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Abstract: Minimizing experimental data while maintaining good AUV path-following per-
formance is essential to reduce controller design costs and ensure AUV safety, particularly
in complex and dynamic underwater environments with unknown ocean currents. To
address this, we propose a conservative offline model-based Q-learning (CMQL) algorithm.
This algorithm is robust to unknown disturbance and efficient in data utilization. The
CMQL-based controller is trained offline with dynamics and kinematics models constructed
from limited AUV motion data and requires no additional fine-tuning for deployment.
These models, constructed by improved conditional neural processes, enable accurate
long-term motion state predictions within the data distribution. Additionally, the carefully
designed state space, action space, reward function, and domain randomization ensure
strong generalization and disturbance rejection without extra compensation. Simulation
results demonstrate that CMQL achieves effective path-following under unknown ocean
currents with a limited dataset of only 1000 data points. This method also achieves zero-shot
transfer, demonstrating its generalization and potential for real-world applications.

Keywords: autonomous underwater vehicle; path-following control; model-based offline
reinforcement learning; conditional neural processes; limited data

1. Introduction
AUV path-following control is crucial for many missions, such as docking [1], un-

derwater exploration [2], and sea creature sampling [3]. As these research areas advance,
performance requirements for AUV path-following will become stricter, especially in
dynamic and complex underwater environments with unknown ocean currents. Most
controllers demand considerable experimental effort and large-scale AUV motion data
collection to compute accurate mathematical models or tune their parameters. However,
these requirements are both difficult and unsafe to fulfill in underwater environments.
Therefore, in this paper, we propose a novel control strategy for AUV path-following in the
presence of unknown ocean currents, aimed at achieving effective control performance and
disturbance rejection with limited AUV motion data.

Various control methods for achieving path-following have been documented in the
literature. For model-free controllers, proportional–integral–derivative control (PID) [4] has
been successfully applied to AUVs, but it fails to respond in real time to unknown ocean
current variations. ADRC [5] can compensate for disturbances and uncertainties in real
time, but it may require extensive experimentation to carefully adjust the parameters. For
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model-based controllers, including sliding model control [6] and model predicative control
(MPC) [7], accurate AUV mathematical models are fundamental. Although these models
enhance data efficiency and reduce experimental requirements, accurately identifying their
dynamic parameters remains a data-intensive and technically complex challenge.

Reinforcement learning (RL), compared to the aforementioned methods, is better
suited for complex and dynamic environments, offering excellent performance in high-
uncertainty scenarios. As an intelligent algorithm that learns from experimental data,
RL has inspired numerous control schemes for AUV path-following applications. For
example, Wang et al. [8] proposed an adaptive PID controller based on soft actor–critic
(SAC) [9] for AUV path-following. By combining PID with RL, the controller retains a
certain degree of interpretability, making it easier to understand and deploy in practical
applications. The neural network model-based RL control method proposed by Ma. D.
F et al. [10] offers the advantages of enhancing adaptability to complex dynamics and
improving path-following accuracy in different environments. Fan et al. [11] presented
an improved twin delayed deep deterministic policy gradient (TD3) algorithm for AUV
path-following control, enhancing the traditional TD3 approach to improve convergence
and stability in underwater environments. These studies demonstrate that RL has the
potential to overcome unknown ocean currents. RL can also be categorized into model-free
and model-based approaches, each with distinct challenges. Model-free RL depends on
continuous trial-and-error training in real-world environments, whereas model-based RL
utilizes environmental models derived from extensive experimental data. This reliance
on substantial data and real-world interactions is a key reason why RL struggles to fully
realize its potential in AUV control.

Model-based offline reinforcement learning (MORL) is key to reducing experimental
data and making RL more practical for AUV control. This method, with its lower accuracy
requirements for models, can leverage offline training methods to further improve data
efficiency and training safety. As a type of offline reinforcement learning (ORL), MORL
generates a large amount of synthetic experience data by constructing an environment
model from offline experimental data, reducing the need for offline experimental data.
Additionally, the offline training method ensures the safety of the AUV. ORL has been
applied in various fields, such as healthcare [12], autonomous driving [13], and robotics [14].
The challenge of ORL arises from the distribution shift between the offline dataset and
the learned policy during training. It is mainly addressed by incorporating conservatism
or regularization into standard RL algorithms. For example, Ma. C. Z. et al. [15] use
in-sample value estimation to compute the advantage function for state–action pairs, and
they incorporate a behavior cloning regularization term during the policy update. It has
been validated across multiple tasks based on a real manipulator. Guan et al. [16] use
environmental dynamics uncertainty to eliminate unknown actions in Q-value evaluation
and combine trajectory information with Gaussian noise to increase the probability of
optimal actions. Rafailov et al. [17] propose learning a latent-state dynamics model
with uncertainty representation in the latent space, maximizing a lower bound of the
evidence lower bound in unknown partially observable Markov decision processes. As
another type of ORL, model-free ORL [18–20] requires substantial offline experimental
data to ensure policy performance, yet its offline training techniques remain valuable.
MORL [21–23] improves data efficiency by leveraging model learning techniques, such as
maximum likelihood estimation [23], Gaussian process [24], local linear model [25], and
neural network [26]. However, the offline experimental data required by these modeling
techniques are still quite large in underwater environments. Therefore, developing a
high-precision AUV modeling method based on limited data is crucial.
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The above research clearly shows that MORL offers a novel paradigm for underwater
missions, such as AUV path-following. By reducing the offline experimental data required,
its practical value in underwater missions can be significantly enhanced. Therefore, this
paper proposes a conservative offline model-based Q-learning algorithm (CMQL), con-
sisting of model learning and policy learning. For model learning, we propose a novel
AUV modeling method using limited data, relying on the conditional neural process (CNP)
method [27]. It enables accurate long-term prediction, significantly reducing the AUV
offline motion data required. For policy learning, the regularization technique of CQL [20]
is then applied within the SAC algorithm to make policy training more conservative, ad-
dressing distribution shifts and model biases. This enables the CMQL-based controllers to
achieve zero-shot transfer to the actual AUV. In addition, to ensure AUV path-following
performance under unknown ocean currents, a two-stage RL-based controller structure
is meticulously designed. Domain randomization (DR) is used during training to further
enhance the controllers’ disturbance rejection of unknown ocean currents.

The organization of the rest of this paper is as follows: Section 2 provides a brief intro-
duction to the under-actuated AUV model and presents the path-following problem to be
addressed. Section 3 offers a detailed description of the CNP-based AUV modeling method,
along with the improved training method to enhance the model’s long-term prediction
accuracy. Section 4 outlines the controller design scheme, including the modeling of the
AUV path-following problem as a Markov decision process (MDP), the CMQL algorithm,
and the training method using domain randomization. In Section 5, the controller’s per-
formance is validated through a simulation. Finally, Section 6 offers a brief summary of
the research.

2. Preliminaries
2.1. Model of the Under-Actuated AUV

This article focuses on a torpedo-shaped under-actuated AUV with a cross-rudder
and single-propeller actuator layout. The AUV motion under ocean currents is described
using an earth-fixed frame {E} and a body-fixed frame {B}, as shown in Figure 1. Thus,
the kinematics and dynamics of this type of AUV are given as follows:

Figure 1. Illustration of the path-following mission of AUV.

η̇ = T(η)vr + V c (1)

Mv̇r + C(vr)vr + D(vr)vr = G(vr)τ (2)
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where, in the {E}, η = [x, y, z, φ, θ, ψ]T represents the position and the orientation of
AUV, respectively. V c = [Vx

c , Vy
c , 0, 0, 0, 0]T is the ocean current in {E}, and υc =

[uc, vc, wc, 0, 0, 0]T is the ocean current in {B}. V c = T(η)υc, T(η) is the transformation
matrix. In the {B}, υ = [u, v, w, p, q, k]T is the velocity, and τ = [τx, τr, τs]T is the control
signal, where τx, τr andτs denote the propeller thrust, vertical rudder angle and horizon-
tal rudder angle, respectively. The velocity relative to the ocean current is denoted as
υr ≜ υ − υc = [ur, vr, wr, p, q, k]T . M is the inertia matrix, C(υ) is the Coriolis and cen-
tripetal matrix, C(υ) is the hydrodynamic damping matrix, and C(υ) is the force and torque
matrix of the actuator.

2.2. Problem Formulation

The path-following mission involves the AUV following a time-independent path
under unknown ocean currents. This path is defined by a straight line connecting a series
of successive waypoints WP ≜ {WPn, n = 1, ..., N}, where WPn = (xn

d , yn
d , zn

d), and WP0

is the initial AUV location. We define a path frame {W} with its origin at waypoint
WPn−1 and the x-axis pointing towards waypoint WPn. Therefore, the path-following error
(xe, ye, ze) in {W} is computed as follows:xe

ye

ze

 = TT
W

x − xn
d

y − yn
d

z − zn
d

 (3)

TW =

cos θ̄ cos ψ̄ − sin ψ̄ sin θ̄ cos ψ̄

cos θ̄ sin ψ̄ cos ψ̄ sin θ̄ sin ψ̄

− sin θ̄ 0 cos θ̄

 (4)

{
ψ̄ = atan2(yn

d − yn−1
d , xn

d − xn−1
d )

θ̄ = atan2(zn
d − zn−1

d ,
√
(yn

d − yn−1
d )

2
+ (xn

d − xn−1
d )

2
)

]
(5)

where atan2(a,b) returns the arc tangent of a/b within the bound (−π, π]. TW is the

transformation matrix. In the {W}, ψ̄ is the angle between the vector
−−−−−−−→
WPn−1WPn and the

y-axis; similarly, θ̄ is the angle with the z-axis. It is noteworthy that ye is only related to the
AUV’s heading angle, while ze is solely related to the pitch angle.

Therefore, under unknown ocean currents, the objective of this paper is to minimize
the path-following errors ye and ze while maintaining the desired surge velocity ud, as
shown in Figure 1. Furthermore, we make the following assumptions: (1) The physical
parameters of the AUV are completely unknown, and only a limited amount of motion
data was collected from the environment in the absence of ocean current disturbances.
(2) The focus is solely on the ocean current in the horizontal plane, which is unknown and
unmeasurable.

We adopt the MORL approach to achieve this objective through two components:
AUV model learning and controller designing, as detailed below.

(1) AUV model learning: To provide the controller with synthetic experience data under
different ocean currents, AUV dynamics and kinematics models are constructed
based on CNP. These models are required to predict the long-term motion states of
the AUV with high precision and are trained using the limited data.

(2) Controller designing: For the path-following mission under unknown ocean cur-
rents, a two-stage controller structure is designed. In the first stage, the path-
following controller is to convert path-following errors ye and ze into the desired
yaw angular velocity kd and pitch angular velocity qd. In the second stage, three
controllers are used: the yaw velocity controller and the pitch velocity controller,
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which ensure that the angular velocity tracking errors k − kd and q − qd gradually
tend to zero over time, and the surge velocity controller, which ensure that the actual
surge velocity u matches the desired velocity ud. These controllers are trained using
CNP-based dynamics and kinematics models and can achieve zero-shot transfer to
actual AUV.

3. AUV Model Learning
This paper utilizes the CNP [27] method to construct the AUV model, which serves

as the interactive training environment for the offline training of the controller. To enable
the randomization of ocean currents during RL policy training, we separately construct
dynamics and kinematics models using the same method. These CNP-based models
achieve good AUV state prediction accuracy by relying solely on a limited AUV motion
dataset. Although high-precision prediction is only achieved for AUV states within the
dataset distribution, it is sufficient to meet the requirements for RL policy training. Note
that the roll ϕ of the under-actuated AUV is self-stabilizing, and the sway velocity v and
the heave velocity w cannot be directly controlled. Therefore, the CNP-based dynamics
model only predicts the surge velocity u, pitch angular velocity q, and yaw angular velocity
k based on the control signal τ. The CNP-based kinematics model is used to predict the
position increments ẋ, ẏ, ż based on the surge velocity u, pitch angle θ, and heading angle ψ.

This section provides a detailed overview of the CNP-based AUV modeling method
and the improved training techniques that enhance prediction accuracy.

3.1. Structure

The state of the AUV at the next time step is determined by the current state sm
and the current action am. Based on this, the AUV model is defined as a stochastic
process. Consider a set O = {[(smt−1, amt−1), smt]} of pairs of input (smt−1, amt−1) and
output smt and another set T = {(smt, amt)} of unlabeled points. These sets are called
the set of observations and targets, respectively. For the CNP-based dynamics model,
sm = [u, q, k] and am = τ, while for the CNP-based kinematics model, sm = [ẋ, ẏ, ż]
and am = [u, θ, ψ]. In the stochastic process, the probability distribution P over functions
f : (smt, amt) → smt+1 is defined. Then, for f ∼ P, set smt+1 = f (smt, amt), and P
defines a joint distribution over the random variables { f (smt, amt)}. Therefore, there is a
conditional distribution P( f (T)|O, T). The objective is to predict the output f (smt, amt)

for every (smt, amt) ∈ T given O. For this purpose, CNP parametrizes the distribution P
over f (T) as Pϑ, and we map the observation set into an embedding of fixed dimensionality,
as follows:

ρ = hϑ((smt−1, amt−1), smt) ∀((smt−1, amt−1), smt) ∈ O (6)

where hϑ is a learnable encoder neural network. Since the observation set contains only
a single data pair, there is no need to aggregate the output of the encoder network, as in
the original CNP algorithm. Then, the encoded observation set is decoded along with the
target set as follows:

ϕ = Gϑ((smt, amt), ρ) ∀(smt, amt) ∈ T (7)

where Gϑ is a learnable decoder neural network. ϕ is used to parameterize the mean and
variance ϕ = (µ, σ2) of Gaussian distribution N (µ, σ2) for each (smt, amt) ∈ T.

In short, as shown in Figure 2, CNP can be described as the following conditional
distribution:

Pϑ( f (T)|O, T) = Pϑ( f (T)|Gϑ(T, hϑ(O))) (8)
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and can predict the state smt+1 by inputs consisting of smt, amt, smt−1, amt−1.

Figure 2. Schematic representation of the CNP.

3.2. Training

The collection of the training dataset employs practical and safe strategy. A coarsely
tuned PID controller is employed for simultaneously tracking the surge velocity, heading
angle, and pitch angle in order to collect the required motion data. This approach ensures
the safety and real-time nature of AUV motion dataset collection. The desired targets
for surge velocity, heading angle, and pitch angle are composite functions composed of
sinusoids with different frequencies. Both the CNP-based dynamics and kinematics models
rely on these data collection strategy. The diversity of the samples directly impacts the
generalization of CNP-based AUV models.

To enable the model to achieve stable long-term prediction capability, we propose an
N-step recurrent iterative training method, as illustrated in Figure 3 and Algorithm 1. In
each iteration of training, the CNP performs N-step recurrent predictions. The predicted
value f (Tn−1) at step n−1 is used as the input smn for the model at step n, and the action
am is known at each step. The model is trained by randomly sampling subsets from the
motion dataset, selecting observation and target splits, passing the data to this structure,
computing the loss, and performing stochastic gradient updates until convergence. Its loss
function is defined as follows:

L = −∑ N
n=1 log Pϑ(smn+1|On, Tn) +

1
N ∑ N

n=1(smn+1 − f (Tn))
2 (9)

where the first term is the sum of the negative log-likelihood over N steps, while the second
term is the N-step mean squared error between the true values and the predicted values.

Figure 3. Schematic representation of the N-step recurrent iterative training method.
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Algorithm 1 CNP multi-step iterative training algorithm.

1: Input: The limited offline dataset
2: Result: The trained CNP-based AUV models
3: Initialize the CNP network parameters ϑ
4: while not done do
5: Sample batch from dataset
6: Sample M samples {Dm}M

m=1 ∼ batch, where {On, Tn}N
n=1 ∼ Dm is a consecutive

set
7: for m = 1, . . . , M do
8: for n = 1, . . . , N do
9: Compute the loss about − log Pϑ(smn+1|On, Tn)

10: Compute the loss about (smn+1 − f (Tn))2

11: Make smn+1 = f (Tn)
12: end for
13: Compute the total loss by (9)
14: Update network parameters ϑ
15: end for
16: end while

4. Controller Designing
The two-stage controller structure is shown in Figure 4. All four controllers in this

structure, including path-following, yaw angular velocity, pitch angular velocity, and surge
velocity, are modeled similarly to the MDP. They are trained offline using the same policy
optimization method, which encompasses conservative offline model-based Q-learning
(CMQL). This method utilizes CNP-based AUV models, constructed from the limited
motion dataset, as the interactive training environment and employs the regularization
technique from CQL [20] for policy optimization. CMQL not only overcomes the reality
gap caused by distribution shift and model bias in the CNP-based AUV models but also
significantly reduces the required data compared to CQL. The controllers trained by CMQL
can make zero-shot transfer from the CNP-based models to actual AUV. In this section, we
provide a detailed description of the MDP design for the controllers, the CMQL method,
and the training process of the controllers.

Figure 4. Overall structure of the proposed control.
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4.1. MDP Modeling

The MDP is a mathematical framework of the RL problem, defined by the tuple. Here,
S represents the state space, A denotes the action space, P is the state transition probability,
and R is the reward function. We can describe the interaction process between the controller
and the AUV motion environment using the MDP framework. At time t, the controller
takes action at upon receiving the state st. The state transfers to st+1 with a probability
p(st+1|st, at), and the current policy of the controller is evaluated based on the immediate
reward rt. The objective of the RL problem is to find a policy π to maximize the long-term
cumulative reward J(π) = E(s,a)∼π [∑

T−1
t=0 γtrt], where γ is the scalar discount factor.

Therefore, the definitions of the four components of the MDP are crucial for the
performance of the path-following mission. To reduce the complexity of the algorithm,
we adopt a similar scheme for the action space, state space, and reward function across
these controllers.

Action space: As the output of the controllers, both the range of the value and its rate
of change should be considered. Therefore, the action space is designed as follows:

a = [∆kd, ∆qd, ∆τx, ∆τr, ∆τs] a ∈ [−ζ, ζ] (10)

where ζ is the bound of rate of change for these controllers’ output. Note that the output of
the controllers is Σat = at +Σat−1 = [kd, qd, τx, τr, τs],Σat ∈ [−ς, ς], where ς is the bound
of range for these controllers’ output. This action space is generalized, allowing different
controllers to select various action parameters as needed. For example, the path-following
controller is a = [∆kd, ∆qd], and the surge velocity controller is a = [∆τx].

State space: The state space represents the real-time state of the AUV during path-
following. A more comprehensive state space leads to better controller performance. To
ensure that the controller can overcome unknown ocean currents, the state distribution of
the RL must remain unaffected by changes in the ocean currents. Therefore, three types of
state vectors are designed within the entire state space.

The error state vector used to express the path-following errors and velocity tracking
errors is as follows:

et =

{ [
ye,t, ze,t, ψs,t − ψ̄, θs,t − θ̄

]
if path following controller

[ut − ud, kt − kd, qt − qd] others
(11)

{
ψs,t = atan2(yt − yt−1, xt − xt−1)

θs,t = atan2(zt − zt−1,
√
(yt − yt−1)2 + (xt − xt−1)2)

(12)

Like the action space, different controllers correspond to different elements in (11). For
the yaw velocity controller, it is et = [kt − kd]. The error variation vector ∆e is

∆e = [et − et−1] (13)

At last, the action space consists of the increments generated by each controller’s
output, which does not fully describe the state changes caused by these outputs. Therefore,
the values of each output need to be included in the state space, as follows:

o =

{
[kd, kd − k, qd, qd − q] if path following controller
[τx, τr, τs] others

(14)

Additionally, kd − k and qd − q in the path-following controller are used to monitor
the tracking of yaw angular velocity and pitch angular velocity, ensuring that the outputs
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are reasonable. Consequently, the state space is defined by combining the vectors above
as follows:

s = [et, ∆e, o] (15)

Reward function: The reward function r guides the direction of policy updates,
and its design depends on the MDP’s state and the mission requirements. Based on the
path-following objective described in Section 2, the one-step reward function is designed
as follows:

r = −ωe∥et∥1 − ω∆∥∆e∥1 − ωa∥Σa∥ (16)

where ωi, i = e, ∆, a are weight coefficients. ∥(·)∥1 denotes the 1-norm of (·). The first two
terms guide the state errors to zero, while the last term encourages smaller outputs from
the controllers to minimize energy consumption.

4.2. Conservative Offline Model-Based Q-Learning

The CMQL method used in this article, as shown in Algorithm 2, is based on the SAC
method [9], and the objective of the RL problem can be formulated as

max
π

J(π) = E(st ,at)∼π

[
T

∑
t=0

γt(rt + αH(π(·|st)))

]
(17)

where α is the temperature parameter and H(π(·|st) is the entropy term. Unlike standard
RL, this paper interacts with the CNP-based AUV model learned from a limited motion
dataset. The policy is optimized based solely on the model-based dataset DM, which is
generated by the CNP-based AUV models. The CNP-based AUV models achieve high
state prediction accuracy within a limited range. However, it is difficult to confine policy
exploration entirely within this range during training, and overly limited exploration
can adversely affect policy performance. This is primarily due to the limited amount of
AUV motion data, which results from the challenges of collecting data in underwater
environments. The distribution shift and model bias between the CNP-based AUV model
and the actual environment can lead to the failure of standard RL methods in offline policy
optimization. To address this issue, we apply the regularization technique of CQL to SAC,
obtaining a conservative policy π by learning the lower bound of the true action-value
function Qπ . The action-value function Qπ of SAC is defined as follows:

Qπ(s, a) = E(st ,at)∼π

[
T

∑
t=0

γt(rt + αH(π(·|st)))|s0 = s, a0 = a

]
(18)

and it is learned by iteratively applying the Bellman operator, which is expressed as follows:

BπQπ(s, a) = E(s,a)∼π

[
r + γ

(
Qπ(s, a) + αH

(
π
(
·|s′

)))]
(19)

The network architecture of SAC employs an actor–critic framework, optimizing
the policy by alternately updating the critic network Qϕ and the policy network πϕ. We
incorporate a regularization term into the critic loss, which penalizes the action value
function Qπ at states in the model-based dataset DM for actions not observed in the model-
based dataset DM. This enables a conservative estimation for the policy π, mitigating the
challenges of model bias and distribution shift. The critic loss is expressed as follows:

Lcritic = β
(
Es∼DM,a∼µ(·|s)

[
Qϕ(s, a)

]
−Es,a∼DM

[
Qϕ(s, a)

])
+

1
2
E(s,s,s′)∼DM

[(
Qϕ(s, a)−BπQπ(s, a)

)2
] (20)
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where β is the conservative coefficient used to balance the level of conservatism in Qπ .
µ(·|s) is a uniform distribution over the action bound. The policy network πϕ is updated
based on the following loss function:

Lpolicy = Es∼DM,a∼πϕ

[
−Qϕ(s, a)− αH

(
πϕ(·|s)

)]
(21)

Algorithm 2 Conservative offline model-based Q-learning.

1: Input: The CNP-based AUV models
2: Result: Conservative policy π
3: Initialize parameters of the policy network π and the critic network Q
4: Initialize the replay buffer DM
5: for each episode do
6: Collect data with π, add data to DM
7: Update Q by repeatedly solving (20) using samples from DM
8: Update π by solving (21)
9: end for

4.3. Training

As described in Section 2.2, the control structure consists of a path-following controller
and three velocity controllers. First, the surge velocity, yaw velocity, and pitch velocity
controllers are independently trained based on the CNP-based dynamics model, as shown
in Figure 5. Next, the control policy learning process for the path-following controller is
illustrated in Figure 6. During training, the CNP-based dynamics and kinematics models
are combined to form an interactive training environment, as shown in (22). Additionally,
the trained yaw velocity and pitch velocity controllers are incorporated into the training
process, generating the values of two rudder angles as inputs to the interactive environment
based on the output of the path-following controller. The desired target for the surge
velocity controller is provided separately.

Considering that the CNP-based AUV models may not fully reflect the AUV’s motion,
and considering that it is unrealistic to collect a comprehensive motion dataset, the desired
target during training should remain within the range of the offline dataset. Once the
trained policy is deployed on the AUV, this limitation is canceled. Additionally, it is crucial
to expose the policy to different ocean current disturbances during the training process.
Therefore, to enable the offline-trained controller to be deployed on the AUV without
fine-tuning, we employed DR during training.

Figure 5. Control policy learning schematic representation of the velocity controllers.

DR can enhance the disturbance rejection of RL-based controllers ensuring that they
perform well in environments with unknown ocean currents. Specifically, it involves
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randomizing multiple parameters across the training environment, including introducing
random offsets unoise, qnoise, knoise in CNP-based dynamics model outputs to simulate un-
known external force interference. Random settings of ocean currents V c are introduced to
diversify the training environment. Consequently, the formula for the training environment
is expressed as follows:{

[ẋ, ẏ, ż]t+1 = fCNP−Kine([ẋ, ẏ, ż]t, [u, θ, ψ]t+1) + V c

[u, θ̇, ψ̇]t+1 = fCNP−dyn([u, q, k]t, τt) + [unoise, qnoise, knoise]
(22)

Figure 6. Control policy learning schematic representation of the path-following controller.

5. Simulation
In this section, we first validate the CNP-based modeling method for the AUV through

simulation, followed by an evaluation of the proposed AUV path-following control method.
It is important to note that the simulation environment uses a mathematical model of the
self-designed under-actuated AUV, which is 7.985 m long and has a diameter of 0.40 m.
The data sampling and control frequencies are both set to 2 Hz. The simulation is run on a
laptop with an NVIDIA GeForce RTX 4060 GPU and an Intel i9 CPU.

5.1. CNP-Based AUV Model

We collected an offline dataset of 1000 samples to train the CNP-based AUV models.
The network parameters of the CNP-based dynamics and kinematics models are identical.
CNP was used to construct the two models consists of an encoder and a decoder, both
based on a multilayer perceptron architecture. The encoder network has four hidden layers,
while the decoder has three. Each hidden layer in both networks contains 512 neurons.
The learning rate is set to 104, and the linear rectification function is used as an activation
function. The model is trained for 3000 iterations.

We investigate the effect of the number of recurrent prediction steps per iteration on the
model’s convergence. As shown in Figure 7, increasing the number of prediction steps can
improve the model’s performance, but too many steps lead to a higher prediction error. We
find that the optimal number of steps is 15 for the CNP-based dynamics model and 13 for
the CNP-based kinematics model. To evaluate model performance, we use the coefficient
of determination R2, which measures the proportion of variance in the predictions relative
to the total variance and indicates the correlation between the predicted and actual values,
as shown in (23). We compare the true and predicted values of both models on a test set
consisting of 200 consecutive samples, as shown in Figure 8. The two CNP-based models
demonstrate strong capabilities in accurately reconstructing the AUV model. As shown
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in Table 1, both models achieve an R2 greater than 0.97, indicating strong generalization
and the ability to predict unknown states accurately. This method significantly reduces the
training data while maintaining high-precision prediction capabilities, offering a distinct
advantage over other modeling approaches. However, due to the limited dataset, prediction
accuracy for states outside the training dataset distribution may decrease.

R2 = 1 − ∑ n
i=1(yi − ŷi)

2

∑ n
i=1(yi − ȳi)2 (23)

where yi is the actual value, ŷi is the predicted value by model, and ȳi is the mean of the
actual values.

Table 1. The performance evaluation for the CNP-based dynamics and kinematics models.

ẋ ẏ ż u q k

R2 0.9811 0.9734 0.9926 0.9933 0.9911 0.9952

Figure 7. Impact of the recurrent prediction steps during each iteration on convergence.

Figure 8. Prediction results of AUV motion states by the CNP-based dynamics and kinematics
models.

5.2. Control Verification

In this subsection, we compare the proposed algorithm CMQL with different al-
gorithms to validate its control performance and advantage during several controllers.
Firstly, using the surge velocity controller, we compare CMQL with original CQL [20]
and COMBO [23] to demonstrate the effectiveness of the CNP-based model. Next, we
evaluated the control performance and generalization ability of CMQL in yaw velocity
control under both disturbance-free and ocean current conditions. It is compared with SAC
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trained in the simulation environment (SACSIM), to confirm whether the offline-trained
CMQL could achieve the same performance as the online-trained algorithm. In the pitch
velocity control, we validate the performance of CMQL and SAC trained with CNP-based
dynamics model (SACCNP). Additionally, we construct a suboptimal CNP-based dynamics
model and compare the control performance of CMQL and SAC using this model to assess
the impact of model accuracy. These controllers, trained with the suboptimal model, are
denoted as CMQL-sub and SACCNP-sub. Finally, in the complete path-following mission
under both disturbance-free and ocean current disturbance conditions, we compare CMQL
with MPC [28] based on the CNP-based models to verify whether CMQL can achieve good
path-following control outside the training data distribution. MPC relies entirely on the
accuracy of the model’s predictions, which helps determine if there is any degradation in
the prediction performance of the CNP-based model.

All RL controllers share the same network architecture and MDP design. Both the
control policy and critic networks consist of fully connected layers, each with 256 nodes
and 2 layers. The learning rates for the two networks are 10−5 and 3 × 10−4, respectively.
The configuration of various parameters for the domain randomization strategy during
training is as follows: unoise ∈ [−0.1, 0.1] m/s, qnoise ∈ [−0.1, 0.1]◦, knoise ∈ [−0.1, 0.1]◦,
Vx

c ∈ [−0.5, 0.5] m/s and Vy
c ∈ [−0.5, 0.5] m/s. These parameters are randomly chosen at

the start of each episode.

5.2.1. Surge Velocity Controller

We implement controllers using CMQL, CQL, and COMBO, respectively. All RL
controllers’ training lasts for 300 episodes. For CMQL, each episode contains 200 time
steps, and the AUV’s parameters are initialized to zero, with no control applied to τr and τs.
The desired surge velocity is randomly selected within the range ud ∈ [1, 2] m/s for each
training episode. For CQL and COMBO, they use an offline dataset of 2 × 105 samples. To
illustrate the training process of CMQL, CQL and COMBO, we evaluate the controller in
the simulation environment every five episodes.

The cumulative reward curve, which is shown in Figure 9, reflects the training process
of the controller. CMQL and CQL take approximately 0.31 h, 1.7 h and 2.4 h to train,
respectively. CQL and COMBO use a large dataset that is impractical to collect in reality.
Despite requiring five times the training time of CMQL, their cumulative rewards still lag
behind that of CMQL. The offline-trained controllers are directly tested in the simulation
environment. The surge velocity control tracking results can be seen in Figure 10 and Table
2, with the desired surge velocity given in (24). CMQL shows more excellent control perfor-
mance than CQL and COMBO. This indicates that, compared to modeling methods in other
MORL, the CNP-based model can generate high-quality data for controller training with a
limited offline dataset. Additionally, CMQL exhibits strong zero-shot transfer capability.

ud =


1 t ≤ 25
1.5 25 < t ≤ 50
1 + 0.5 sin(0.025πt) 50 < t ≤ 100

(24)

Table 2. The performance indexes for the surge velocity control.

Setting Time (s) Mean Error (m/s) Max Error (m/s)

0 s∼25 s 25 s∼50 s 0 s∼25 s 25 s∼50 s 50 s∼100 s

CQL 12 6 0.045 −0.002 0.081
COMBO 10 6 0.001 0.026 0.051
CMQL 10 10 −0.003 −0.005 −0.012
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Figure 9. Cumulative reward curve of surge velocity controllers.

Figure 10. Tracking result of the surge velocity control. (a) Surge velocity tracking curve. (b) Tracking
error. (c) Propeller thrust.

5.2.2. Yaw Velocity Controller

CMQL is similar in performance to SACSIM regarding yaw velocity control. Addition-
ally, we trained a surge velocity controller based on SACSIM using the settings outlined in
Section 5.2.1 for control validation. During training, the desired yaw velocity is randomly
selected within the range kd ∈ [−0.5, 0.5]◦, and no control is applied to τs. All other settings
are the same as those for the surge velocity controller.

Both CMQL and SACSIM take approximately 0.3 h to train, with the results being
illustrated in Figure 11. Compared to SACSIM, CMQL converges to the optimal parameters
more quickly. We performed yaw velocity tracking under variable surge velocity, with
the desired target defined in (25). Tests were conducted under both disturbance-free and
ocean current conditions, with the ocean current set as [Vx

c , Vy
c ] = [0.5,−0.5] m/s. The

results are presented in Figures 12–15 and Tables 3 and 4. Figures 12 and 13 show that
CMQL with the CNP-based dynamics model achieves a tracking error comparable to that
of SACSIM trained directly in the simulation environment. In the presence of ocean current
disturbances, the tracking error of CMQL is even lower than that of SACSIM, as shown
in Figures 14 and 15. This demonstrates that CMQL is a highly effective and safe method,
allowing the controller to maintain excellent control performance and strong generalization.
Its disturbance rejection capability surpasses that of RL controllers trained online or those
based on the AUV’s mathematical model.
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Figure 11. Cumulative reward curve of the yaw velocity controllers.

Figure 12. Yaw velocity tracking result of the yaw velocity control without disturbance. (a) Yaw
velocity tracking curve. (b) Tracking error. (c) Vertical rudder angle.

Figure 13. Surge velocity tracking result of the yaw velocity control without disturbance. (a) Surge
velocity tracking curve. (b) Tracking error. (c) Propeller thrust.
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Figure 14. Yaw velocity tracking result of the yaw velocity control under ocean current disturbance.
(a) Yaw velocity tracking curve. (b) Tracking error. (c) Vertical rudder angle.

Figure 15. Surge velocity tracking result of the yaw velocity control under ocean current disturbance.
(a) Surge velocity tracking curve. (b) Tracking error. (c) Propeller thrust.

Table 3. The yaw velocity tracking performance indexes for the yaw velocity control.

Ocean Current (m/s) Setting Time (s) Mean Error (◦/s) Max Error (◦/s)

[V x
c , V y

c ]
0 s∼
25 s

25 s∼
50 s

0 s∼
25 s

25 s∼
50 s 50 s∼100 s

SACSIM [0, 0] 2 10 0.007 −0.009 0.002
[0.5,−0.5] 14 2 0.035 −0.162 −0.027

CMQL [0, 0] 2.5 4 0.003 −0.007 0.001
[0.5,−0.5] 7 6 0.018 −0.018 −0.009
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Table 4. The surge velocity tracking performance indexes for the yaw velocity control.

Ocean Current (m/s) Setting Time (s) Mean Error (◦/s)

[V x
c , V y

c ] 50 s∼100 s 0 s∼50 s 50 s∼100 s

SACSIM [0, 0] 8 0.002 −0.003
[0.5,−0.5] 6 0.004 0.002

CMQL [0, 0] 12 −0.005 −0.01
[0.5,−0.5] 10 −0.002 −0.006


kd =


−0.5 t ≤ 25
0.5 25 < t ≤ 50
0.5 sin(0.025πt) 50 < t ≤ 100

ud =

{
1.5 t ≤ 50
2 50 < t ≤ 100

(25)

5.2.3. Pitch Velocity Controller

For pitch velocity control, CMQL is compared with SACCNP, CMQL-sub, and
SACCNP-sub. Additionally, the suboptimal CNP-based dynamics model is trained using a
smaller offline dataset of 500 samples, with an R2 for its predicted yaw velocity being less
than 0.8. During training, the desired pitch velocity is randomly selected within the range
qd ∈ [−0.5, 0.5]◦/s, with τx = 300 N and no control applied to τr.

The training times for CMQL, SACCNP, CMQL-sub, and SACCNP-sub are all approx-
imately 0.3 h, with the results being shown in Figure 16. CMQL and SACCNP exhibit
similar training outcomes. However, when trained on a suboptimal CNP-based dynamics
model, CMQL-sub achieves a higher cumulative reward than SACCNP-sub. We conducted
pitch velocity tracking under constant thrust, with the desired pitch velocity being defined
in (26). The results are presented in Figure 17 and Table 5. The tracking errors for CMQL
and SACCNP are minimal and similar, while the errors for CMQL-sub and SACCNP-sub
increase but remain within an acceptable range. However, the pitch velocity controlled by
SACCNP-sub exhibits oscillations caused by high-frequency, large-amplitude fluctuations
of the horizontal rudder. The rudder oscillates by 8◦ every 0.5 s, which could potentially
cause damage in real-world scenarios. This demonstrates that while SACCNP can achieve
good control performance, it requires high prediction accuracy from the model. In contrast,
CMQL, as a method for conservative policy optimization, can better adapt to models with a
lower prediction accuracy. The policy optimization method of CMQL also reduces dataset
requirements, making it more suitable for real-world applications.

qd =


−0.5 t ≤ 25
0.5 25 < t ≤ 50
0.5 sin(0.025πt) 50 < t ≤ 100

(26)

Table 5. The performance indexes for the pitch velocity control.

Setting Time (s) Mean Error (◦/s) Max Error (◦/s)

0 s∼25 s 25 s∼50 s 0 s∼25 s 25 s∼50 s 50 s∼100 s

SACCNP 6 5.5 −0.004 −0.001 −0.113
CMQL 9 5 0.005 −0.003 −0.132

SACCNP-sub 12 5 0.126 −0.086 0.210
CMQL-sub 13 5 0.102 −0.054 −0.173
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Figure 16. Cumulative reward curve of the pitch velocity controllers.

Figure 17. Pitch velocity tracking result of the pitch velocity control. (a) Pitch velocity tracking curve.
(b) Tracking error. (c) Horizontal rudder angle.

5.2.4. Path-Following Mission

For the path-following mission, CMQL is compared with MPC based on CNP-based
models. The training of CMQL lasts for 500 episodes, with each episode consisting of
300 time steps. All AUV parameters are initialized to zero, and the desired path points are
defined as follows: {

xd = ρ cos(ω)

yd = ρ sin(ω)
(27)

where ρ ∈ [200, 300] m and ω ∈ [−180, 180]◦ are randomly selected within their respective
ranges for each episode. All other settings are the same as those of the surge velocity
controller. The training time for CMQL is approximately 0.5 h, with the training results
being shown in Figure 18. MPC uses the same path-following control structure proposed
in this paper. The control parameters of MPC are obtained using the particle swarm
optimization algorithm. The path-following controller of MPC requires approximately 2 h,
while each of the three MPC velocity controllers requiring about 0.5 h.
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Figure 18. Cumulative reward curve of the path-following controller.

In the control simulation, we perform path-following missions on two different paths.
The first is a polyline path consisting of the points [(0, 0, 0), (100, 5, 5), (170, 8, 5), (250, 15,
10), (420, 20, 10)]. On this path, we compare CMQL and MPC under both disturbance-free
and ocean current disturbance conditions. The ocean current is defined as [Vx

c , Vy
c ] =

[0.5,−0.5] m/s. The results are shown in Figures 19–22 and Table 6. Under disturbance-free
conditions, the path-following errors for CMQL and MPC are small and similar, but MPC
is less stable. Additionally, CMQL completes the task 4.5 s earlier than MPC. Under ocean
current disturbances, CMQL still performs well and completes the task. In contrast, MPC
fails because the CNP-based model cannot accurately predict the AUV’s motion state under
unknown ocean current disturbances. The conventional solution to this problem is to design
an extended state observer to compensate for the controller’s output, but this is difficult to
achieve with a limited dataset. In contrast, CMQL uses the inaccurate generated data under
ocean current disturbances and still achieves good disturbance rejection performance.

The second path is a spiral path defined by (28). We use CMQL to follow this
path under ocean current disturbances, as defined in (29). The results are shown in
Figures 23 and 24 and Table 7. The strong following performance reflects the generalization
of CMQL. In Section 5.1, we mentioned that the CNP-based models cannot accurately pre-
dict the AUV’s motion state outside the dataset distribution. Due to the limited number of
samples, the dataset’s distribution range is narrow. Using this model, CMQL still achieves
unconstrained path-following under varying ocean currents after just 1400 episodes of
training with four controllers. In contrast, MPC’s control performance heavily depends on
the accuracy of model predictions.

xd = 300 cos(0.002πn)− 300
yd = 300 sin(0.002πn)
zd = 0.05n

(28)

{
Vx

c = 0.5 sin(0.001πt)
Vy

c = 0.5 cos(0.001πt)
(29)

Table 6. The performance indexes for polyline path-following mission.

Ocean Current (m/s) Mean Error (m) Max Error (m) Completion

[V x
c , V y

c ] ye ze ye ze Time (s)

MPC [0, 0] 0.010 −0.103 0.598 −0.992 281.5
[0.5,−0.5] −5.972 −0.131 −51.449 −3.886 288

CMQL [0, 0] −0.025 −0.089 0.502 −0.503 277
[0.5,−0.5] −0.242 −0.089 −4.621 −0.665 269.5
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Table 7. The performance indexes for spiral path-following mission under variable ocean current
disturbance.

Mean Error (m) Max Error (m)

ye ze ye ze

CMQL −0.539 0.249 −0.873 0.356

In summary, the simulation results demonstrate that the proposed path-following
method effectively accomplishes path-following missions under unknown ocean currents.
This method is safe, efficient, and offers high control accuracy, strong generalization, and
excellent engineering applicability.

Figure 19. AUV trajectory of the polyline path-following mission without disturbance.

Figure 20. Simulation results of the polyline path-following mission without disturbance. (a,b) Path-
following errors. (c) Tracking results of the surge velocity. (d,e) Tracking results of velocity controllers.
The outputs, CMQL_goal and MPC_goal, from the path-following controllers based on CMQL and
MPC, are, respectively, employed as inputs to the corresponding velocity controllers. (f) Propeller
thrust. (g) Vertical rudder angle. (h) Horizontal rudder angle.
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Figure 21. AUV trajectory of the polyline path-following mission under ocean current disturbance.

Figure 22. Simulation results of the polyline path-following mission under ocean current disturbance.
(a,b) Path-following errors. (c) Tracking results of the surge velocity. (d,e) Tracking results of velocity
controllers. The outputs, CMQL_goal and MPC_goal, from the path-following controllers based on
CMQL and MPC, are, respectively, employed as inputs to the corresponding velocity controllers.
(f) Propeller thrust. (g) Vertical rudder angle. (h) Horizontal rudder angle.

Figure 23. AUV trajectory of the spiral path-following mission under variable ocean current disturbance.
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Figure 24. Simulation results of the spiral path-following mission under variable ocean current
disturbance. (a,b) Path-following errors. (c) Tracking results of the surge velocity. (d,e) Tracking
results of velocity controllers. The outputs, CMQL_goal, from the path-following controller based
on CMQL, are employed as inputs to the corresponding velocity controllers. (f) Propeller thrust.
(g) Vertical rudder angle. (h) Horizontal rudder angle.

6. Conclusions
This study proposes the CMQL algorithm, utilizing limited data to achieve AUV

path-following control under unknown ocean currents. This method introduces a novel
AUV modeling approach based on CNP and performs offline conservative policy opti-
mization using CNP-based models. CMQL constructs a CNP-based AUV model using a
limited dataset of 1000 samples. This model can accurately predict the AUV’s long-term
motion states within the dataset’s distribution. The controller performs offline conservative
policy optimization through an interaction with the CNP-based AUV model, significantly
improving training efficiency and safety. Additionally, a two-stage control structure is
proposed, which mitigates the impact of ocean currents on the state space, action space,
and reward function. This enables the controller to exhibit strong disturbance rejection
capability without the need for additional compensation. Furthermore, DR is employed to
further enhance the controller’s generalization and disturbance rejection. Finally, CMQL is
validated using three velocity controllers and the path-following controller. It is confirmed
that path-following can be achieved under unknown ocean currents with only 1000 AUV
motion data samples. Moreover, the controller trained using the CNP-based AUV models
can be applied directly to the simulation environment without fine-tuning, demonstrating
its excellent practicality.

Currently, this article confirms the effectiveness of our method through theoretical
analysis and simulation. In our future work, we will conduct further validation through
field tests. Additionally, we will explore the impact of datasets on the long-term predic-
tive ability of CNP-based AUV models and work on improving the control accuracy of
controllers based on suboptimal models.
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