability criterion, ξx3 is the vertical plane dynamic stability criterion,
and ξy3 is the horizontal plane dynamic stability criterion. CH and C0 are the horizontal
plane stability parameters for the deformed and original configurations, respectively. Vm

represents the volume of the deformed configuration, and V represents the volume of the
original configuration.
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Figure 19. Surface tilt range from 1◦ to 5◦ (front view): (a) tilt 1◦; (b) tilt 2◦; (c) tilt 3◦; (d) tilt 4◦; (e) tilt 5◦.
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Figure 20. Surface stretch of 0.05 m to 0.25 m (isometric view): (a) stretch of 0.05 m, (b) stretch of
0.1 m, (c) stretch of 0.15 m, (d) stretch of 0.2 m, and (e) stretch of 0.25 m.

The deformation configurations of 0.20 m and 0.25 m do not satisfy the optimization
constraints and are therefore excluded. To investigate the hydrodynamic behavior of the
vehicle under forward three-knot and lateral two-knot inflows, velocity contour plots for
various deformation configurations were generated through steady-state simulations. The
results are presented in Figures 21–24.
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The static stability of the series configuration was evaluated through simulations
involving variable angles of attack and drift. As shown in Table 7, the results indicate
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that changes in the tilt or stretch of the oncoming plane have minimal impact on the
static stability of both the vertical and horizontal planes, with the configuration remaining
stable within a tilt range of [−10◦, 6◦]. Increasing the bottom indentation and top outward
expansion improves the horizontal static stability. Dynamic stability is then assessed
through simulations of pitching and rotating motions. It is observed that variations in
the oncoming surface significantly affect the dynamic stability in the horizontal plane.
Specifically, the CH coefficient decreases as the tilt angle increases, while it increases with the
stretching of the oncoming surface. However, all configurations lack horizontal dynamic
stability. The vertical dynamic stability remains largely unaffected by these changes,
ensuring stability in the vertical plane.

Table 7. Evaluation of static and dynamic stability coefficients for different configurations.

Serial Number Configuration Static Stability Dynamic Stability F(X)
l’
α l’

β CH l’
α l’

q

1 Tilt −5◦ −13.5 −0.661 −7.247 −0.529 0.0315 1.06125

2 Tilt −4◦ −13.5 −0.656 −5.432 −0.479 0.0377 0.62862
3 Tilt −3◦ −13.5 −0.652 −4.241 −0.434 0.0455 0.34517
4 Tilt −2◦ −13.5 −0.648 −3.237 −0.361 0.0518 0.10444
5 Tilt −1◦ −13.5 −0.645 −2.805 −0.275 0.0611 0.00117
6 Origin −13.5 −0.645 −2.805 −0.272 0.0617 0
7 Tilt 1◦ −13.5 −0.645 −2.805 −0.279 0.0610 0.00047
8 Tilt 2◦ −13.5 −0.638 −3.169 −0.346 0.0523 0.08542
9 Tilt 3◦ −13.5 −0.621 −4.180 −0.425 0.0461 0.32498

10 Tilt 4◦ −13.5 −0.609 −5.015 −0.460 0.0384 0.52191
11 Tilt 5◦ −13.5 −0.609 −6.522 −0.519 0.0319 0.88052
12 Stretch 0.05 m −13.5 −0.627 −2.340 −0.265 0.0586 −0.11228
13 Stretch 0.10 m −13.5 −0.635 −2.064 −0.253 0.0550 −0.1715
14 Stretch 0.15 m −13.5 −0.655 −1.815 −0.240 0.0517 −0.21605

As shown in Table 8, the optimal configuration corresponds to a 0.15 m surface
stretch deformation. Compared to the original design, this configuration results in a 2.15%
reduction in forward resistance, a 21.62% increase in lateral resistance, and a 1.98% increase
in volume. It exhibits good static stability and maintains vertical dynamic stability. While
it lacks full horizontal dynamic stability, the horizontal stability improves from −2.805 to
−1.815, indicating a notable enhancement in horizontal plane dynamic stability.

Table 8. Comparison of configuration parameters before and after optimization.

Argument Original Configuration Optimized
Configuration Rate of Change

Resistance in the forward 3-knots
condition/N 117.818 115.282 −2.15%

Resistance in the lateral 2-knots
condition/N 300.517 365.502 21.62%

Vertical static stability −13.5 −13.5 -
Horizontal static stability −0.645 −0.655 −1.55%
Vertical dynamic stability yes yse -

Horizontal dynamic stability −2.805 −1.815 35.29%

5. Conclusions
This paper addresses the demand for underwater dam defect detection by designing

an overall layout and operational mode for a streamlined underwater robot and param-
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eterizing the streamlined configuration. CFD methods were used to conduct a series of
hydrodynamic simulations on the configuration, calculating relevant hydrodynamic coeffi-
cients and determining the stability of the configuration. A scaled physical model was built,
and resistance data were collected through towing tests in a water tank. The full-scale drag
was then calculated using a drag conversion formula, and the reliability of the CFD method
was verified through comparison. A series of different configurations were generated using
the free deformation method, and hydrodynamic simulations were performed for each. The
drag and stability performance were used to establish an optimization objective function,
which was optimized using a genetic algorithm. The main research findings of this paper
are as follows:

1. In response to the specific requirements of underwater dam defect detection, a
streamlined configuration inspired by the shape of a seahorse was designed, integrating
the vehicle’s hydrodynamic performance and operational posture. This bionic design is
particularly significant for the development of the ROV hover system.

2. A streamline model of the vehicle was developed to assess its hydrodynamic
coefficients under various working conditions. The evaluation results show that, while the
vehicle lacks horizontal dynamic stability, it maintains static stability in both the horizontal
and vertical planes, as well as dynamic stability in the vertical plane.

3. The vehicle’s original configuration was optimized using free deformation technology.
The optimization function, focused on resistance and stability, with a volume change constraint
of ≤2%, was established. The optimized configuration resulted in a 2.152% reduction in
forward resistance and a 35.29% improvement in horizontal dynamic stability (CH).
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