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Abstract: Autonomous underwater vehicles (AUVs)-assisted mobile data collection in underwater
wireless sensor networks (UWSNs) has received significant attention because of their mobility and
flexibility. To satisfy the increasing demand of diverse application requirements for underwater data
collection, such as time-sensitive data freshness, emergency event security as well as energy efficiency,
in this paper, we propose a novel multi-modal AUV-assisted data collection scheme which integrates
both acoustic and optical technologies and takes advantage of their complementary strengths in
terms of communication distance and data rate. In this scheme, we consider the age of information
(AoI) of the data packet, node transmission energy as well as energy consumption of the AUV
movement, and we make a trade-off between them to retrieve data in a timely and reliable manner.
To optimize these, we leverage a deep reinforcement learning (DRL) approach to find the optimal
motion trajectory of AUV by selecting the suitable communication options. In addition to that, we
also design an optimal angle steering algorithm for AUV navigation under different communication
scenarios to reduce energy consumption further. We conduct extensive simulations to verify the
effectiveness of the proposed scheme, and the results show that the proposed scheme can significantly
reduce the weighted sum of AoI as well as energy consumption.

Keywords: autonomous underwater vehicles; optical–acoustic multi-modal communication; data
collection; path planning; deep reinforcement learning

1. Introduction

Accompanied by the increasing demand for ocean exploration and protection, underwa-
ter sensor networks (UWSNs) have received more attention as these play an important role
in diverse marine applications, such as coastal monitoring and protection, marine resource
exploration, disaster warning and military operations [1–4]. However, due to the harsh
hydrographic and geographical environment, it is difficult to collect data from underwater
sensor devices via a long-range routing path. Even if the monitored data can be transmitted
through multi-hop routing technologies, there may be heavy workload near the sink with
extra energy consumption [5]. Furthermore, as the battery power of underwater sensor
nodes is severely limited and difficult to be recharged underwater, it is not energy-efficient
to upload large volume of ocean monitoring data to the sink directly. Moreover, with marine
security operations, it is better to collect secret data nearby the monitoring sensors. To solve
the aforementioned problems, autonomous underwater vehicles (AUVs) have been rapidly
developed in recent years in terms of data storage and signal processing capabilities, which
can better enable underwater mobile data collection. Moreover, the durability and mobility
of AUVs alleviate the unbalanced energy consumption problem of underwater sensors [6,7].

To collect data in an efficient manner, various underwater communication technologies
have been investigated, such as acoustic and optics [8]. Currently, although underwater acous-
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tic communication (UAC) has become the most widely used technology due to its unique
advantages (e.g., long-range communication), it is limited by its shortcomings (e.g., low
bandwidth, slow speed, high bit error rate and large delay) [9]. To address these issues,
underwater optical communication (UOC) has emerged as an alternative solution, as it has a
higher propagation speed (2.255 ×108 m/s) and higher data rate (up to hundreds of Mbit/s)
over short to medium-range transmissions [10,11]. As both acoustic and optical communica-
tion have their pros and cons, employing multi-modal underwater communication systems
in UWSNs has become a potential approach to improve network performance [12,13].

To facilitate mobile data collection in such multi-modal networks, it is necessary to sat-
isfy the varying requirements of marine applications by combining the potential advantages
of AUVs [14]. Combined multi-modal data collection via AUV is divided into two categories,
such as acoustic multi-modal and acoustic-optical multi-modal. In acoustic multi-modal
data collection, the sensor node transmits control information using low-frequency acoustic
waves and guides the AUV to the designated area, and then, it switches to a high-frequency
UAC modem to transmit the data [15]. In this case, the high energy consumption of the
UAC shortens the lifetime of the sensor node when transmitting large volume of network
data. Whereas, in the acoustic–optical multi-modal data collection, the UAC provides the
capability for the AUV to approach the sensor node through long-range guidance and
assists with alignment for the optical communication. The subsequent proximity of the UOC
data transmission not only improves data transmission efficiency but also saves energy for
transmission [16]. However, limited by the UOC range, it is necessary for the AUV to move
slowly close to the sensor node to build an optical link reliably, which increases traveling
time. A promising solution to the above problem is to engage both the UAC and UOC in
data collection, such as transmitting a small volume of data over long distances using the
UAC and retrieving and offloading large amounts of data using the UOC [17,18].

Although the aforementioned pioneering studies have laid a solid foundation for multi-
modal data collection, there are still some issues when applied to mobile data collection.
Firstly, the AUV should adaptively select the best communication technology according to
the specific marine operational data requirements (e.g., data importance and packet size).
For example, high-quality data collection (e.g., high-resolution images with 4K size) with
UOC can prolong the network lifetime of the UWSN by sacrificing the energy consumption
of the AUV, and when the volume of data is relatively less, UAC can be used for remote
collection to reduce the energy consumption and travel time of the AUV. Furthermore,
the AUV should complete the data collection operation quickly to guarantee the freshness
of data as the data value usually decays over time [19]. Generally, the age of information
(AoI) can be used to measure data freshness in mobile data collection scenarios [5,20,21].
By optimizing AoI, the requirement of the network for timely data delivery can better be
satisfied. Therefore, in a multi-modal AUV-enabled mobile data collection scheme, how to
optimize the trajectories of AUV and select a communication option to minimize both AoI and
energy consumption based on the size and the importance of the packets is a critical issue.

To solve the aforementioned issues, in this paper, we propose an acoustic–optical multi-
modal mobile data collection scheme. Based on the type and the size of data, the AUV
intelligently searches for the optimal trajectory and communication options using the
deep reinforcement learning (DRL) approach, thereby minimizing the AoI and extending
the lifetime of the sensor network. To the best of our knowledge, this is the first study
which focuses on integrating an acoustic–optical multi-modal option with optimal AUV
path planning for reliable and timely mobile data collection leveraging the DRL approach.
The main contributions of this study are listed as follows.

• We investigate an AUV-assisted underwater trajectory planning problem for data col-
lection by integrating the complementary advantages of both acoustic and optical com-
munication with data diversity to perform reliable and timely mobile data collection.

• We propose a DRL-based AUV-assisted multi-modal mobile data collection scheme in
which we consider several key factors, such as data importance, packet size and data
collection option, to minimize AoI and reduce energy consumption.
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• We propose an optimal angle steering algorithm for AUV navigation to reduce energy
consumption, in which the steering angle of the AUV is determined based on the AUV
and sensor positions as well as the data collection option.

The rest of the paper is structured as follows. We briefly review the related works
in Section 2. In Section 3, we introduce the network model with necessary background.
In Section 4, we analyze the problem of the multi-modal data collection. In Section 5, we
describe the proposed scheme of DRL-based multi-modal data collection in detail. We
evaluate the performance of the proposed scheme in Section 6. Finally, we conclude the
paper in Section 7.

2. Related Works

In recent years, multi-modal communication has become a research topic to improve
network performance and optimize data transmission in various marine application scenar-
ios. Commonly adopted multi-modal technologies include acoustic multi-modal communi-
cation and acoustic–optical hybrid communication [13,22–24]. Among them, the acoustic
multi-modal communication is constructed by a set of UAC modems working on different
frequency bands [13]. In [22], the authors proposed a multi-modal underwater routing
protocol based on the reinforcement learning technique. In this protocol, the reliability
and delay of data transmission are optimized by UAC modems in multiple frequency
bands. To explore the advantages of UAC and UOC during data transmission, Shen et al.
proposed an acoustic–optical multi-modal routing scheme based on packet size and link
adaptation, which reduces packet loss and end-to-end delay [23]. However, the challenge
of unbalanced energy consumption still exists in the multi-hop underwater networks.

The AUV-assisted data collection can mitigate the energy consumption unbalance
that occurs in multi-hop routing. Han et al. [18] explored the characteristics of underwater
acoustic and optical communication in AUV-assisted data collection and showed that
hybrid acoustic–optical data collection outperforms the one with a single acoustic modem
in terms of both throughput and energy consumption. To cope with the impact of the harsh
underwater environment, Luo et al. [25] maximize the network throughput by capturing
the dynamic characteristics of the channel and the mobility of the AUV. Hu et al. [17]
proposed a mobile data collection method for the heterogeneous sensor network using
multi-hop acoustic communication to build an intra-cluster network where CHs collect
large-scale data and upload them to a mobile receiver via optical communication. Although
the aforementioned schemes improve the efficiency of data collection, these ignore the
difference in the importance of data and the decay of freshness over time.

To handle the aforementioned issues, Gjanci et al. [16] proposed a greedy adaptive
navigation algorithm to guide AUV for data collection, which considers the characteristics
of data decay, but it is only applicable to sparse networks due to the unavoidable long paths.
To deliver emergency data faster, Liu et al. [26] proposed a hybrid data collection scheme,
in which the urgent data are routed using a multi-hop scheme, while the delay-insensitive
data are collected by AUVs. Duan et al. [27] studied a hierarchical data collection problem
using AUVs to optimize the information quality of the collected data while considering the
importance and timeliness of the events.

More recently, researchers have proposed the concept of AoI to model the timeliness
of data while considering the quality of experience (QoE) [28]. Khan et al. [29] provided
an optimization algorithm to ensure the freshness of the collected data. Fang et al. [5]
used a vocational queuing model to improve the data reliability and peak AoI of the data.
Then, the communication link is established using the UAC when the AUV arrives near
the node. Al-Habob et al. [30] proposed a framework to optimize the trajectories of AUV
and minimize the normalized weighted sum of the average AoI. Wu et al. [31] studied the
AUV transmission scheduling policy by considering both the age and the importance of
the message.

Although the aforementioned approaches have promoted the study of underwater data
collection, only a single communication technology was considered for the data collection.
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Moreover, none of them addressed the issue of leveraging multiple data types and multiple
communication technologies to improve data freshness and energy efficiency. To address
this issue, in this paper, we propose a AUV-assisted acoustic and optical multi-modal data
collection scheme, in which we use the DRL method to optimize AUV trajectories, AoI and
energy consumption by considering different communication options and packet size.

3. Network Model
3.1. Network Architecture

As shown in Figure 1, we consider an AUV-based multi-modal data collection net-
work where the deployed nodes are classified into ordinary nodes S = {s1, s2, . . . , sM},
cluster heads CHs = {c1, c2, . . . , cN} and sink node according to their different functions.
The sensor nodes are statically deployed on the seabed using anchor chains, where the
locations of the nodes are assumed to be known. The CHs perform intra-cluster data
fusion and data compression [27] and then wait for the AUV to arrive and collect the
data. In particular, during the network formation phase, all sensor nodes are divided into
multiple clusters based on spatial distance, and only one node in each cluster is selected as
the CH, while other nodes are used as ordinary nodes for data collection [32]. The AUV
performs global data collection around all CH nodes and finally reports the data to the
sink node.

: Cluster head

: Sensor node

: AUV

Figure 1. Illustration of the underwater network model.

In the multi-modal network, each node is equipped with both UAC and UOC modems
for multi-modal communication, and they have the same initial energy, sensing and com-
munication capabilities. Specifically, it includes an acoustic modem for exchanging data
at a low transmission rate over a long distance and an optical modem with a relatively
short transmission distance and high data rate [33]. Meanwhile, the AUV has similar com-
munication capability to ensure the data transmission [16]. Without loss of generality, we
assume that the data arrival rate of sensor node obeys a Poisson random distribution with
parameter λ. When the AUV visits ci, the CHs package the sampled data block into the
packets of length Bi with timestamp Ti.

3.2. Node Clustering Phase

We assume that the nodes are randomly deployed in the target area to monitor the
underwater environment, and the nodes are clustered. In the initial phase, the sink nodes
know the location of each node and determine the number of clusters based on the network
size, and then, the target area is divided equally into several square areas. The sink node
broadcasts the subregion message to all nodes, and each node determines its own cluster
identifier based on its position. Nodes with the same identifier belong to the same cluster [26].

The CHs should be selected for inter-cluster data collection and communication
with the AUV. The selection of CH is carried out according to the procedure as follows.
The number of optical and acoustic communication neighbors of each node in the sub-
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region is first obtained, and then, the node with the highest number of optical communica-
tion neighbors and the remaining energy satisfying the energy threshold requirement is
selected as the CH. Then, the above operation is repeated until all CHs in the target region
are determined. Finally, a confirmation packet is sent by the sink to the designated CHs.
At the end of the data collection process, all CHs are evaluated, and when the energy of the
CH is less than the energy threshold, the network performs a new CH selection round.

3.3. Acoustic Data Collection Link

When the AUV traverses near the node, it is necessary to construct a communication
link for data collection. As for the acoustic link, the acoustic wave is affected by the ab-
sorption of medium and the scattering of impurities in water. The path loss of underwater
acoustic channels is related to frequency f and distance dac. To this end, the total attenuation
is given as follows [34].

A(dac, f ) = dk
aca( f )dac , (1)

where k = 1.5 represents propagation loss, and a( f ) is the absorption coefficient in dB/km
given by the Thorp formula [35]

10 log a( f ) = 0.11
f 2

1 + f 2 + 44
f 2

4100 + f 2

+2.75× 10−4 f 2 + 0.003.
(2)

Consequently, given the acoustic signal transmit power Pac
trans and frequency f , the

signal-to-noise ratio (SNR) can be expressed as [36]

SNRac(dac, f ) =
Pac

trans/A(dac, f )
N( f )∆ f

, (3)

where N( f ) and ∆( f ) represent the total noise level including four kinds of interference
noise and the bandwidth of the receiver, respectively. Therefore, the transmission power of
acoustic communication satisfying the minimum SNRac

min is expressed as

Pac
trans = SNRac

min A(dac, f )N( f )∆ f . (4)

3.4. Optical Data Collection Link

For the optical link, the path loss PL of the underwater wireless optical link can be
expressed as [37]

PL ≈ 10 log

((
Dr

2θdop

)2
e
−cdop

(
Dr

θdop

)ζ
)

, (5)

where Dr represents the aperture diameter of the receiver and θ denotes half of the transmit-
ter beamwidth, dop represents the distance between transceivers, and c and ζ represent the
extinction coefficient and turbidity of water quality, respectively. Subject to the optical-to-
electric conversion efficiency of the receiver, a minimum received power per bit is defined
as Pop

rec. Then, the transmission power of the UOC is expressed as

Pop
trans =

Pop
rec

PL
. (6)

In order to ensure robust optical communication, it is necessary to control the mini-
mum SNRop

min requirements [38].

SNRop
min =

[
Pop

transe−cdop D2
r cos ϕ

(tan2θ)4d2
opNEP

]2

, (7)
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where NEP represents the noise equivalent power and ϕ is the offset angle between
transceivers. According to the Lambert W function [39], the maximum underwater optical
communication distance while satisfying the communication SNRop

min can be obtained by

dop =

2W

 c
4

[
(SNRop

min)
1
2 NEPtan2θ

Pop
transD2

r cos ϕ

]− 1
2


c
. (8)

Since optical modems are usually directional, in order to receive optical signals from
any direction, we assume that an omni-directional optical modem can be achieved by using
multiple LEDs [40].

4. Multi-Modal Data Collection Analysis

When performing multi-modal data collection via AUV, the freshness of the col-
lected data and the energy consumption of the network nodes need to be fully considered.
The choice of communication options fundamentally affects the data collection efficiency.
Among the various communication options, the UOC is capable of transmitting a large
volume of data rapidly to reduce transmission latency but increases the navigation time
and energy consumption of the AUV. Meanwhile, the UAC has a lower bandwidth but
can collect small volume of data over long distances to reduce the travel time of the AUV.
Consequently, to collect data in a timely and efficient manner, several key factors, such
as the data collection option, data type, packet size and AoI requirement, should be fully
analyzed and integrated into the optimal path-planning scheme for data collection.

4.1. Problem Analysis

The primary goal of the mobile data collection in this paper is to minimize both the
weighted average AoI and the energy consumption. The factors that influence the AoI include
the AUV trajectory, the data transfer time and the importance of the data. Consequently,
to minimize the weighted average AoI, the optimization problem can be expressed as

min
1
N

N

∑
i=1

Ai + β
N

∑
i=1

ei, (9)

s.t. xac
i,t ∈ {0, 1}, (9a)

xop
i,t ∈ {0, 1}, (9b)

T

∑
t=1

xac
n,t+xop

n,t = 1, ∀n ∈ N (9c)

EAUV < energyAUV , (9d)

P0 = (x0, y0), (9e)

where Ai denotes the final result of AoI when the data from ci reach the sink node, ei denotes
the energy consumption by ci during data collection, and xac

i,t = 1 indicates that the AUV
has reached the acoustic communication range of CH ci and receives data through UAC.
Otherwise, xac

i,t = 0 holds. Similarly, xop
i,t represents an optical communication indicator.

EAUV is the energy consumption of the AUV in data collection, and energyAUV indicates
the initial total energy of the AUV. The constraint in (9c) is used to ensure that each node
can select just one communication option during data collection. The constraint in (9d)
is to guarantee that the AUV cannot consume all of its energy. Finally, the constraint in (9e)
is to determine the initial position of AUV.

The optimization problem (9) is a non-linear integer programming problem, which
is intractable due to the presence of binary variables and non-convex objective function.
In the following section, we model this as a Markov decision process (MDP) to be solved
by leveraging the DRL approach.
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4.2. Definition of AoI

The AoI is an important metric to portray the freshness of collected data and is defined
as the time elapsed between the data collected by the AUV from the CHs until its delivery to
the sink node [41]. We use δi,t to denote the AoI collected from ci in the navigation trajectory
at time t. When t < Ti, the information of CH ci is not sampled since it is not visited,
and thus, δi,t = 0 holds. Otherwise, δi,t = t− Ti holds. Then, the AoI of ci at the start of
time slot t is given by the following relation.

δi,t =

{
0, if t < Ti
t− Ti, otherwise

. (10)

The primary factors affecting AoI during data collection include data transmission
delay and AUV sailing time. We use T ac

i and T op
i to denote the data transmission time using

UAC and UOC, respectively. The time to transmit Bi bits by the UAC can be written as

T ac
i =

Bi
Rac

+
di

Vac
, (11)

where Rac and Vac indicate the data rate and transmission velocity of the underwater
acoustic modem, respectively. Similarly, the data transmission time of the UOC at data rate
Rop and transmission velocity Vop can be obtained as follows.

T op
i =

Bi
Rop

+
di

Vop
. (12)

To collect the monitored data, the AUV travels from the sink p0, collects data from each
of the N CHs according to a pre-determined trajectory, and then returns to the sink node af-
ter completing the task. Assume that the travel trajectory of the AUV P = {p0, pi, . . . , pj, p0},
and thus the travel time of the AUV can be expressed as

Ttravel =
D(P)
VAUV

, (13)

where D(P) and VAUV denote the total distance and velocity traveled by the AUV, respectively.
According to (11)–(13), from the moment Ti when AUV arrives at CH ci to the moment

Ti+1 when it finishes collecting data and moves to the next data collection point, the AoI
of CH ci can be expressed as T m

i + ttravel
i,i+1 . The optical communication has a much smaller

transmission delay compared to the acoustic waves. However, the acoustic communication
enables long-range transmission that significantly reduces the travel time of the AUV.
The time delay caused by data transmission is mainly determined by the data size Bi,
and so the data collection time and traveling time need to be considered jointly to reduce
the decline of data freshness. Then, at moment t = Ti+1, the AoI collected from CH ci
refers to

δi,Ti+1 =

{
T ac

i + ttravel
i,i+1 , if bi = 1 and xac

i,t = 1
T op

i + ttravel
i,i+1 , if bi = 1 and xop

i,t = 1
, (14)

where bi = 1, i = {1, 2, . . . , N} indicates that the data of CH ci has been collected; otherwise,
bi = 0 holds. When the AUV arrives at the sink node, the AoI of ci is

Ai =
N

∑
k=i

ηiδk,Tk+1
, (15)

where ηi denotes the importance weight of the data collected by CH ci, and ∑N
i=1 ηi = 1.

The higher its value, the greater the data importance.
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4.3. Energy Consumption Associated With Data Collection

To satisfy the energy constraint (9d) in the optimization problem (9), we analyze the
AUV energy consumption and node energy consumption. In the data collection process,
there are extra costs associated with the AUV if it runs out of energy before returning
to the sink node. Therefore, the trajectory of the AUV should be scheduled to minimize
energy consumption. The power of the AUV at each time slot mainly consists of the sum
of propulsion power Φprop and hotel load power ΦH [42]. The hotel load ΦH is the power
consumed by all subsystems other than propulsion mechanism and is typically negligible in
comparison with Φprop [43]. Therefore, the power of the AUV trajectory can be expressed as

Φprop =
ρ

2ηp
CD As‖VAUV‖3, (16)

where ‖·‖ denotes the Euclidean vector norm and ρ is the density of water. ηp, CD and As
indicate the efficiency of the AUV’s propulsion system, the drag coefficient and the wetted
surface area, respectively [7]. Consequently, with the relations in (4), (6), (11)–(13) and (16),
the total energy consumption can be expressed as

Etot =
N

∑
i=1

ei+vΦpropTtravel

=
N

∑
i=1

xac
i T ac

i Pac
trans + xop

i T
op

i Pop
trans + vΦpropTtravel ,

(17)

where v is a weighted parameter that measures the balance between the energy consump-
tion of the sensor node and that of the AUV.

5. Proposed DRL-Based Multi-Modal Data Collection Scheme

In this section, we design the AUV multi-modal data collection scheme by leveraging
the DRL approach. In this scheme, we first provide the MDP formulation and then present
a multi-modal steering angle optimization (MSAO) algorithm for the AUV. Afterwards, we
design the AUV path planning using the Deep Q Network (DQN) method for multi-modal
mobile data collection.

5.1. MDP Formulation

When the network nodes are clustered, the next goal is to find an optimal CHs data
collection strategy. The AUV-assisted data collection problem can be formulated as an
MDP to be solvable by the DRL approach, which is represented by < S ,A,P ,R, γ >
five tuples. Here, S is the state of the environment, A is the set of actions of the agent, P
is the state transition probability, R is the reward function, and γ denotes the discount
factor. In particular, at time slot t, the agent observes state st and chooses an action to be
performed. Then, the environment state is transferred with probability pst ,st+1 to st+1 and
the agent obtains a reward rt from the environment. In this paper, the AUV is considered
as the agent to collect data, and the details of each element are defined as follows.

• State space S : The status of AUV mobile collection is defined as

st =
{

pa,t, ψt, ∆t, {xac
i,t, xop

i,t , di,t, δi,t}i∈N

}
, (18)

where pa,t and ψt are the coordinates and sailing orientation of the AUV at time
slot t, and its position can be obtained via ultra-short baseline (USBL) [44]. ∆t is the
difference between the remaining energy of the AUV and the AUV’s arrival at its final
destination from its current position. di,t records the Euclidean distance of the AUV to
CH ci. xm

i,t is the data collection indicator related to the data collection option. When
the AUV arrives at the data collection point ci, the AoI of node ci starts to be updated.
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• Action space A: In state st, the action selection of the AUV is characterized by the
target point ci,t ∈ Nr with the transmission option mi,t, and the next target point
cj,t ∈ Nr\ci,t, where Nr is the set of CHs that have not been collected. Then, the action
performed by AUV at state st can be expressed as

a =
{

ci,t, mi,t, cj,t|st
}

. (19)

• State transition probability P : P(st+1|st, at ) defines the transition probability from
state st to the next state st+1 under the action at, and P(st+1|st, at ) = 1 holds.

• Reward R: Applying action at in state st, the AUV enters state st+1 and obtains an
immediate reward r(st+1|st, at ). In the AUV-assisted multi-modal data collection
scenario, the immediate reward rt can be expressed as

rt =


xac

i,tk1ei + xop
i,t k2ei,

J,

if bi = 1

if done
ηi(dispa ,pi + 1), otherwise

, (20)

where k1, k2 are constants and k1 < k2 holds, and when the AUV has collected the data
of CH ci, the relevant reward is obtained according to the selected modem. dispa ,pi

is the Euclidean distance from the current position of the AUV to the target point. J
denotes the reward at the end of the data collection process, including rewards for
successful data collection and penalties for failure (e.g., exceeding maximum energy
consumption and crossing boundaries).

J =


rout, if ∆t < 0 or pa /∈ Ω

k3 − 1
N

N
∑

i=1
Ai, if pa = p0 and Nr = ∅ , (21)

where k3 is a constant and Ω is the region in which the AUV can move within.
• Discount factor γ: γ ∈ [0, 1] is the future reward discount factor.

5.2. Multi-Modal Steering Angle Optimization Algorithm

In the multi-modal data collection network, since the communication radius can
reduce the navigation time of AUVs, we propose an MSAO algorithm to adjust the AUV
heading under the maximum steering angle constraint. In MSAO, the steering angle of
the AUV is calculated based on its position, the navigation target and the communication
options. As shown in Figure 2, the yellow triangle indicates the position pa,t of the AUV at
time slot t, the blue pentagram indicates the CHs that need to perform the data collection
operation, the outer circle Cac and inner circle Cop indicate the communication range of
UAC and UOC, respectively. Let ci be the AUV’s current target CH and cj be the next target
CH, the pri ,m indicates the target hover point when the AUV selects communication option
m = {ac, op}, the ψm,t indicates the angle of the AUV toward the target hover point pri ,m at
time slot t. The goal is to obtain the point pri ,m such that the ‖pa,t − pri ,m‖+

∥∥cj − pri ,m
∥∥

distance is shortest within the communication range Cm of the communication options m.
This problem is a classical pilgrimage problem in ancient castles, and hence, an approximate
solution of pri ,m = (xri , yri ) can be obtained by the following equation [45].

− ς1

√
1− y2 + ς2y = 0, (22)

where ς1 =
xi−xj
dmdij

− xi−xa,t
dmdai,t

, ς2 =
yi−ya,t
dmdai,t

− yi−yj
dmdij

, y =
yi−yri

dm
, dai,t and dij denote the distance

of the AUV from the target at time slot t and the distance of the current target CH ci from
the next target CH cj, respectively. Then, the steering angle of the AUV at time slot t can be
expressed as
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Ψm,t =

{
min(ψm,t − ψt, ψmax), ψm,t ≥ ψt
max(ψm,t − ψt,−ψmax), ψm,t < ψt

, (23)

where ψmax is the maximum steering angle allowed by the AUV. Then, depending on
the target location and the communication option, the steering angle of the AUV can be
adjusted in the following two cases.

y
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,a t

p
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ci
,ir op

p ,ir ac
p

,op t
ψ

,ac t
ψ

(a) Case 1

x

y

o
,a t

p

ci

,ac t
ψ

,op t
ψ

jc

,ir op
p

,ir ac
p

(b) Case 2

Figure 2. The AUV multi-modal steering angle diagram. (a) The trajectory of the AUV from the
current coordinates pa,t towards the next target cj will not sail through the communication region Cm

of ci. (b) The trajectory of the AUV from the current coordinates pa,t towards the next target cj will
sail through the communication region Cm.

• Case 1: The AUV is not through the region Cm from the current position pa,t to the
next target collection point cj; i.e., the distance dsegi from point ci to the segment
pa,tcj is greater than the UAC radius. As shown in Figure 2a, after determining the
communication option, the points pri ,ac (or pri ,op) are obtained in circle Cac (or Cop)
to minimize the length of the AUV trajectory. For example, when the CH ci, cj
and acoustic modem are selected, the AUV hover position pri ,ac = (xri , yri ) for data
collection and the steering angle Ψac,t can be calculated by (22) and (23), respectively.
Similarly, when m = op holds, the data collection hover point pri ,op and the steering
angle Ψop,t can be obtained using the same approach.

• Case 2: The trajectory of the AUV from the current coordinate pa,t to the next target
CH cj sails through the communication region Cm of ci. If the AUV crosses the UAC
area Cac without crossing the communication area Cop, dsegi becomes shorter than
dac but greater than dop. As shown in Figure 2b, the data collection hover point of
the AUV is the vertical foot pri ,ac from ci to segment pa,tcj if UAC is selected as the
communication option. Then, the steering angle of the AUV can be obtained by (23).
If the selected communication option is UOC, the data collection point and steering
angle are calculated following the method in Case 1. Furthermore, if dsegi is less than
dop, i.e., the AUV crosses the UOC range of ci, then UOC is selected directly as the
communication option. This is due to the superiority of UOC over UAC in terms of
energy consumption and transmission time for the same AUV trajectory. The data
collection hover point and steering angle of the AUV are similar to the method in
Case 2.

Based on the above discussion, we obtain the MSAO algorithm that is shown in
Algorithm 1.
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Algorithm 1 Proposed MSAO Algorithm

Require: Coordinate of the AUV pa,t, coordinates of the current target CH ci, coordinates
of the next target CH cj, UAC communication radius dac and UOC communication
radius dop.

1: if dsegi > dac and m = ac then
2: Calculate the data collection hover position pci ,ac by (22).
3: Calculate steering angle Ψac,t by (23).
4: else if dsegi ≤ dac and dsegi > dop and m = ac then
5: The data collection hover position is the vertical foot pri ,ac

from ci to the segment pa,tcj.
6: Calculate steering angle Ψac,t by (23).
7: else if dsegi > dop and m = op then
8: Calculate the data collection hover position pri ,op by (22).
9: Calculate steering angle Ψop,t by (23).

10: else if dsegi ≤ dop then
11: The data collection hover position is the vertical foot pri ,op

from ci to the segment pa,tcj.
12: Calculate steering angle Ψop,t by (23).
13: end if
Ensure: The steering angle of the AUV: Ψm,t.

5.3. DRL-Based Multi-Modal Path Planning Scheme

Due to the uncertainty of reference access points and node data arrivals, the locations
of AUV and the AoI of collected data are inherently random, which leads to a proliferation
of state space dimensions. In comparison, DRL can handle extremely large state space
by estimating the Q values of states s and actions a through neural networks [45,46].
The training framework of DQN includes a current Q-network and a target Q-network.
In order to balance experience and exploration of the unknown, the agent at state st selects
the action at to be performed by the ε-greedy algorithm [47].

at =

{
random a ∈ A, with probability ε
arg max

at
Q(st, at; θ), with probability 1− ε . (24)

Immediately after adjusting the navigation angle and execution of action at, the AUV
receives reward rt and the data acquisition network moves to the next state st+1. Aiming to
reduce the correlation between the online Q-network samples, an experience replay B is
used to store historical experience samples (st, at, rt, st+1). At each training step, a small
batch of randomly selected empirical samples Φb from the experience replay is used to
update the parameters of the online Q-network. In addition, we denote the parameters of
DQN as θ, and the parameters of the online Q-network are determined by minimizing the
loss function.

L(θ) = EΦb

[
δ(s, a)2

]
, (25)

where δ(s, a) = yt − Q(st, at|θ) is the temporal difference, and yt is the target Q-value,
which can be calculated by

yt = rt + γ max
at+1

Q(st+1, at+1|θ−), (26)

where θ− denoted the parameter of the target Q-network. Then, the weight of the current
network θ is updated by the following formula.

θ = θ+
α

Φb
∑Φb

t=1 δ(s, a)∇θQ(st, at, θ). (27)
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The proposed AUV-assisted data collection algorithm is shown in Algorithm 2.
The algorithm starts by initializing all neural networks as well as the replay buffer B.
The training iterates over E episodes, and the environment is initialized in each episode by
observing the distribution of CHs. The action is first obtained according to the ε-greedy
policy, which is followed by inputting the action to Algorithm 1 to obtain the steering
angle. Then, the AUV moves to the next state st+1 and receives an immediate reward rt.
After storing the transition tuple (st, at, rt, st+1) in experience replay B, a randomly selected
sample of Φb is utilized to learn the current network Q, and it updates the weights of
the current network θ and that of the target network θ−. Then, ci is removed from Nr if
the current state is able to collect the data of ci, and the current loop is terminated when
Nr = ∅ holds.

Algorithm 2 DRL-Based Multi-Modal Data Collection Algorithm

1: Input: Initialize the constants k1, k2 and k3, maximum number of training sets E, reward
discount factor γ, learning rate lr, experience replay B, minimum batch Φb, exploration
probability ε, and update step χ;

2: Initialize the current network Q(st, at, θ) with weights θ and the target network
Q(st, at, θ−) with weights θ−.

3: for episode = 1, · · · , E do
4: for t = 1, · · · , T do
5: Initialize the data collection network environment and observe the initial

state st.
6: Select a random action at according to the ε-greedy algorithm.
7: Determine the AUV steering angle with Algorithm 1.
8: Execute action at and observe the reward rt and the next state st+1.
9: Store experience (st, at, rt, st+1) in experience replay B.

10: Sample a random mini-batch of Φb experiences from B.
11: Calculate the target value yt by (26).
12: Update the current network weights θ by (27).
13: Update the weights of the target network θ− = θ every χ steps.
14: if st+1 is the collection stop ni then
15: Remove the CH ci from Nr.
16: end if
17: Terminate the episode if Nr = ∅ holds.
18: end for
19: end for
20: Output: The AUV trajectory pa,t and the AoI Ai.

6. Results and Discussion

In this section, we conduct extensive simulations to verify the effectiveness of the
proposed scheme. The simulation setup and numerical performance results are given
as follows.

6.1. Simulation Setup

To evaluate the proposed scheme, we assume that there are 50 sensor nodes uniformly
distributed in an 800 m × 800 m square target area. After CHs are designated, data fusion
and data compression are performed by CHs. It is assumed that the data types collected
and transmitted by the normal sensor nodes are text, records and images, and the amount of
data pooled by the CHs is set to be between 10 and 300 packets, with the size of each packet
1024 bits. The AUV starts from the start point p0 = (50, 120) with an initial orientation
angle ψm,0 = 0◦ and returns to p0 after collecting data from all the CHs.

To evaluate the performance of the algorithm, a python 3.8 simulation environment
was chosen. The target Q-network and the current Q-network are two-layer fully connected
networks with 256 neurons per layer, and we use the ReLU function as the activation
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function to train both networks using the Adam optimizer. Other simulation parameters
and their specific values are provided in Table 1.

Table 1. Simulation parameters.

Parameters Description Value (Unit)

f Carrier frequency 35 (kHz)
∆ f Bandwidth 2 (kHz)
k Propagation loss 1.5

SNRac
min UAC minimum SNR 3 (dB)

Rac UAC data rate 3.16 (kbps)
Rop UOC data rate 0.5 (Gbps)

θ
Half of the transmitter

beamwidth 3 (◦)

c Extinction coefficient 0.18 (m−1)
ζ Turbidity of water quality 0.05

Dr Aperture diameter 0.25 (m)
SNRop

min UOC minimum SNR 3 (dB)
NEP Noise equivalent power 1 (mW)
Pop

rec Average transmitted power 0.01 (mW)
ρ Density of water 997 (Kg/m3)

ηp
Efficiency of the AUV

propulsion system 100%

CD Drag coefficient 0.0064
As Wetted surface area 0.8856 (m2)
B Experience replay buffer sizer 500,000

Φb Mini-batch size 256
γ Reward discount factor 0.95
χ Update step 1000

For the sake of performance comparison, the benchmark algorithms are provided
as follows.

• Single Acoustic: The AUV exchanges data utilizing acoustic waves during data collection,
and the hovering positions are determined by the UAC radius during the selection
process of the steering angle. The AUV trajectories are learned using the DQN algorithm.

• Single Optical: The AUV can exchange data only by selecting optical waves and calculat-
ing the AUV hovering locations by means of the UOC radius. The DQN algorithm is
used to learn the AUV trajectory.

• Energy Greedy: The AUV performs steering Algorithm 1 and then greedily selects the
nodes with the shortest path length in the data collection sequence.

6.2. The Convergence Performance

To demonstrate the convergence of the AoI optimization algorithm for AUV data
collection, in Figure 3, we show the variation of the cumulative reward, where the X-axis
represents the number of iterations trained and the Y-axis presents the cumulative reward.
It can be seen that in the early stages of training, the cumulative reward values are very low
due to the high chance of ε-greedy random exploration. As the training period continues
to increase, the reward value gradually increases and stabilizes.

6.3. Impact of the AUV Velocity on Performance

To explore the effect of AUV velocity on the average AoI, we simulated the aver-
age AoI performance of the collected data with data arrival rate λ = 20 and 300 Kbits.
The experimental results are shown in Figure 4, where it can be observed that the aver-
age AoI of the data collected by AUV gradually decreases with increasing AUV velocity.
The weighted average AoI of the single UAC is lower than that of the multi-modal and
single UOC when the AUV speed is 0.5 m/s. With the increase of the AUV velocity,
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the average AoI of the multi-modal data collection scheme is better than that of the single
communication option.

Training episodes

R
e
w

a
rd

s

Episodes rewards

Average rewards

Figure 3. Convergence performance of the DQN-based data collection algorithm.

0.5 1 1.5 2 2.5 3

v
AUV

 (m/s)

0

20

40

60

80

100

120

140

160

180

A
v
e
ra

g
e
 A

o
I

Multi-modal

Single UAC

Single UOC

Figure 4. Effect of AUV velocity on AoI of collected data.

The primary reason for this performance is that the AUV travels slower and increases
travel time, whereas the long-distance data collection via the single UAC is able to reduce
the travel time of the AUV, which mitigates the increase in AoI. As the AUV velocity
increases, the effect of AUV travel time on AoI is weakened, which makes the weight
of data transmission time increase for AoI; thus, the UOC scheme outperforms the UAC
scheme at higher AUV velocities. The multi-modal data collection scheme selects the best
communication option according to the data characteristics, AUV navigation time and data
transmission time so that the overall performance is better than the single-modal scheme.
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Furthermore, the average AoI of our proposed multi-modal data collection scheme at the
AUV velocity of 0.5 m/s is inferior to that of the single UAC scheme; this is because the
multi-modal scheme not only considers AoI but also focuses on data collection energy
consumption, so it sacrifices some AoI performance to reduce CHs energy consumption.

Under the parametric conditions of Figure 4, we analyzed the effect of AUV velocity
on the energy consumption of data collection. Considering that the energy consumption
of CHs is irreversible, we pay more attention to the energy consumption of data transmis-
sion, and therefore, we set v = 0.03. As shown in Figure 5, it can be observed that the
weighted energy consumption of the single UAC scheme always remains at the highest
level owing to the high weight of data transmission energy consumption. The single UOC
scheme performs well in terms of CHs data transmission energy consumption, and hence,
the weighted energy consumption is better than the single UAC scheme. The multi-modal
scheme is able to reduce both AUV energy consumption and CHs data transmission energy
consumption by jointly deciding on the best communication option based on packet size
and path length. Furthermore, with the increasing AUV velocity, the weighted energy
consumption of the three schemes will be convergent, since the AUV power increases
geometrically with the velocity of travel.

0.5 1 1.5 2 2.5 3

v
AUV

 (m/s)

0

100

200

300

400

500

600

700

800

900

W
e

ig
h

te
d

 e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

J
)

Multi-modal

Single UAC

Single UOC

Figure 5. Effect of AUV velocity on the weighted energy consumption of the task.

6.4. Impact of the Data Arrival Rate on Performance

Figure 6 shows the effect of different data arrival rates on the weighted average AoI.
The velocity of the AUV is set to 1 m/s, and the length of each time slot is set to 6 s. It can
be observed from the figure that at lower data arrival rates, the single UAC is superior to
the single UOC since the acoustic waves can be deployed for long-range data transmission,
which significantly saves the travel time of the AUV. As the data arrival rate increases,
the weight of data transmission time on AoI improves, which results in the single UOC
scheme being superior to the single UAC scheme in terms of AoI. In addition, the greedy
algorithm performs poorly in weighted average AoI as it greedily selects the closest visit
location ignoring data importance and AoI. Our proposed multi-modal data collection
scheme outperforms the other three schemes for different data arrival rates and is near the
single UOC performance when the data size is over 140 Kbits. The main reason for this
phenomenon is that the multi-modal scheme selects acoustic communication to reduce the
sailing time when the data size is small and optical communication for fast data transmission
when the data size is large, and thus, it can adapt to different data conditions and achieve a
relatively low weighted average AoI.
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To verify the superiority of the proposed multi-modal data collection algorithm in
terms of energy consumption for data collection, we compare the transmission energy
consumption of CHs and AUV energy consumption for different data sizes. In this study,
we set the AUV velocity to 1 m/s and the data size to 20–200 Kbits, and the experimental
results are shown in Table 2 and Figure 7. It is observed that the average data transmission
energy consumption of CHs under a single UOC approach is the smallest, and the AUV
energy consumption is the highest. The energy consumption of CHs is the highest for the
single UAC and greedy approaches, but the AUV energy consumption is kept at a low level.
In the multi-modal scheme, the energy consumption of CH increases and then decreases
with the increasing data size, and the AUV energy consumption gradually increases, but the
overall energy consumption remains at a low level.
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Figure 6. The average AoI of collected data with the increasing data arriving rate.

Table 2. Average data transmission energy consumption of CHs versus the data arriving rate.

Collected Data (Kbits) Single UAC (mJ) Single UOC (mJ) Greedy (mJ) Multi-Modal (mJ)

20 6659.29 0.02 5650.31 5112.19
50 15,403.83 0.05 12,780.47 3968.71
80 24,081.09 0.08 20,852.35 5583.11

110 32,623.83 0.11 28,789.69 7668.36
140 41,099.29 0.14 379,37.81 0.14
170 49,103.91 0.16 46,346.02 0.16
200 52,399.92 0.19 55,359.61 0.19

The reason for such a phenomenon can be explained as follows. The single UOC
requires the AUV to travel to the immediate vicinity of the node, which increases the energy
consumption of the AUV for navigation. Fortunately, due to the low energy consumption
and high bandwidth of the optical modems, the energy consumption of the CHs owing
to the data transmission is low. Similarly, the single UAC and greedy algorithm allow the
AUV to collect data over longer distances using acoustic waves, which greatly saves AUV
energy consumption. However, with the increasing data size, the low bandwidth and high
energy consumption of the UAC make the energy consumption of the CHs significant.
In the multi-modal scheme, the AUV selects the UAC to collect data when the data size
is small, keeping the transmission energy consumption of the CHs low while reducing
the mobile energy consumption. When the data size is larger than 140 Kbits, the multi-
modal scheme switches to strictly optical communication mode to reduce the excessive
energy consumption of the CHs in order to extend the lifetime of the UWSN. Note that our
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proposed multi-modal data collection scheme has an excellent performance in the face of
diversified data, and when the data size of each CHs is large (or small), the multi-modal
scheme will become a strict UOC (or UAC) scheme.

20 50 80 110 140 170 200

Data arriving rate 

2200

2400

2600

2800

3000

3200

3400

3600

T
h
e
 A

U
V

 E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

Multi-modal

Single UAC

Single UOC

Greedy

Figure 7. Performance comparison in terms of AUV energy consumption.

In Figure 8, we show the weights of AoI for each CHs under different schemes.
The results show that the greedy scheme has the maximum AoI value for CH index = 5
and the lowest AoI value for index = 1. This is because the greedy algorithm ignores the
effect of data importance when selecting the nearest nodes to visit, resulting in a large data
AoI for the first visited node. The other three schemes use reinforcement learning methods
to select the best node access order based on the importance of the data, which avoids the
extreme cases of AoI values. Furthermore, the multi-modal scheme flexibly selects the
communication options based on the data size and importance of the nodes, and hence, its
performance is better compared to the other two single-modal schemes. It is worth noting
that we neglected the specific details of light alignment and the time consumed during
data collection, which result in a seemingly promising AoI performance for the single UOC.
In future work, we will consider more details of underwater optical communication.
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Figure 8. AoI for different paths when the number of CHs is 5.
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7. Conclusions

In this paper, we proposed an AUV-assisted multi-modal data collection scheme which
provides timely and reliable data collection by utilizing underwater acoustic and optical
communication technologies in an adaptive manner. The trajectory planning problem is
formulated as a mixed integer nonlinear problem to minimize the weighted average AoI and
energy consumption, and the data collection problem is formulated as an MDP considering
data importance, packet size, and data collection options. We then developed a DQN-based
learning algorithm to determine the optimal strategy. In addition, an AUV multi-modal
corner optimization algorithm is proposed to reduce the energy consumption of AUV
navigation. Through numerical simulations, we showed that our proposed algorithm
has convergence capability as well as verified that the AUV path-planning algorithm has
excellent performance which can effectively reduce the AoI and energy consumption of
collected data.
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