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Abstract

In this paper the problem of high-precision motion control of remotely operated vehicles (ROVs) in the proximity of the seabed

through vision-based motion estimation is addressed. The proposed approach consists of the integration of a cheap monocular vision

system for the estimate of the vehicle’s linear motion with a conventional dual-loop hierarchical architecture for kinematics and dynamics

control. Results obtained by operating at sea the Romeo ROV are presented, demonstrating the system capability in performing station-

keeping in the presence of external disturbance and relatively high accuracy in horizontal motion control.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of accurate motion control of remotely
operated vehicles (ROVs) in the proximity of the seabed is
crucial in many service, scientific and archeological
applications. A number of control methodologies have
been proposed in the literature to handle the high degree of
uncertainty which characterizes underwater operations in
terms of external disturbance, system dynamics, actuator
forces, sensor measurements and environmental structure.
Indeed, only few of these techniques are reliable and precise
for 3-D position and velocity sensing with an update rate
compatible with fast and precise closed-loop feedback
control in all degrees of freedom, and ‘‘rare are experi-

mental results for X–Y control of vehicles in the horizontal

plane’’ (Kinsey & Whitcomb, 2004).
In the following, a simple and cheap solution to this

problem is proposed and demonstrated to be reliable at
sea, where a conventional dual-loop guidance and control
architecture is integrated with a single camera laser-
triangulation optical-correlation sensor for the estimate
of the horizontal motion of a ROV. The resulting system
can satisfactorily perform basic tasks, such as station-
e front matter r 2006 Elsevier Ltd. All rights reserved.
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keeping or moving back to a user-selected point, that, when
executed automatically, are of extraordinary help to the
ROV pilot during, for instance, scientific surveys.
In order to handle external disturbances and parametric

model uncertainty, robust and adaptive control techniques
have been proposed from the pioneer paper by Yoerger
and Slotine (1985), introducing the use of sliding-mode
control, and the first experimental validation of adaptive
sliding control on a tethered underwater vehicle, performed
on the RPV, a testbed vehicle for the development of the
Jason ROV (Yoerger & Slotine, 1991). Later examples of
the use of sliding-mode techniques are, for instance, the
depth, altitude, heading and cross-track error controllers of
the NPS ARIES AUV (Marco & Healey, 2001), and the
heading and depth controllers of the autonomous under-
water shuttle SIRENE (Silvestre, Aguiar, Oliveira, &
Pascoal, 1998), which proved their capability in handling
an uncertainty of the order of 50% in the estimation of the
vehicle’s hydrodynamic parameters. Adaptive control
schemes were proposed in Fossen and Sagatun (1991)
and Yuh (1990), and experimentally demonstrated, for
instance, with the ODIN AUV in Antonelli, Chiaverini,
Sarkar, and West (2001). Satisfactorily performances in
horizontal motion control of the Romeo ROV, in the case
position measurements were provided by a couple of echo-
sounders tracking the walls of a testing pool, have been
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obtained adopting a dual-loop hierarchical guidance and
control scheme, based on a set of Lyapunov-based
guidance task functions and a PI gain scheduling controller
able to reduce the robot dynamics to a nominal character-
istic equation (Caccia & Veruggio, 2000). State-of-the-art
results in underwater robotic vehicles dynamic positioning
with an extended experimental comparison of trajectory-
tracking controllers for low-speed maneuvering (PD,
exactly linearizing and nonlinear controllers, and their
adaptive extensions) can be found in Smalwood and
Whitcomb (2004).

Accurate and reliable solutions to the problem of
estimating the horizontal motion of an ROV are provided
by acoustics. The combination of high-frequency long
base-line (LBL, 300 kHz), Doppler velocimeter (1.2MHz),
and ring-laser gyro can guarantee accurate motion control
on the horizontal plane as in the case of archaeological
applications of the JASON ROV (Whitcomb, Yoerger,
Singh, & Howland, 1999). Anyway, the very complex
logistics in terms of careful placement of transponders
and the very limited maximum range of high-frequency
LBL suggest the use of Doppler-based navigation sys-
tems (Kinsey & Whitcomb, 2003) or cheap, standalone
optical vision devices for horizontal motion estimation.
In particular, in the last years, the exponential rise
in computing performance and the availability of
high-resolution digital cameras boosted the research in
underwater visual navigation starting from the basic
station-keeping techniques, founded on obtaining the
robot position by tracking texture features using image
filtering and correlation, proposed in Marks, Wang, Lee,
and Rock (1994). These results were transferred to the
MBARI Ventana ROV (Leabourne, Rock, Fleischer, &
Burton, 1997), demonstrating a precision of the order of
10 cm when operating at sea at an altitude from the seabed
of 1m in the hypothesis of no yaw rotations.

In order to handle the induction of optical flow in the
scene by the motion of the light sources mounted on the
ROV and moving together with the camera(s), a revised
definition of optical flow as ‘‘the perceived transformation of

brightness patterns in an image sequence’’ was introduced in
Negahdaripour (1998), and used for direct estimation of
linear and yaw motion from seafloor images in Negahdar-
ipour, Xu, and Jin (1999), where accurate station-keeping
is demonstrated in experiments with a three-thruster
floating vehicle in a water tank. At sea tests with a
Phantom XTL ROV pointed out the strong coupling
between the constraints on robust motion sensing from
images and the vehicle control (Xu & Negahdaripour,
1999). These techniques were improved and integrated in a
mosaic-based concurrent mapping and localization scheme
in Negahdaripour and Xu (2002), where, in spite of the
high degree of robustness of the gradient-based motion
estimation and mosaicing methods, the inability of the
control system of the Phantom XTL ROV to execute
corrective actions promptly for maintaining station was
confirmed. Quite interesting results in combined vision-
based motion estimation and mosaicing were demonstrated
with a Phantom 500SP ROV in Gracias, Van der Zwaan,
Bernardino, and Santos-Victor (2003).
In this context, a monocular video device was designed,

developed and integrated on the Romeo ROV in order to
exploit at sea the dual-loop guidance and control
architecture satisfactorily tested in pool (Caccia & Ver-
uggio, 2000). The resulting laser-triangulation optical-
correlation sensor, presented in Caccia (2003b), solves the
problem of estimating the image depth by directly
measuring it through a laser beam triangulation system,
locally structuring the environment with a set of laser spots
of known orientation with respect to the camera axis
(Clark, Wallace, & Pronzato, 1998; Marques, Nunes, & de
Almeida, 1998). An example of the use of colour CCD
cameras and parallel lasers for estimating the motion of an
AUV with respect to man-made structures is reported in
Kondo and Ura (2004). The automatic selection of suitable
areas of interest allows the tracking of clearly distinguish-
able parts of the image and, in any case, a measurement of
the reliability of the motion estimate. Although preliminary
results were presented in Caccia (2005), a complete
overview of the integration of the vision-based horizontal
motion estimation system and the dual-loop guidance and
control architecture is given in this paper, focusing on the
discussion of extended experimental results demonstrating
satisfactory performance when executing basic tasks to
support the ROV pilot during scientific survey missions.
The paper is organized as follows. A general view of the

navigation, guidance and control (NGC) architecture is
given in Section 2, together with a short description of the
Romeo ROV and a view of the optical device, while the
adopted nomenclature and vehicle, sensor and environ-
ment models are presented in Section 3. Section 4 presents
the laser-triangulation optical-correlation sensor, discuss-
ing the image processing algorithms and the effects of pitch
and roll small oscillations of the ROV surge and sway.
Guidance and control algorithms are presented in Section
5, while experimental results are reported in Section 6
pointing out the precision of the vision-based device and
the effectiveness of the proposed control algorithms in
counteracting current and tether disturbance occurring
during typical benthic operations of the Romeo ROV.

2. System architecture

The system consists of the Romeo ROV (Caccia, Bono,
Bruzzone, & Veruggio, 2000) integrated with a laser-
triangulation optical-correlation sensor (see Fig. 1), which,
mounted downward-looking below the vehicle, measures
its horizontal position and speed, and range from the sea
bottom. The ROV, shown in Fig. 2, was designed with
particular attention to the geometry of the propulsion
system in order to obtain a vehicle able, at least in line of
principle, to maneuver with high precision both in the
vertical and horizontal plane minimizing the interactions
with the sea floor. Thus, the four vertical propellers were
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Fig. 1. Laser-triangulation optical-correlation sensor.

Fig. 2. Romeo benthic survey configuration.
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Fig. 3. NGC dual-loop architecture.
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positioned on the top vehicle corners, and the four
horizontal thrusters were aligned to the horizontal
diagonals in the mid corners of the frame. The symmetry
in thruster location allowed a smooth distribution of the
control actions over the actuators, and the redundancy of
the actuation system enabled the vehicle to handle faults in
the propulsion system without sensibly altering its motion
control performances.

The core vehicle, weighting about 350 kg in air, is
composed of a frame ð130� 90� 66 cm ðlwhÞÞ, equipped
with a number of titanium cylindrical canisters for
electronics ð100� 32 cm ldÞ, batteries ð80� 15 cm ldÞ,
DC/DC converters ð80� 15 cm ldÞ, and compass, gyro,
and inclinometers ð60� 15 cm ldÞ. The standard toolsled,
which measures 130� 90� 30 ¼ cm (lwh), brings addi-
tional batteries.

As far as the NGC system is concerned, as shown in
Fig. 3, it consists of a dual-loop hierarchical guidance and
control architecture of the type presented in Caccia and
Veruggio (2000), constituted by a dynamics controller Dc

controlling the vehicle linear speed x, i.e. surge and sway,
and a kinematics controller Kc handling position control.
Since, as usual, see Section 3.1 for details, the vehicle
dynamics S with respect to the water is represented in a
body-fixed reference frame, neglecting pitch and roll, the
robot position in an earth-fixed frame is obtained by
integrating the body-fixed linear speed including the
contribution of the sea current multiplied by a rotation
matrix L, which is a function of the vehicle heading c. The
linear speed with respect to the ground in a vehicle-fixed
frame is measured by a laser-triangulation optical-correla-
tion sensor (OTCS) of the type described in Caccia (2003b).
The well-known effect of indistinguishability between small
surge and sway displacements and pitch and roll rotations
when a monocamera video device for motion estimation is
mounted downward-looking below a ROV (see, for
instance, Marks, Rock, & Lee, 1995) can be modelled by
adding a quasi-sinusoidal disturbance Zy;j and tackled by
band-stop filtering (BSF) the measured speed as discussed
in Caccia (2003a). The vehicle horizontal position with
respect to an earth-fixed frame is, at this stage, simply
predicted by integrating the measured surge and sway
multiplied by a rotation matrix LðcÞ.
3. Modelling and nomenclature

3.1. Vehicle model

As discussed in Fossen (1994), the motion of marine
vehicles is usually described with respect to an earth-fixed
inertial reference frame hei and a moving body-fixed
reference frame hvi, whose origin coincides with the center
of gravity of the vehicle. Thus, position and orientation of
the vehicle are described relative to the inertial reference
frame, while linear and angular speeds are expressed
relative to the body-fixed reference frame.
The vehicle kinematics nomenclature follows (see Fig. 4):
x ¼ ½x y z�T: ROV position relative to the earth-fixed

reference frame;
½j y c�T: ROV roll, pitch and yaw angles relative to the

earth-fixed reference frame;
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Fig. 4. Camera mounted downward-looking below the ROV: nomencla-

ture.
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½u v w�T: ROV linear speed (surge, sway, heave) relative
to the vehicle-fixed reference frame;
½p q r�T: ROV angular speed (roll, pitch and yaw rates)

relative to the vehicle-fixed reference frame.
Since the vehicle is a rigid body floating in the water, it is

necessary to distinguish between its velocity with respect to
the water, i.e. x ¼ ½u v�T in the horizontal plane, and its
ground speed, i.e. x

G
¼ xþx

C
including the sea current,

both expressed with respect to the vehicle-fixed reference
frame.

The vehicle position x in the earth-fixed reference frame
is related to the vehicle speed x

G
¼ ½uG vG�

T with respect to
the ground in the body-fixed frame by

_x ¼ LðcÞx
G
, (1)

where

LðcÞ ¼
cosc � sinc

sinc cosc

" #
.

3.2. Camera-laser sensor model

The developed video system for measuring range from
surfaces is shown in Fig. 1. It consists of a video camera
and four parallel red laser diodes. A camera-fixed reference
frame hci is defined with the z-axis directed towards the
scene.

The camera and image basic nomenclature follows (see
Fig. 4):

f: focal length;
½m n�T: image point in the image plane;
½ _m _n�: image motion field in the image plane;
X ¼ ½X Y Z�: coordinates of the generic point in the

3-D space (referred to the camera frame).
Point coordinates in the 3-D space and in the image
plane are related by the camera perspective model

m

n

� �
¼

f

Z

X

Y

� �
. (2)

In the case the camera is mounted downward-looking
below the vehicle, the frames hci and hvi are assumed to
coincide. Denoting with xi the coordinates of the generic
ith point in the 3-D space (referred to the earth-fixed
frame), then X i ¼ xi � x and _X i ¼ � _x.
The four laser diodes are rigidly connected to the

camera-fixed frame and laser spots are given by
the intersection between the laser rays and the seabed:
if the vehicle pitch and roll are zero, the corresponding
Z-axes are vertical and the laser spot Z coordinates in
the camera frame represent the altitude of the vehicle from
the surface.

3.3. Seabed model

At a generic instant, the seabed can be locally
represented in the camera (vehicle)-fixed reference frame
by the plane pL

X sin a cos gþ Y sin a sin gþ ðZ � hÞ cos a ¼ 0, (3)

where a 2 ½0;p=2� and g 2 ð�p;p� are the seabed maximum
slope and its orientation and h is the vehicle altitude.
Since the small area covered by the image, the seabed

could be locally assumed to be horizontal, and Eq. (3)
reduces to

Z ¼ h ¼ cp. (4)
3.4. Rigid-body motion: motion field of a stationary scene

point

Considering a vehicle-fixed camera moving at linear and
angular speed ½u v w�T and ½p q r�T, respectively, the
motion field of a generic 3-D point in the camera frame
is (Marks et al., 1995)

_m

_n

" #
¼ �

f

Z

u

v

" #
þ

w

Z

m

n

" #
þ r

n

�m

" #

þ f
�q

p

" #
þ

pn� qm

f

m

n

" #
. ð5Þ

4. Vision-based motion estimation

4.1. Image processing algorithms

In the following a brief summary of the image processing
system and algorithms used for measuring the camera
(vehicle) speed is given. For details the reader can refer to
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Fig. 5. OTCS architecture.
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Caccia (2003b). The system basically consists of three
modules (see Fig. 5):
�
 3-D optical laser triangulation altimeter: detects and
tracks the laser spots in the image coordinates, estimates
their spatial coordinates in the camera (vehicle)-fixed
frame, and finally computes the seabed range. Since
laser diodes emit only a red spot, the R component
of the image is processed. The vision-based estimate of
the scene depth can be integrated with altitude
measurements supplied by acoustic altimeters mounted
on the vehicle to increase system reliability and field of
work.

�
 Token detector and tracker: automatically detects and

tracks areas of interest in the image, characterized by
high-local variance, which can also be seen as a
measurement of the observability of an image template.
After a 2-D band-pass filtering to enhance specific
spatial wavelengths, local variances are computed to
evaluate contrast, and high-local variance areas are
extracted as templates. As discussed in Misu, Hashimo-
to, and Ninomiya (1999), in order to reduce computa-
tion, band-pass filtering is performed executing
averaging as low-pass filtering and sub-sampling and
Laplacian filtering as high-pass filtering. Since in the
hypothesis of constant heading operations close to the
seabed small rotations and inter-frame variations in
scene depth occur, template tracking is performed
through the computation of the highest correlation
displacement in a neighborhood of the previous loca-
tion, computed according to the estimated motion.
Token tracking fails when the correlation gets lower
than a suitable threshold.

�
 Motion from tokens estimator: computes the vehicle

motion in the camera-fixed reference frame from
token displacements in consecutive images assuming
that the image depth is supplied by the 3-D optical
laser triangulation altimeter. In the case yaw motion
is considered, neglecting pitch and roll, Eq. (5)
reduces to

_m

_n

� �
¼ �

f

Z

u

v

� �
þ

w

Z

m

n

� �
þ r

n

�m

� �
. (6)

In the case the image depth is assumed to be constant
(this hypothesis is reasonable given the small area
covered by the image), defining the normalized speed
~u ¼ u=Z, ~v ¼ v=Z and ~w ¼ w=Z, the following over-
constrained system can be obtained given N tracked
image templates and solved with a LS algorithm:

�f 0 m1 n1

0 �f n1 �m1

..

. ..
. ..

. ..
.

�f 0 mN nN

0 �f nN �mN

2
66666664

3
77777775

~u

~v

~w

r

2
6664

3
7775 ¼

_m1

_n1

..

.

_mN

_nN

2
66666664

3
77777775
. (7)
4.2. Pitch and roll induced noise: band-stop filter

Small oscillations in uncontrolled pitch and roll induce
quasi-sinusoidal disturbance on the measured surge and
sway according to the first-order relationship

_m

_n

� �
� �

f

Z

u

v

� �
þ

w

Z

m

n

� �
þ f

�q

p

" #
. (8)

As discussed in Caccia (2003a), where experimental results
are presented, the power spectral density of these oscilla-
tions is independent from the maneuvers executed by the
ROV, and their amplitude is not negligible at very low
speed. Indeed, for typical ROV benthic operations at an
altitude of about 1m, an angular rate of 1 deg/s corre-
sponds to a disturbance of about 1.75 cm/s on the
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Fig. 6. Power spectral density of pitch and roll measured by the Romeo

ROV inclinometers.
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estimated linear speed in the case one pixel corresponds to
1mm at a range of 1m.

As shown by Fig. 6, where an example of the power
spectral density of the measured pitch and roll of the
Romeo ROV is plotted, this disturbance can be rejected by
suitable BSF introducing some delay. In particular, a
couple of Butterworth bandstop digital filters, that lose no
more than 1.0 dB in the passband and with at least 5.0 dB
of attenuation in the stopband, have been designed. The
passband and stopband edge frequencies are ½0:15 0:55�Hz
and ½0:25 0:45�Hz for the surge/pitch filter, and
½0:20 0:60�Hz and ½0:30 0:50�Hz for the sway/roll filter,
respectively.
Fig. 7. Laser-triangulation optical-correlation sensor mounted below the

ROV.
5. Guidance and control

5.1. Dynamics control (speed control)

Surge and sway controllers are based on the practical
1-DOF uncoupled model of vehicle dynamics (Caccia,
Indiveri, & Veruggio, 2000):

mx
_x ¼ �kxx� kxjxjxjxj þ f x, (9)

where x, kx, kxjxj, mx and f x represent the linear speed with
respect to the water, linear and quadratic drag coefficients,
inertia included added mass, and applied force, respec-
tively.

Linearization of Eq. (9) about the operating point
x ¼ x� and f ¼ f �ðx�Þ : _xðx�; f �Þ ¼ 0, i.e. f �ðx�Þ ¼ kxx

�
þ

kxjxjx
�
jx�j, results in the family of parameterized linear

models

_xd ¼ �
kx þ 2kxjxjjx

�
j

mx
xd þ

1

mx
f d, (10)

where xd ¼ x� x� and f d ¼ f � f �.
Thus, according to the gain-scheduling technique pre-
sented in Khalil (1996), at each constant operating point x�

the controller assumes the form

f ¼ f � þ f d, (11)

where

f d ¼ kPeþ kIg; _g ¼ e ¼ x� x� ¼ xd (12)

implements a gain-scheduling PI controller in order to
obtain a desired characteristic equation for the closed-loop
linearized system of the form

s2 þ 2ssþ s2 þ o2
n ¼ 0. (13)

After some calculations the gains kP ¼ kx þ 2kxjxjjx
�
j �

2mxs and kI ¼ �mxðs2 þ o2
nÞ are obtained.

In operating conditions an anti-windup mechanism is
implemented such that jgjpZMAX .

5.2. Kinematics control (position control)

Defined a hovering task function of PI-type,
e ¼ ðx�x�Þ þ m

R t

0ðx�x�Þdt, the kinematics controller
assumes the form

x� ¼ �gPL�1ðx�x�Þ � gI L�1
Z t

0

ðx�x�Þdt (14)

with gP ¼ lþ m and gI ¼ lm, l40 and mX0.
In order to minimize wind-up effects, the integrator is

enabled/disabled with an hysteresis mechanism when the

range from the target r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�ÞTðx�x�Þ

q
gets lower/

higher than ION
e /IOFF

e , respectively. In addition, the

proportional and integral control actions are saturated so

that jgPL�1ðx�x�ÞjpxMAX
P and jgI L�1

R t

0ðx�x�Þdtjp
xMAX

I , respectively.

6. Experimental results

Experiments have been performed with the Romeo ROV
equipped with the laser-triangulation optical-correlation
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Fig. 8. ROV reference and estimated x–y coordinates and exerted control surge and sway forces: ROV camera views at time tD, tE , tF and tG are shown

clockwise from the mid line: (a) Reference and estimated x–y; (b) Surge and sway force.

M. Caccia / Control Engineering Practice 15 (2007) 703–714 709
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Table 1

Speed integral vs. camera displacement from couple of images: external disturbance compensation test

Dt Z Dx Dy DxGT DyGT eDx eDy

tE2tD 0.80 0.03 0.00 �0.01 0.06 0.04 �0.06

tF 2tD 0.80 0.01 0.00 �0.03 0.07 0.04 �0.07

tG2tD 0.81 0.02 0.00 �0.04 0.10 0.06 �0.10
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estimated x−y (June 23, 2005)
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Romeo ROV vision−based x−y control: estimated
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Fig. 9. Catamaran yaw rate vs. rudder angle and propeller revolution rate.

1The system was designed and built by Giorgio Bruzzone.
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sensor in the Ligurian Sea, Portofino Park area, in July
2003 and June 2005.

The video camera has been positioned inside a suitable
steel canister, while the four red laser diodes are rigidly
connected in the corners of a 13 cm side square, with their
rays perpendicular to the image plane. The selected camera
is the high-sensitivity (0.8 lux F1.2, 50 IRE; 0.4 lux F1.2, 30
IRE) Sony SSC-DC330 1

3
in high-resolution Exwave HAD

CCD Colour Camera. Images were acquired and processed
in real time at 5 frames per second at the resolution of
360� 272 RGB pixels by a PC equipped with a Leutron
PicPort-Colour frame-grabber and a Pentium III CPU at
800MHz running MS Windows2000. It is worth noting
that the proposed image processing algorithm does not
require a strong computational effort, and that most of the
time was wasted in a rough display of the processed image
to allow the human operator to monitor the system
behavior in real time. Anyway, the relatively slow image
processing frequency of 5Hz is sufficient with respect to the
vehicle dynamics. Calibration determined a focal length f
of about 1063.9 pixel (i.e. 1 pixel corresponds to about
1mm with a scene depth of 1m). The application, written
in Cþþ, using Intel Integrated Performance Primitives
v2.0 for image processing and signal filtering, received the
ROV telemetry, including acoustic altimeter data, via
datagram sockets from the vehicle control system. The
resulting optical device has been mounted downward-
looking below the Romeo ROV (see Fig. 7). A special
illumination system at diffuse light1 was built in order to
minimize the effects of the motion of the light source
together the vehicle (Negahdaripour, 1998). The camera
scene was illuminated by two 50W halogen lamps covered
by suitable diffusers and, working in the proximity of the
seabed, i.e. at a range between 0.60 and 1.5m, was not
affected by the lamps mounted in front of the ROV for
pilot/scientist video and photo cameras (see Fig. 2). The
ROV operator could control the camera iris in order to
optimize the scene illumination.
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Fig. 10. From top-left to bottom-right: ROV camera views at time t1, t3, t5, t7, t9 and t10.
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During the experiments the ROV worked in auto-
altitude using the image depth computed by the optical
laser spot triangulation system as altitude measurement.

As discussed in Caccia and Veruggio (2000), the natural
frequency o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ o2

n

p
of the dominating poles of the

closed-loop linearized second-order system (13) was chosen
so that o0Dt ’ 0:120:5, where Dt is the sampling interval,
according to the hints given in Åstrom and Wittenmark
(1989), and the ratio on=s has been fixed to 0.1. Since the
Butterworth band-stop filter of the estimated speed, whose
coefficients are reported in Caccia (2003a), introduces a
maximum delay of about 1.6 s, it seemed reasonable to
assume this value as Dt. As a consequence, the parameters
of the dynamics controller DC were s ¼ 0:3, on ¼ 0:03 and
ZMAX ¼ 0:2. The kinematics controller was parameterized,
on the basis of empirical considerations, by l ¼ 0:2,
m ¼ 0:12, xMAX

P ¼ 0:1, xMAX
I ¼ 0:05, ION

e ¼ 0:12 and
IOFF

e ¼ 0:25. During the tests the ROV worked in auto-
heading with fixed orientation. The vehicle trajectory x was
computed by integrating the vision-measured surge and
sway (before stopband filtering) with the compass heading
measurements according to Eq. (1).
In the following two basic experiments are discussed.

The former test demonstrates the system capability of
counteracting external disturbance and remaining over an
interesting point, while the latter one shows the precision of
the guidance and control system as well as of the vision-
based motion estimator. In particular, the difference, eDx

and eDy, between the estimated displacements, Dx and Dy,
obtained by integrating the vision-based surge and sway
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measurements and the compass heading, and the ground-
truth camera displacements, DxGT and DyGT , directly
computed off-line from the motion of tokens tracked in
reference images according to a discrete version of Eq. (7),
was considered.

6.1. Disturbance rejection experiment

In the experiment discussed in the following, showing the
system capability in counteracting external disturbances,
the vehicle worked at an altitude, i.e. image depth, of about
80 cm, which corresponds to a field of view of about 21�
28 cm in the images shown below. Surge and sway forces
were zeroed at time tD and tF , while the ROV was hovering
a target area, in order to show the effects of environmental
disturbance, i.e. sea current and tether tension, on the
vehicle. As shown in Fig. 8(a), the ROV drifted at a speed
of about 5.5 cm/s, but, when the controller was switched on
again, it was able to drive the vehicle again over the
operating point. Fig. 8(b) shows that the control action was
nonzero to compensate external disturbance during sta-
tion-keeping.

Results, obtained by comparing the online estimated and
ground-truth displacements, are shown in Table 1, where
the error in the estimated horizontal position is lower than
0.18m. The images taken by the ROV camera at time tD,
tE , tF and tG (see Fig. 8) demonstrate that the precision of
the vision-based dead-reckoning position estimate was
satisfying for the ROV pilot. In particular, the displace-
Fig. 11. From top-left to bottom-right: RO
ment in the image sequence of the circular feature
positioned about in the center of the picture taken at time
tD reveals a backward (negative DxGT ) rightward (positive
DyGT ) motion of the vehicle, confirmed by the ground-
truth camera motion, DxGT and DyGT , directly computed
off-line from the displacements of tokens tracked in
reference images according to a discrete version of Eq. (7).

6.2. System precision evaluation

In this trials the ROV moved along a rectangular grid of
way-points (see Fig. 9(b)) periodically going back to a start
point located in the left-bottom corner. The reference and
estimated x and y positions are plotted in Fig. 9(a),
pointing out the high precision of the position controller
with respect to the estimated signal. A quantitative
evaluation of the overall system precision, which is
determined by the vision-based motion estimator accuracy,
has been performed on the basis of multiple passages over
the same location, which allow an off-line computation of
ground-truth camera displacements. In particular, the
passages on the starting location S and on the point P

have been examined. The trial took about 40min. Since
images are taken from an altitude of about 1.3m, they
cover an area of about 0.35m by 0.46m. On the basis of the
displacement of the white bush and the arc-like feature,
denoting the point S, located in the center and in the top-
right corner of the image taken at time t1 (see Fig. 10), and
of the white stone, denoting the point P, located towards
V camera views at time t2, t4, t6 and t8.
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Table 2

Speed integral vs. ground-truth camera displacement from couple of images

Interval Dt Z Dx Dy DxGT DyGT eDx eDy lpath jej

lpath

ð%Þ

t32t1 270.0 1.30 0.00 0.00 0.03 0.08 �0.03 �0.08 19.30 0.442

t52t1 558.1 1.31 0.00 0.00 0.06 0.15 �0.06 �0.15 39.10 0.413

t72t1 860.1 1.31 0.00 0.00 0.13 0.24 �0.13 �0.24 59.40 0.459

t92t1 1130.1 1.30 0.00 0.00 0.15 0.33 �0.15 �0.33 80.20 0.451

t102t1 2650.1 1.29 0.00 �0.30 �0.05 0.02 0.05 �0.34 181.1 0.065

t42t2 279.3 1.31 �0.00 0.01 �0.01 0.01 0.01 0.00 19.30 0.051

t62t2 560.1 1.28 �0.00 0.01 0.05 0.08 �0.05 �0.07 39.10 0.220

t82t2 859.3 1.30 �0.00 0.01 0.10 0.21 �0.10 �0.20 59.40 0.376
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the top-right corner of the image taken at time t2 (see
Fig. 11), the reader can roughly evaluate the camera
motion. In particular, referring to point S, a progressive
forward (positive DxGT ) rightward (positive DyGT ) motion
of the camera from t1 to t9, although the online estimated
displacement was about zero. The camera is again over
point S at time t10, when the online estimated displacement
is �0:30m along the y-axis, with an error with respect to
the ground-truth values of about 0.35 m (see Table 2 for
numerical results). Anyway, as confirmed by the results
relative to point P, the position error is always lower than
the 0:6% of the covered path lpath.
7. Conclusion

Experimental results in ROV horizontal motion control
using a vision-based motion estimator integrated with a
dual-loop hierarchical guidance and control architecture
has been presented in this paper, showing satisfying results
in at sea trials carried out with the Romeo ROV. Tests were
executed with the ROV operating at constant heading and
altitude, allowing a direct comparison with results obtained
by controlling the Romeo motion using the same guidance
and control structure in a pool, where position was
estimated from acoustic range measurements from envir-
onmental features (Caccia & Veruggio, 2000), neglecting
more advanced gain-scheduling and integral control
techniques presented in Khalil (1996). Anyway, promising
results in vision-based estimate of yaw motion (Caccia,
2003b) should lead to the extension of the proposed
approach to full, i.e. linear and angular, motion estimation
and control on the horizontal plane.
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