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A B S T R A C T

To overcome the bottleneck problem of the track slippage of the tracked mining vehicle in the traditional deep- 
sea mining system, this paper proposes an enhanced remotely-operated vehicle (ROV)-based deep-sea mining 
system. A ROV-based Deep-sea Mining Vehicle (RDMV), consisting of two ROVs and a mining robot (MRT), is 
instead of the traditional tracked Deep-sea mining vehicle. Firstly, the dynamic model of the RDMV as a control 
object is established based on Lagrangian function. Secondly, a cooperative control strategy is proposed for 
traction and sinking control of the RDMV. A distributed model predictive control (DMPC)-based controller is 
developed to obtain virtual speed control laws to meet the control objects. To track the virtual speed control 
laws, a learning-based model predictive control (LMPC)-based controller is investigated to compute the ROVs’ 
optimal control input, where a Kinky Inference (KI) prediction function is introduced in the state transition 
model to estimate the unknown external disturbances under random noise. Finally, the feasibility and the su-
periority of the LMPC controller is preliminarily verified in a degenerate individual motion control of a ROV, and 
then the cooperative control strategy is proven to be effective through numerical simulations.

1. Introduction

To alleviate the shortage of mineral resources on land, exploitation of 
deep-sea mineral resources from the thousands of meters of ocean floor, 
has been on the agenda since 1960s [1]. Deep-sea mining system is the 
key equipment for commercial exploitation. However, deep-sea mining 
is still in a research and exploration stage for the main reason that 
deep-sea mining systems have not yet reached the standards for com-
mercial exploitation.

At present, a hydraulic lift deep-sea mining system, where a deep-sea 
tracked mining vehicle tracks the mining path to collect the mineral 
resources, is considered as a commercially viable option [2,3]. However, 
the contradiction of large grip and large subsidence on the seafloor 
sediments becomes the inherent shortcoming of the traditional heavy 
tracked mining vehicle [4]. To overcome the inherent shortcoming, a 
novel ROV-based deep-sea mining system is firstly proposed [5,6]. A 
ROV-based deep-sea mining vehicle (RDMV), consisting of a towing 
remotely-operated vehicle (TROV) and a mining robot (MRT), is instead 
of the tracked mining vehicle. The TROV tows the MRT to slide orderly 

on the seabed through an articulated steel frame, and the MRT’s body 
sinking can be controlled by adjusting vertical component of the internal 
force in the articulated rigid frame. However, the TROV faces a 
contradiction between providing efficient traction for the MRT and 
maintaining effective control over the MRT’s body sinking [6]. To 
further improve the ROV-based mining system, a hanging 
remotely-operated vehicle (HROV) is introduced, as shown in Fig. 1. The 
TROV now just plays the role of the MRT’s motion control in the hori-
zontal plane, and the HROV keeps the synchronization with the MRT to 
provide vertical tensile force via the two-force member.

The cooperative control strategy for the TROV and the HROV is the 
key issue, and research on cooperative control strategy for a multiple- 
ROV system is a hot topic [7,8]. The control objective is to maintain 
all the ROVs in a fixed or a time-varying formation, and distributed 
model predictive control (DMPC) is an effective control method for the 
cooperative control of a multiple-ROV system [9]. It can separately 
construct the optimal control problem (OCP) to handle the constraints 
and multiple optimization variables, and the control objective is trans-
formed into the motion control of individual ROVs in the multiple-ROV 
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system.
Model predictive control (MPC) can formulate a constrained optimal 

control problem to achieve control objectives of a nonlinear system 
[10–13]. However, control performance depends on an accurate 
control-oriented model of the underlying system. For motion control of 
an individual ROV using MPC control method, the model mismatch, 
which consists of the unknown external current disturbances, para-
metric uncertainties of the control system, is the key issue to degrade the 
control performance [14]. To address the model mismatch, one effective 
strategy is to introduce a disturbance observer [15]. Chengqi Longet 
et al. introduce a EKF-based disturbance observer to accurately estimate 
ocean current disturbance, which increases the extra dimension of the 
control model to formulate an optimal control problem [16]. The extra 
dimension will bring great computational burden when solving the 
optimal control problem, and the control performance is enhanced at the 
expense of real-time performance. Learning-based model predictive 
control (LMPC) is another effective strategy, where the complex 
nonlinear dynamics function can be accurately estimated using a 
data-driven method, and is further utilized as the state transition model 
to formulate an optimal control problem [17,18]. One approach is to fit 
the nonlinear dynamics function via neural network [19,20]. The 
Koopman operator, stemming from linearization techniques, acts as a 
crucial intermediary linking the system state to the nonlinear dynamics 
function. Harnessing the koopman operator as prior knowledge has 
showcased the proficient learning performance of hierarchical neural 
networks [21]. As such, the control performance of the LMPC relies 
heavily on the pre-trained the neural network it employs. However, 
extensive and sufficient training data of the complex system is hard to be 
obtained. Another approach is to formulate a map between the state and 
the nonlinear function using Kinky Inference (KI) prediction [22,23]. 
This approach could perform inference over the nonlinear function 
values without the need for pre-training like in neural networks. 
Combining distributionally robust optimization and stochastic model 
predictive, a training set that matches the true disturbance distribution 
to some extent is a priori knowledge, and then the map between the state 
and disturbance distribution is formulated [23]. Kaikai Zheng in-
troduces a nonparametric learning (NPL) method to develop the 
search-based-map via KI prediction function, where a data selection 
mechanism is proposed to address the issue of real-time performance 
impacted by an excessive number of sampling points in the dataset [18]. 
However, the data selection mechanism fails to remove redundant 
sampling points. As real-time nonlinear function values are highly 
correlated with the most recent sampling points, older sampling points 
may gradually lose relevance.

How to analyze the complex dynamics of the RDMV to establish its 
dynamic model is another issue. Hydrodynamic force of the TROV and 
HROV can represents as empirical formula [16]. Based on the 

interaction force of the track and the seabed sediment [25], that of the 
MRT and the seabed sediment can be easily further deduced. However, 
the position constraint introduced articulated steel frame and the 
two-force moment makes it difficult to establish the mechanical model 
of TROV, HROV and MRT. To overcome the issues, the dynamic model 
of the RDMV and its cooperative control strategy for tracking and 
sinking control of the RDMV is investigated in this paper, and the main 
contributions are as follows:

1. An enhanced ROV-based deep-sea mining system is proposed, and a 
three-dimensional dynamic model of the RDMV is established based 
on Lagrangian function for further numerical simulation analysis.

2. An enhanced NPL method is developed based on the Lazily Adapted 
Constant Kinky Inference (LACKI) scheme to formulate a search- 
based map between the sampled dataset and the RDMV’s complex 
nonlinear dynamics function [24]. Compared with the existing 
method [18], a learning rule to formulate the sampled dataset is 
introduced to enhance its real-time performance. The method 
maintains a sufficiently small number of samples to reduce the 
computational complexity of the KI prediction function, and its 
estimation deviation is rigorously proven to be bounded.

3. A hierarchical cooperative control strategy consists of a DMPC 
controller and a LMPC controller is investigated. The DMPC 
controller is designed based on the RDMV’s kinematic model to 
obtain a virtual speed control law, which meets the cooperative 
control object. The learned RDMV’s complex nonlinear dynamics 
function by the enhanced NPL method is utilized to address the 
model mismatch, and then the LMPC controller is designed to track 
the virtual speed control law.

The remainder of this paper is organized as follows. Section 2 in-
troduces the dynamic model of the RDMV. Section 3 introduces the 
novel nonparameteric learning method. Section 4 proposes the cooper-
ative control strategy. Section 5 gives the results and discussion.

2. Dynamic model of the RDMV

In this section, the dynamic model of the RDMV is derived as the 
control objection in numerical simulation. Compared to the towing 
force, the connecting force of the flexible pipe acting on the TROV can be 
neglected due to the saddle shape of the compensation soft pipe. Addi-
tionally, the mass of steel frame and the two-force member is all small, 
compared with the mass of the TROV, HROV and MRT. To simplify the 
dynamic model, the forces from the flexible pipe, as well as the mass of 
the steel frame and the two-force member are ignored. Further simpli-
fications are also made during the preliminary research of the dynamic 
model. 

1. Suppose the MRT and the steel frame are solid, while the TROV is 
modeled as articulated. Drawing inspiration from the bicycle model 
in an Ackermann steering vehicle [26], the TROV functions as a 
steering mechanism, with the TROV and MRT analogous to the front 
wheel and the rear wheel, respectively. To ensure stable steering, the 
steering angle of the TROV and its angular velocity around the steel 
frame are kept small. This leads to the small angle assumption in the 
subsequent dynamic modeling.

2. Suppose the TROV and HROV maintain stability during roll and pitch 
motions, enabling the roll angle and pitch angle to quickly and 
smoothly to their initial states after momentary disturbances [14]. 
Consequently, degrees of freedom (DOFs) of pitching and rolling can 
be neglected.

3. Suppose the TROV tows the MRT at a constant depth, with MRT 
sliding on the seafloor surface, and their dynamics are considered 
only in the horizontal plane. The kinematic relationship between the 
DOFs of the TROV and the MRT is analyzed firstly. Subsequently, it is 
sufficient to focus on the three DOFs dynamics of the TROV.

articulated 
rigid frame

TROV

MRT

HROV

two force 
member

mining vessel

lifting pump

lifting pipe

buoyant RDMV

Fig. 1. ROV-based deep-sea mining system.
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4. Suppose the MRT and the two-force member, as well as the HROV 
and the two-force member, are articulated. The coordinates of the 
HROV can be derived from the attitude angle of the two-force 
member. Therefore, it is necessary to analyze the dynamics of the 
two-force member’s attitude angle, treating the yaw motion of the 
HROV separately.

2.1. Kinematic model

Firstly, the global coordinate frame and the local coordinate frame of 
the TROV, HROV and MRT are defined, as illustrated in Fig. 2. O − xyz 
denotes the global coordinate system. O1 − X1Y1Z1 denotes the MRT’s 
local coordinate system, O2 − X2Y2Z2 denotes the TROV’s local coordi-
nate system, and O3 − X3Y3Z3 denotes the HROV’s local coordinate 
system. Denote the surge speeds of the MRT and the TROV by u1 and u2, 
and their sway speeds are denoted by v1 and v2. From Fig. 2, the 
transformation relationship of the surge and sway speeds is given: 

u1 = u2cosδ − v2sinδ, v1 = v2cosδ + u2sinδ (1) 

where δ is the horizontal rotation angle of the TROV around the steel 
frame.

Denote the rotation angle of the two-force member around the 
x and y axes by φ and θ, where p := φ̇ and q := θ̇ are the angular 
speeds. The transformation relationship of the global coordinates of the 
HROV and the MRT is established: 

x3 = x1 + L1cosφsinθ,

y3 = y1 + L1sinφ,

ż = w,

dz = L1cosθcosφ + h − z

(2) 

where L1 is the length of the two-force member. h is the MRT’s height. 
Denote the MRT’s body sinkage by dz. x1 and y1 are the global co-
ordinates of MRT. The global coordinates of the HROV are denoted by 
x3, y3 and z. Let w denote the heave speed.

Based on the rigid body kinematics, the surge and the sway speeds of 
the HROV can be calculated: 
[

u3

v3

]

= J3

(

J1

[
u1

v1

]

+ Tm

)

(3) 

where J1 is the transformation matrix from O1 − X1Y1Z1 to O − xyz. J3 is 
the transformation matrix from O − xyz to O3 − X3Y3Z3. Matrix Tm 
represents the transport motion: 

J3 =

[
cosψ3 sinψ3

− sinψ3 cosψ3

]

,

J1 =

[
cosψ1 − sinψ1

sinψ1 cosψ1

]

,

Tm =

[
qL1z

− pL1z

]

,

ψ3 = ω3 

where L1z = L1cosθcosφ denotes the projected length of the two-force 
member on the z axis. Denote the HROV’s yaw angle and yaw rate by 
ψ3 and ω3.

According to bicycle model [26], MRT’s yaw rate ω1 is related to the 
surge speed of the MRT u1 and the horizontal rotation angleof the ROV 
around the steel frame δ: 

ψ̇1 = ω1 =
u1δ
L2

, δ̇ = ω2 (4) 

where ψ1 is MRT’s yaw angle. L2 denotes the horizontal projection 
length of the steel frame. ω2 is TROV’s yaw rate.

2.2. Kinetic model

The kinetic equation of the TROV with 3 DOFs will be deduced using 
Lagrangian method. Firstly, the Lagrange function, consisting of the 
kinetic energy of the TROV K2 and the kinetic energy of the MRT K1, is 
expressed as: 

Lg(q, q̇) = K1 + K2 − E

K1 =
1
2
m1
(
u2

1 + v2
1
)
+

1
2
I1ω2

1 =
1
2
m1
(
u2

1 + v2
1
)
+

1
2
I1

(
u1δ
L2

)2

K2 =
1
2
m2
(
u2

2 + v2
2
)
+

1
2
I2ω2

2

(5) 

where I1 and I2 denote the rotational inertia of the MRT and the TROV, 
respectively. The masses of the MRT and the TROV are represented by 
m1 and m2, respectively. The state and its first order derivative are 
defined by q = (x2, y2, δ)T and q̇ = (u2, v2,ω2)

T. Since the 3 DOFs are 
considered in the horizontal plane, the potential energy of E is treated as 
a constant.

Finally, the Lagrangian equation is expressed as: 

d
dt

Lg

∂q̇
−

Lg

∂q
= FTROV + J (FMRT + Flink2) + τ2 + τe2 + τω2 (6) 

where FTROV is the generalized hydrodynamic force of the TROV in local 
coordinate system O2 − X2Y2. Denote the generalized interaction force 
between the MRT and seafloor sediments in local coordinate system 
O2 − X2Y2 by FMRT. The control input of the TROV is denoted by τ2 =

(FX2, FY2, TN2)
T, and τe ∈ R 3×1 represents the unmodeled bounded 

external ocean current disturbance and model mismatch from para-
metric uncertainty. Additionally, the random bounded process noise 
force from the rugged seafloor sediments is denoted by τw2 ∈ R 3×1 [27]. 
Denote internal force of the two-force member and its projection in the 
MRT’s local coordinate frame by Tlink and Flink2. J 1 is the transformation 
matrix from O1 − X1Y1Z1 to O2 − X2Y2Z2. 

Fig. 2. Coordinate frame of the RDMV.
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Flink2 =

⎡

⎢
⎢
⎣

cosϕsinθcosψ1Tlink + sinϕsinψ1Tlink

sinϕcosψ1Tlink − cosϕsinθsinψ1Tlink

0

⎤

⎥
⎥
⎦,

J 1 =

⎡

⎢
⎢
⎣

cosδ sinδ 0

− sinδ cosδ 0

0 0 0

⎤

⎥
⎥
⎦

Substitute Eq. 5 into Eq. 6, and the left side of Eq. 6 becomes: 

d
dt

Lg

∂u2
−

Lg

∂x2
= (m1 + m2)u̇2 +

I1δ2

L2
2

u̇2 = (m1 + m2 + mδ)u̇2 (7) 

d
dt

Lg

∂v2
−

Lg

∂y2
= (m1 + m2)v̇2 (8) 

d
dt

Lg

∂ω2
−

Lg

∂δ
= I2ω̇2 −

I1u2
2

L2
2

δ (9) 

where mδ = I1δ2/L2 denotes the added mass of the MRT in the horizontal 
rotation angle DOF.

Based on the previous research [16], an empirical formula can be 
employed to express the generalized hydrodynamic force of the ROV 
FROV. This force encompasses the add mass force, centripetal and Cori-
olis force and hydrodynamic damping force: 

FTROV = MA2q̇ + (C2 + D2)q (10) 

where the add mass matrix of the TROV is denoted by MA2 =

diag(Xu̇,Yv̇,Nṙ), with Xu̇, Yv̇ and Nṙ representing the hydrodynamic 
coefficients. Denote the hydrodynamic damping matrix of the TROV by 
D2 = diag(Xu +Xuu|u2|,Yv +Yvv|v2|,Nr +Nrr|ω2| ), where the symbols 
Xu, Xuu, Yv, Yvv, Nr and Nrr are hydrodynamic damping coefficients. 
Centripetal and Coriolis force matrix of the TROV C2 can be expressed 
as: 

C2 =

⎡

⎢
⎢
⎣

0 0 (Xvr + m2)v2 + Xrrω2

0 Yuvu2 (Yur − m2)u2

− m2v2 (Nuv + m2)u2 Nuru2

⎤

⎥
⎥
⎦ (11) 

where Xvr, Xrr, Yuv, Yur, Nuv and Nur are hydrodynamic coefficients.
To further establish Lagrangian Eq. (7), the interaction force FMRT 

need be deduced. Since the soft seafloor sediment can be considered as 
plastic soil [28], the MRT is subjected to longitudinal resistance FR and 
lateral friction force f due to a triangular load. Considering plastic soil, a 
lateral friction coefficient relative to the turning radius is employed to 
express the lateral friction force [29]: 

f = μy
FN

2
= μy

W − Tlinkcosϕcosθ
2

(12) 

where W represents the underwater weight of the MRT. Denote the 
support force of the MRT by FN, and μy is the lateral friction coefficient: 

μy = E1

(

1 − e
CIblE2

m1

)(

1 − e
CIblE3r

m1

)

(13) 

in which l and b represent the length and width of the MRT. CI represents 
the terrain cone index. Denote the turning radius of the MRT by r. E1, E2 
and E3 are empirical coefficients.

The lateral friction force f can be equivalent to the TROV’s turning 
resistance moment Mo2 with respect to O2 [30]: 

Mo2 =

(
3
4

l + L
)

f −

(
1
4

l + L
)

f =
1
2

lf =
μyWl

4
(14) 

Then, the generalized interaction force FM can be obtained: 

FMRT = ( − FRcosδ, FRsinδ, − sg(ω1)Mo2 ) (15) 

where sg( • ) is a function denoted as sg(x) = 1,x > 0; sg(x) = − 1,x <

0; sg(x) = 0,x = 0.
Due to the sinkage on the soft seafloor sediment [25,30], the longi-

tudinal resistance FR consists of a compaction resistance FRc and a 
bulldozing resistance FRb: 

FR = FRc + FRb (16) 

where the underwater weight of the MRT and the soil properties will 
influence the sinkage characteristics [31].

Based on Bekker’s pressure–sinkage relationship [32], the compac-
tion resistance FRc can be expressed as follows: 

FRc =
b
2f

Δz2 −
be
f̃

Δz (17) 

where p = (W − Tlinkcosϕcosθ)/bl is the normal pressure from the MRT 
acting on the soil. e and f̃ satisfy the empirical formula [33]: 

f̃ = 1.99 − 0.112τ (18) 

e = 6.725 − 2.568τ + 0.245τ2, τ ≥ 5kPa
e = 0, τ < 5kPa (19) 

in which τ is the shear strength of soft seafloor sediment: 

τ = c + ptanΦ (20) 

where c is the apparent cohesion, and Φ is the angle of internal shearing 
resistance.

Meanwhile, the bulldozing force can be expressed as a function of the 
mechanical properties of the soft seafloor sediment and the sinkage [32, 
34]: 

FRb =

(
1
2
rsΔz2kpr + cΔzkpc

)

b (21) 

where rs is the density of the sediment. kpr and kpc denote the coefficients 
of passive earth pressure: 

kpr =

(
2Nr

tanΦ
+ 1
)

cos2Φ, kpc = (Nc − tanΦ)cos2Φ (22) 

Denote the speed vector of the HROV by ν = (u3, v3,w,ω3)
T. The 

dynamics equation of the HROV can also be established from an 
empirical formula: 

(M3 + MA3)ν̇ = (C3 + D3)ν + Flink3 + τ3 + τe3 (23) 

where the add mass matrix of the HROV is denoted by MA3 =

diag
(
Xʹ̇

u,Y
ʹ̇
v, Zẇ,Nʹ̇

r
)
, with Xʹ̇

u, Y
ʹ̇
v, Zwand Nʹ̇

r representing the hydro-
dynamic coefficients. M3 = diag(m3,m3,m3, I3) is the inertial mass 
matrix of the HROV. The control input of the HROV is denoted by τ3 =

(FX3, FY3, FZ,TN3)
T, and τe ∈ R 4×1 also represents the unmodeled 

bounded external ocean current disturbance and the model mismatch 
arising from parametric uncertainty. Denote the hydrodynamic 
damping matrix of the HROV by D3 = diag

(
Xʹ

u +Xʹ
uu|u3|,Yʹ

v +Yʹ
vv|v3|, Zw 

+Zww|w|,Nʹ
r +Nʹ

rr|ω3|
)
, where the symbols Xʹ

u, Xʹ
uu, Yʹ

v, Y
ʹ
vv, N

ʹ
r, Zw, Zww, 

and Nʹ
rr are hydrodynamic damping coefficients. Centripetal and Coriolis 

force matrix of the HROV is denoted by C3. Flink3 represents the pro-
jection of the internal force of the two-force member in the HROV’s local 
coordinate system. 
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C3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
(
Xʹ

vr + m3
)
v3 + Xʹ

rrω3

0 Yʹ
uvu3 0

(
Yʹ

ur − m3
)
u3

0 0 Zuwu3 0
− m3v3

(
Nʹ

uv + m3
)
u3 0 Nʹ

uru3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Flink3 =

⎡

⎢
⎢
⎣

− cosϕsinθcosψ3Tlink − sinϕsinψ3Tlink
− sinϕcosψ3Tlink + cosϕsinθsinψ3Tlink

− Tlinkcosϕcosθ
0

⎤

⎥
⎥
⎦

where Xʹ
vr, X

ʹ
rr, Y

ʹ
uv, Yur, Nʹ

uv, Zuw and Nʹ
ur are hydrodynamic coefficients.

Based on the rigid body kinematics, the rotation angle acceleration of 
the two-force member can be calculated based on the relative linear 
acceleration of the HROV and the MRT in the global coordinate frame: 

[
ṗ

q̇

]

=

[
−
(
ay3 − ay1

)/
L1z

(ax3 − ax1) /L1z

]

(24) 

where ax1 and ay1 represent the linear acceleration of MRT in the global 
coordinate frame. ax3 and ay3 represent the linear acceleration of HROV 
in the global coordinate frame: 
[ ax1

ay1

]

= J1

[ u̇1

v̇1

]

,

[ ax3

ay3

]

= J− 1
3

[ u̇3

v̇3

]

(25) 

Based on transformation relationship (1), the acceleration of the 
MRT’s surge and sway speeds is calculated as: 

u̇1 = u̇2cosδ − v̇2sinδ − δ̇(u2sinδ + v2cosδ)
v̇1 = v̇2cosδ + u̇2sinδ + δ̇(u2cosδ − v2sinδ)

(26) 

Based on the derivation of kinetic Model of the RDMV, the dis-
cretized state space of the TROV and the HROV, which satisfies Lipschitz 
nonlinear model, can be obtained [35]: 

X 2(k + 1) = A 2X 2(k) + B 2U2(k) + f2(X 2(k) ) + w2(k)
X 3(k + 1) = A 3X 3(k) + B 3U3(k) + f3(X 3(k) ) + w3(k)

(27) 

where w2 ∈ R 4×1 is the unknown bounded process noise from the 

rugged seafloor transmitted by the steel frame. w3 ∈ R 5×1 also repre-
sents unknown bounded process noise from the rugged seafloor, trans-
mitted by the two-force member. The state of the TROV is denoted by 
X 2 := (u2, v2,ω2, δ)T, and the state of the HROV is denoted by 
X 3 := (u3, v3,ω3,w, z)T. The control inputs satisfy U2 := τ2, U3 := τ3. 
The state matrices A 2 and A 3, as well as the control matrices B 2 and 
B 3 are given as: 

A 2 =M
− 1
2

⎡

⎢
⎢
⎢
⎣

1+TRXu 0 0 0
0 1+TRYv 0 0
0 0 1+TRNr 0
0 0 TR 1

⎤

⎥
⎥
⎥
⎦
,B 2 =M

− 1
2

⎡

⎢
⎢
⎢
⎣

TR 0 0
0 TR 0
0 0 TR

0 0 0

⎤

⎥
⎥
⎥
⎦
,

M 2 =diag(m1 +m2 +mδ − Xu̇,m1 +m2 − Yv̇, I2 − Nṙ,1)
(28) 

where TR is the sampling time of the LMPC controller. The mass matrices 
are denoted by M 2 and M 3. Note that the added mass mδ is related to the 
horizontal rotation angle δ, and the state matrix A 2 and the control 
matrix B 2 are time-varying. To align with the Lipschitz nonlinear model 
[35], the added mass mδ is simplified as a constant.

Indeed, the construction of a real system can provide the rigorous 
validation for the deduced dynamic model. Due to the limited funding 
and space for testing large-scale system, a discussion on the rationality of 
the modeling process is given. The RDMV consists of two ROVs and a 
MRT, and the kinetic model of the ROV is a classic model summarized 
from existing literature [36]. Besides, the interaction force of the MRT is 
also deduced from the above literatures. Finally, the kinetic model of the 
RDMV is obtained using classic Lagrangian and Newtonian methods.

The dynamic parameters are difficult to obtain accurately, and an 
uncertain term representing the model mismatch due to parametric 
uncertainty is introduced. Then, the function f2(X 2), consisting of the 
nonlinear dynamics function of the MRT and the TROV, g2(X 2), the 
model mismatch, g̃2 and the unknown external ocean current distur-
bance, he2, is given as: 

f2(X 2) =

⎡

⎣M
− 1
2

01×4

⎤

⎦

(

g2(X 2) + g̃2

)

+ he2 (30) 

A 3 =

⎡

⎣M
− 1
3 04×1

01×4 1

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + TRXʹ
u 0 0 0 0

0 1 + TRYʹ
v 0 0 0

0 0 1 + TRNʹ
r 0 0

0 0 0 1 + TRZʹ
w 0

0 0 0 TR 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B 3 =

⎡

⎣M
− 1
3

01×4

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

TR 0 0 0
0 TR 0 0
0 0 TR 0
0 0 0 TR

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M 3 = diag(m3 − Xʹ
u̇,m3 − Yʹ

v̇, I3 − Nʹ
ṙ,m3 − Zẇ)

(29) 
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where the nonlinear dynamics represents the interaction force between 
the MRT and seafloor sediments, the projection of the two-force mem-
ber’s internal force in the TROV’s local coordinate frame and the 
nonlinear hydrodynamic force of the TROV.

Similarly, function f3(X 3), also consists of the HROV’s nonlinear 
dynamics function g3(X 3), parametric uncertainty of the HROV’s hy-
drodynamics g̃3, and the unknown external ocean current disturbance 
he3: 

f3(X 3) =

⎡

⎣M
− 1
3

01×4

⎤

⎦

(

g3(X 3) + g̃3

)

+ he3 (32) 

where the nonlinear dynamics represent the projection of the two-force 
member’s internal force in the HROV’s local coordinate frame and the 
nonlinear hydrodynamic force of the HROV.

3. Cooperative control strategy

One control objective is for the TROV to tow the MRT along a 
reference path, while keeping the MRT’s body subsidence at a special 

height above the sediment surface for efficient collection. Furthermore, 
the HROV need keep synchronization with the MRT to efficiently pro-
vide vertical tensile force via the two-force member.

Since the RDMV’s dynamics are multi-DOF coupled and subject to 
hard equality constraint on the relative position relationship between 
HROV and ROV, constructing a single OCP to meet these control ob-
jectives may lead to poor real-time performance or even infeasibility. 
Then, a cooperative control strategy consisting of a DMPC controller and 
two LMPC controllers are developed, whose scheme is shown in Fig. 3.

The DMPC controller is developed to turn the strict equality 
constraint into the penalty term of the cost function. Then, OCPs are 
constructed separately to calculate the virtual speed control laws of the 

Offline Training

2

DMPC Controller

Optimial Control 
Problem min  

LMPC Controller 
for TROV

NPL for TROV

Uncertain Nonlinear 
Dynamics Learning

Dataset Udpate 

Optimial Control 
Problem min 2

3 

Constraints

3Optimial Control 
Problem min  

LMPC Controller 
for HROV

NPL for HROV

Uncertain Nonlinear 
Dynamics Learning

Dataset Udpate 

Optimial Control 
Problem min 3

2 

ℒ2 2

ℒ3 3

∆

Fig. 3. Scheme of the cooperative control strategy.

g2(X 2) =

[
J 03×1

01×3 0

]

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− FRcosδ

FRsinδ

− sg(ω1)Mo2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ Tlink

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cosϕsinθcosψ1 + sinϕsinψ1

sinϕcosψ1 − cosϕsinθsinψ1

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(Xvr + m2)v2ω2 + Xrrω2
2 + Xuu|u2|u2

Yuvu2v2 + (Yur − m2)u2ω2 + Yvv|v2|v2

Nuvu2v2 + Nuru2ω2 +
I1u2

2δ
L2 + Nrr|ω2|ω2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, he2 =

[
τe2

0

]

(31) 

g3(X 3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
Xʹ

vr + m3
)
v3ω3 + Xʹ

rrω2
3 + Xʹ

uu|u3|u3

Yʹ
uvu3v3 +

(
Yʹ

ur − m3
)
u3ω3 + Yʹ

vv|v3|v3

Nʹ
uvu3v3 + Nʹ

uru3ω3 + Nʹ
rr|ω3|ω3

Zuwu3w + Zww|w|w
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ Tlink

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cosϕsinθcosψ3 − sinϕsinψ3

− sinϕcosψ3 + cosϕsinθsinψ3

− cosϕcosθ
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

he3 =

[ τe3

0

]

, (33) 
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TROV and the HROV to meet the control objectives. Given a vector ηr =

(x1r, y1r,ψ1r)
T that stands for the reference path point. Given a vector η1 

= (x1, y1,ψ1)
T, the path tracking deviation is denoted by eη1 : =

(η1 − η1r; u1 − u1r) =
(
ex1, ey1, eψ1 , eu1

)T. Given a vector η3 =
(
x3, y3,ψ3

)T, and the synchronization deviation of the MRT and the 

HROV is denoted by eη3 := (η3 − η3r; u3 − u3r) =
(
ex3, ey3, eψ3, eu3

)T.
Denote the velocity vectors of the MRT, TROV and HROV by ν1 : =

(u1, v1,ω1)
T
,ν2 := (u2, v2,ω2)

Tand ν3 := (u3, v3,ω3)
T.The virtual speed 

control law of the TROV ν2 can be obtained to converge path tracking 
deviation eη1, while the virtual speed control law of the ν3 can be ob-
tained to converge synchronization deviation eη3.

With the uncertain nonlinear dynamics of the RDMV learned through 
the proposed NPL method, a LMPC controller for the TROV is developed 
to calculate the control input τ2 to track the virtual speed control laws 
ν2. Moreover, to track the virtual speed control law ν3 and maintain a 
certain MRT’s body subsidence, a LMPC controller for the HROV is also 
developed to compute the control input τ3.

3.1. DMPC controller

Considering the control objectives, the cost function of an optimal 
control problem can be designed as: 

Jl =
∑Nl − 1

i=0
‖eη1(i|k) ‖2

Ql1
+ ‖eη3(i|k) ‖2

Ql3
+ ‖U 1(i|k) ‖2

Rl1
+ ‖U 3(i|k) ‖2

Rl

+‖eη1(Nl|k) ‖2
Pl1

+ ‖eη2(Nl|k) ‖2
Pl3

(34) 

where denote the speed increments of the MRT and the HROV by U 1 :=

(Δu1,Δv1,Δω1)
T and U 3 := (Δu3,Δv3,Δω3)

T. Nl is predictive horizon. 
Ql1, Rl1, Ql3, and Rl3 are weight matrices. Denote terminal weight 
matrices by Pl1 and Pl3. Since the HROV mainly provides vertical tensile 
force to keep the reference body subsidence of the MRT, Δzr, the global 
z-axis coordinate of the HROV can be obtained from Eq. (2): zr : = L1 +

h − Δzr.
Considering the speed increment of the MRT and the HROV, 

inequality constraints are introduced: 

U 1 ∈ Ul1 := {U 1|U 1min ≤ U 1 ≤ U 1max}

U 3 ∈ Ul3 := {U 3|U 3min ≤ U 3 ≤ U 3max}
(35) 

where inequality constraints (33) are designed to satisfying the physical 
constraints of the speed increment.

To consider equality constraints of the RDMV’s kinematic model, the 
discretized state space model of the MRT and the HROV is introduced: 

χ1(k+1)=A1(k)χ1(k)+B1(k)U 1(k),χ3(k+1)=A3(k)χ3(k)+B3(k)U 3(k)
(36) 

where the state of the MRT is denoted by X 1 := (η1; υ1), and the state of 
the HROV X 3 := (η3; υ3). The time-varying state matrices are denoted 
by A1 and A3. Denote the time-varying control matrices by B1 and B3: 

A1 =

[
I3 TlJ 1

03×3 I3

]

,A3 =

[
I4 TlJ 3

04×4 I4

]

,B3 =

[
TlJ 3

I4

]

(37) 

where Tl is the sampling time. Denote the transformation matrices by J 1 
and J 3: 

J 1 =

⎡

⎢
⎢
⎣

cosψ1 − sinψ1 0

sinψ1 cosψ1 0

0 0 1

⎤

⎥
⎥
⎦, J 3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cosψ3 − sinψ3 0 0

sinψ3 cosψ3 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(38) 

Since the HROV and the MRT is articulated by a two-force member, 

an equality hard constraint on the relative position must be introduced: 

d
(
x1, x3, y1, y3, z

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2
p3 + (z − h + Δz)2

√

= L1 (39) 

where the relative position of horizontal plane is denoted by ep3 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x3)
2
+
(
y1 − y3

)2
√

.
Then, an optimal control problem is formulated to calculate the 

virtual speed control law of the MRT and the HROV 

s.t.

min
U 1(i|k),i∈K0:Nl − 1

U 3(i|k),i∈K0:Nl − 1

Jl (40a)

χ1(0|k) = χ1(k),U 1(0|k) = U 1(k), (40b)

χ3(0|k) = χ3(k),U 3(0|k) = U 3(k),

χ1(i + 1|k) = A1χ1(i|k) + B1U 1(i|k), (40c)

χ3(i + 1|k) = A3χ3(i|k) + B3U 3(i|k),

U 1(i|k) ∈ Ul1,U 3(i|k) ∈ Ul3, (40d)

d
(
x1(i|k), x3(i|k), y1(i|k), y3(i|k), z(i|k)

)
− L1 = 0, (40e)

(40) 

In the optimal control problem, the real-time performance may not 
be ensured due to three equality constraints and two inequality con-
straints. Besides, the feasibility of the optimal control problem is a 
challenge due to hard equality constraint on the relative position (40e).

To overcome the issues, a novel DMPC controller is developed to 
separately formulate the optimal control problem of the MRT and the 
HROV to calculate the virtual speed control law ν1 and ν3. For constraint 
on relative position (40e), it is transformed to a soft constraint, and the 
cost functions are reconstructed as that of Jl1 for the MRT and Jl3 for the 
HROV: 

Jl1 =
∑Nl − 1

i=0
‖eη1(i|k) ‖2

Ql1
+ ‖U 1(i|k) ‖2

Rl1
+ ‖eη1(Nl|k) ‖2

Pl1
(41) 

Jl3 =
∑Nl − 1

i=0
‖eη3(i|k)‖2

Ql3
+ ‖U 3(i|k)‖2

Rl3
+ ‖eη3(Nl|k)‖2

Pl3
(42) 

where weight matrices Ql1, Pl1, Ql3 and Pl3 are used for penalizing the 
MRT’s path tracking deviation and the synchronization deviation. The 
weight matrices Rl1 and Rl3 are used for smooth change of the virtual 
speed control law.

Then, two optimal control problems are respectively formulated to 
calculate the virtual speed control law of the MRT and the HROV: 

s.t.

min
U 1(i|k),i∈K0:Nl − 1

Jl1 (43a)

χ1(0|k) = χ1(k),U 1(0|k) = U 1(k), (43b)

χ1(i + 1|k) = A1χ1(i|k) + B1U 1(i|k), (43c)

U 1(i|k) ∈ Ul1, (43d)

(43) 

s.t.

min
U 3(i|k),i∈K0:Nl − 1

Jl3 (44a)

χ3(0|k) = χ3(k),U 3(0|k) = U 3(k), (44b)

χ1(0|k) = χ1(k),

χ3(i + 1|k) = A3χ3(i|k) + B3U 3(i|k), (44c)

χ1(i + 1|k) = A1χ1(i|k),

U 3(i|k) ∈ Ul3 (44d)

(44) 

where the solutions to OCP (43) and OCP (44) are separately denoted by 
U ∗

1(i|k)andU ∗
3(i|k), i ∈ K0:Nl − 1. The virtual speed control laws of the 

MRT and the HROV can be obtained: 

ν1 = U
∗
1(0|k) + υ1(k), ν3 = U

∗
3(0|k) + υ3(k) (45) 

Remark 1. At each time step, the time-varying state matrices and 
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control matrices are assumed to be linear time-invariant at each time 
step. Then, optimal control problems (43) and (44) can be transformed 
into quadratic programming problems, which can be efficiently solved. 
The detailed derivations can be found in [37].

According to the kinematic model of RDMV, the TROV’s virtual 
speed control law ν2 can be calculated: 

ν2 = (u2, v2, δ)T
=

(

u1cosδ + v1sinδ, v1cosδ − u1sinδ,
ω1

u1
L2

)T

(46) 

3.2. Enhanced NPL method

As the scheme of the cooperative control strategy shown in Fig. 3, 
two OCPs are separately formulated to obtain the control inputs to track 
the virtual speed control laws. Since parametric uncertainties in the 
kinetic model and the unknown external ocean current disturbances 
lead to uncertain nonlinear dynamics f2 and f3, state space (27) can’t be 
directly utilized as a state transition model in the optimal control 
problem. Based on KI prediction function [24], the enhanced NPL 
method is developed to estimate the actual values of the uncertain 
nonlinear dynamics subject to the random bounded process noise.

Denote the estimated value of the nonlinear dynamics by f̂ , and the 
sampled data set utilized for calculating the estimated value is denoted 
by Dn 

Dn :=
{(

s(r), f̃(s(r) )
)
|r ∈ K1:Nn

}
(47) 

where s(k) := (χ(k),U (k) ) ∈ S⊂R (nx+nu)×1 represents the measured 
sampling point, with the total number of the sampling point denoted by 
Nn. S represents the input space. For convenience, G n := {s(r)|r ∈
K1:Nn } represents the sampled input data set. The measured nonlinear 
dynamics are denoted by ̃f(s(r) ) := χ(r) − Aχ(r − 1) − BU (r − 1). 

Definition 1. (KI prediction function): Based on the sampled data 
set, the map f̂ (s(k), Ln,Dn ) : S→Y is obtained by the KI prediction 
function:

Table 1 
Literature review table.

Content Article Problem

Traditional MPC [10,11] Degradation of control performance from 
model mismatch

LMPC using 
neural network

[19–21] Challenge of obtaining data for pre-training 
neural networks

LMPC using KI 
prediction function

[18,24] Degradation of learning performance 
from Redundant sampling points

Table 2 
Motion control performance.

Method Average 
depth 
deviation 
(m)

Max 
depth 
deviation 
(m)

Average 
yaw angle 
deviation 
(◦)

Max 
yaw angle 
deviation 
(◦)

the proposed 
control 
strategy

< 0.01 0.01 0.05 0.01

control strategy 
in [38]

0.04 0.05 0.07 0.08

Table 3 
Parameters of the dynamic model of RDMV.

Parameter Value Parameter Value Parameter Value

L2 0.5 m l 2 m b 1.4 m
m1 40.5 kg m2 48.85 kg I2 11.6 kgm2

I1 45.85 kgm2 mδ 4.12 kg Xu̇ − 3.9 kg
Yv̇ − 149.9 kg Nṙ − 53.87 kgm2 Xu − 4.1 kg/m

Nr − 547 kgm2/s/rad Yvv − 553.4 kg/m Xuu − 8.2 kg
Nrr − 1037 kgm2/s/rad Yv − 285.7 kg/m Xvr − 149.9 kg
Yur − 120.8 kg Xrr − 13.18 kgm/rad Yuv − 120.8 kg
Nur − 13.6 kg Nuv − 163.9 kg E1 0.95
E2 − 0.1 E3 − 0.1 CI 420
c 5.4 kPa Φ 6.2 ◦ Nr 0.1
Nc 6.36 rs 12.2 kN/m3 L1 0.4
W 244.5 N Zw − 233.7 kg/m Zww − 533.4 kg/m
Zẇ − 149.9 kg Zuw − 22.05 kg  

Table 4 
Parameters used in the optimal control problems.

Parameter Value Parameter Value Parameter Value

Ql1 (44, 112,1595,305)T Pl1 (84,272,1895, 355)T Rl1 (500,400,100)T

Ql2 (384, 252,5595, 8005)T Pl2 (564, 472,7895,9355)T Rl2 
Qn2 (61, 90,355)T Pn2 (81,98, 443)T Qz 310
Qn2 (610, 900,3555)T Pn2 (810, 985,4435)T Pz 510
Tl 0.05 Tn 0.05 Rn2 (61,200,150)T

U 3max (0.01, 0.03, 0.005)T U 1min (0.05, 0.01, 0.002)T ΔU3min − ΔU3max

U 1max − U 1min U2min − (40,80,85)T U 3max − U 3min

U3max (30, 70,85,80)T ΔU2max (10,3, 5)T U2max (30,80, 85)T

U3min − (40,80,85, 80)T ΔU3max (10,2, 3,15)T ΔU2min − ΔU2max

Nn 7 Nl 6  

Table 5 
Performance of the two NPL methods.

Proposed NPL Method Comparative NPL Method

Number of the sample points 6 13
Mean square error 0.0856 0.1251
Simulation time (s) 82.27 123.18
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Fig. 4. Results of the learned TROV’s uncertain nonlinear dynamics function (comparison of the reference values with noise, the estimated values and the actual 
values (left) and results of histogram (right) of the NPL estimated error).

Fig. 5. Results of the learned HROV’s uncertain nonlinear dynamics (comparison of the reference values, the estimated values and the actual values with noise (left) 
and results of histogram (right) of the NPL estimated error).
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Fig. 6. Control trajectory of the proposed cooperative control strategy (LMPC) and the strategy in comparative numerical simulation (MPC). (a) Trajectory of the 
RDMV, where the solid line represents the horizontal plane coordinate of the MRT and the HROV, and the dot dash line represents the MRT and the HROV’s 
horizontal plane coordinates in the comparative numerical simulation (MPC). (b) the MRT’s body sinkage using the proposed cooperative control strategy. (c) the 
MRT ’s state and the horizontal rotation angle of the TROV using the proposed cooperative control strategy. (d) the HROV’s state using the proposed cooperative 
control strategy.

Table 6 
Reset parameters used in the MPC controller.

Parameter Value Parameter Value Parameter Value

Qn2 (43, 30,355)T Pn2 (34,58, 843)T Qz 610
Qn2 (513, 700,5555)T Pn2 (412,751, 4612)T Pz 1010
Rn2 (31, 100,452)T   
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f̂ j(s(k), Ln,Dn ) :=
1
2

(

u j

(

f̃ j(s(r)), s(k), Ln,Nn

)

+l j

(

f̃ j(s(r)), s(k), Ln,Nn

))

, j ∈ K1:nx

(48) 

u

(

f̃ j(s(r)), s(k), Ln,Nn

)

:= min
r∈K1:Nn

f̃ j(s(r)) + Ln‖s(k) − s(r) ‖∞ + e (49) 

l

(

f̃ j(s(r)), s(k), Ln,Nn

)

:= max
r∈K1:Nn

f̃ j(s(r)) − Ln‖s(k) − s(r) ‖∞ − e (50) 

where Ln is the offline estimated Lipschitz constant based on the LACKI 
scheme [24]. Y represents the output space of the nonlinear dynamics: 
f ∈ Y⊂R nx×1. 

Definition 2. (minimal input space): A space L ⊂S contains all 
possible sample points denotes the minimal input space, where the 
minimum number of sample points are denoted by NL .

Remark 2. The computational burden of the KI prediction function is 
related to the number of recorded samples Nn. To achieve good real-time 
performance, the nominal minimum number of sample points N

L 
is 

obtained offline, and then the nominal minimal input space is denoted 
by L ⊂S.

Learning rule: The sampled data set DN
L

, formulated from the 
measured sampling point and the measured nonlinear dynamic, is 
updated over time: 

DN
L
=
{(

s(r), f̃(s(r))
)
|r ∈ Kk− N

L
+1:k

}
(51) 

3.3. LMPC controller

Since the nonlinear dynamics function f2(χ2) and f3(χ3) can be 
learned by the enhanced NPL method, the state transition models uti-
lized in the optimal control problems are given as: 

X 2(k + 1) = A 2X 2(k) + B 2U2(k) + f̂
2
(s2(k), Ln2,DN

L 2
),

X 3(k + 1) = A 3X 2(k) + B 3U3(k) + f̂
3(

s3(k), Ln3,DN
L 3

) (52) 

where the extended state is denoted by s2(k) = (X 2(k),U2(k) ), s3(k) =

(X 3(k),U3(k) ).
To minimize the TROV’s virtual speed deviation with smooth control 

input, a cost function Jn2 is designed as follows: 

Jn2 =
∑Nn − 1

i=0
‖eν2(i|k) ‖2

Qn2
+
∑Nn − 2

i=0
‖ΔU2(i|k) ‖2

Rn2
+ ‖eν2(Nn|k) ‖2

Pn2

(53) 

where Nn is the predictive horizon. Qn2 and Rn2 are weight matrices. 
eν2 := ν2 − ν2 represents the virtual speed deviation of the HROV. Denote 
terminal weight matrix in the LMPC controller by Pn2. Weight matrices 
Qn2 and Pn2 are used for penalizing the virtual speed deviation, and 
weight matrix Rn2 are used to obtain smooth control input.

To satisfy the physical constraints of the TROV’s control input 
increment and its maximum value, an inequality constraint is designed: 

(U2,ΔU2) ∈Un2 :=
{
(U2,ΔU2)|U2min ≤U2 ≤U2max ,ΔU2min ≤ΔU2 ≤ΔU2max

}

(54) 

where ΔU2 denotes the control input increment of the TROV.
Then, an optimal control problem is formulated to calculate the 

TROV’s control input: 

min
U2(i|k),i∈K0:Nn − 1

Jn2

s.t.

X 2(0|k) = X 2(k),U2(0|k) = U2(k)

X 2(i + 1|k) = A 2X 2(i|k) + B 2U2(i|k) + f̂ (s2(i|k), Ln2,DN
L 2

)

{U2(i|k),ΔU2(i|k) } ∈ Un2

(55) 

where the solution to the optimal control problem is denoted by U∗
2(i|k),

i ∈ K0:Nn2 − 1. Then, the TROV’s control input can be obtained: τ2(k) =

U∗
2(0|k).

Note that a certain MRT’s body sinkage can be transformed into the 
HROV’s reference global z-axis coordinate based on Eq.2, and a cost 
function is designed to minimize the HROV’s virtual speed deviation and 
track the HROV’s reference global z-axis while ensuring smooth control 
input: 

Jn3 =
∑Nn − 1

i=0
‖eν3(i|k) ‖2

Qn3
+ ‖ez(i|k) ‖2

Qz
+
∑Nn − 2

i=0
‖ΔU3(i|k) ‖2

Rn3

+‖eν3(Nn|k) ‖2
Pn3

+ ‖ez(Nn|k) ‖2
Pz

(56) 

where Qn3, Qz, Qz and Rn3 are weight matrices. Pz is the terminal weight 
matrix. eν3 := ν3 − ν3 represents the virtual speed deviation of the HROV. 
Denote the HROV’s z-axis coordinate deviation by ez := z − zr. Simi-
larly, weight matrices Qn3 and Pn3 are also used for penalizing the virtual 
speed deviation, and weight matrix Rn2 are used to obtain smooth 
control input. Qz and Pz are used for penalizing the HROV’s z-axis co-
ordinate deviation. Constraints on the control input and the HROV’s 
speed are also considered as: 

(U3,ΔU3) ∈Un3 :=
{
(U3,ΔU3)|U3min ≤U3 ≤U3max ,ΔU3min ≤ΔU3 ≤ΔU3max

}

(57) 

where ΔU3 denotes the control input increment of the HROV. Inequality 
constraint (55) is also designed to satisfy the physical constraints of the 
HROV’s control input increment and its maximum value.

Then, an optimal control problem is formulated to calculate the 
HROV’s control input: 

min
U2(i|k),i∈K0:Nn − 1

Jn3

s.t.

X 3(0|k) = X 3(k),U3(0|k) = U3(k)

X 3(i + 1|k) = A 3X 3(i|k) + B 3U3(i|k) + f̂
(
s3(i|k), Ln3,DN

L 3

)

{U3(i|k),ΔU3(i|k) } ∈ Un3

(58) 

where the solution to the optimal control problem is denoted by U∗
3(i|k),

Table 7 
Evaluation metrics for MRT’s path tracking.

Control 
Strategy

MRT’s Average path 
tracking deviation (m)

MRT’s Max path 
tracking deviation(m)

MPC 0.09 0.26
LMPC 0.01 0.02

Table 8 
Evaluation metrics for HROV’s horizontal synchronization and MRT’s body 
sinking.

Control 
Strategy

MRT’s 
average 
sinkage 
deviation 
(m)

MRT’s Max 
sinkage 
deviation 
(m)

HROV’s average 
synchronization 
deviation(m)

HROV’s max 
synchronization 
deviation(m)

MPC 0.02 0.04 0.08 0.24
LMPC 0.01 0.02 < 0.01 0.01
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Fig. 7. Robust analysis results under the different environmental disturbance cases using the proposed cooperative control strategy, where denote the case with the 
ocean current disturbance and the uniformly distributed random noise by “OcdRan”, and the case with the ocean current disturbance and the non-zero mean 
(Gaussian distributed) random noise by “OcdRanGs”. The case only with the ocean current disturbance is denoted by “Ocd”. The case without the ocean current 
disturbance and the random noise is denoted by “NoOcdRan”. (a) range of the MRT’s path tracking deviation, where the position deviation is denoted by ep1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x1 + e2
y1

√
. (b) range of synchronization deviation. (c) control input of the TROV. (d) control input of the HROV.
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i ∈ K0:Nn − 1. Then, the HROV’s control input can be obtained: τ3(k) =

U∗
3(0|k).

3.4. Theoretical analysis

In Section 3.2, the enhanced NPL method estimates the nonlinear 
dynamics in the minimum input space, and the boundedness analysis of 
the estimation deviation is given as follows. 

Assumption 1. The nonlinear dynamics f is always Lipschitz contin-
uous as:

∀x, y ∈ K1:Nn , ‖f(s(x) ) − f(s(y) ) ‖∞ ≤ L∗‖s(x) − s(y) ‖∞ 

where L∗ represents the bounded Lipschitz constant: L∗ ≤ L∗. The upper 
bound is denoted by L∗. 

Lemma 1. (Lipschitz Continuity) and Lemma 2 (Sample-consistency) 
are given for the following analysis:

Lemma 1. (Lipschitz Continuity, [24]): The KI prediction function 
f̂ (s(k), Ln,Dn ) is also Lipschitz continuous:

∀x, y ∈ K1:Nn , ‖ f̂ (s(x), Ln,Dn ) − f̂ (s(y), Ln,Dn ) ‖∞ ≤ Ln‖s(x) − s(y) ‖∞

(59) 

Lemma 2. (Sample-consistency, [24]):The KI prediction function is 
sample-consistent (up to λ2) in the minimum input space L , and the NPL 

estimated error ‖f − f̂‖∞ is bounded:

∀r ∈ K1:Nn , f̂ (s(r), Ln,Dn ) ∈ B λ
2

(
f̃(s(r) )

)

(60) 

‖f(s(r) ) − f̂ (s(r), Ln,Dn ) ‖∞ ≤
λ
2
+ e (61) 

where B λ
2

(
f̃(s(r) )

)
=

{

y ∈ Y

⃦
⃦
⃦y − f̃(s(r) )

⃦
⃦
⃦

∞
≤ λ

2

}

denotes the λ2-ball 

around the measured output.
Since the enhanced NPL method estimates the nonlinear dynamics in 

the nominal minimum input space, the corresponding boundedness 
analysis of the NPL estimated error is given as follows. 

Definition 2. (ε-convergent, [18]): A point set sN = {s(r)|r ∈ K1:N } is 
ε-convergent to a point s(r∗) ∈ Sby sN →

ε s(r∗): iff ∃m ∈ K1:N, ∀r > m,

‖s(r) − s(r∗) ‖∞ ≤ ε, where ε is a positive constant.

Definition 3. (ε-denseness, [18]): Denote a set sequence S N =

{sr|r ∈ K1:N} ε-dense to a point s(r∗) ∈ sN by S N→
ε s(r∗): if ∃n ∈ K1:N,

sn→
ε s(r∗) ∧ sn ∈ S N. Denote a set sequence S N ε-dense to a point set 

sN by S N→
ε

sN : ∀s(r∗) ∈ sN : S N→
ε s(r∗), where ε is a positive constant.

Before giving the boundedness analysis of the estimation deviation, a 
probability space is defined. The sample space Ω denotes collection of all 
possible sequences S N. The event space F denotes a ε-algebra con-
taining subsets of the sample space related to two definitions ε-conver-
gent and ε-denseness. Probability measure P denotes the function 
assigning probabilities to each event in the event space. 

Theorem 1. The nominal minimal input space L is ε
L

-dense to the 
minimal input space L :

P(L →
ε

L
L ) = 1 (62) 

where the hyper-parameter ε
L 

satisfies ε
L

= p/Ln > ε∗. 

Proof. Given a ball around s(k) as: B ε∗ (s(k) ) =
{
s(r) ∈

S‖s(k) − s(r) ‖∞ ≤ ε∗
}
,k, r ∈ Kk− N

L
+1:k. For the nominal minimal input 

space, based on LACKI scheme [24], a larger L -ball exists:

In Definition 3, L ̅→εn L can be expressed as: 

∀s ∈ L , ∃m ∈ Kk− NL +1:k,∀r > m : dist(L , r) ≤ ε
L

(64) 

where dist(L , s) is denoted by: dist(L , r) = mins∗∈L
‖s∗ − s(r) ‖∞,

r ∈ Kk− NL +1:k, and contradiction is utilized to proof inequality (64). An 
assumption is given as: 

∃s∗ ∈ L ,∀m ∈ Kk− NL +1:k,∃r > m : dist(L , r) > ε
L

(65) 

It means no sample point contains in the ε
L

-ball around s∗.That is 
B ε

L
(s(k) ) ∩ L = ϕ, and a probability is given: 

pr(s∗) = P(s(r) ∈ B ε
L
(s(k) ) ), r ∈ Kk− N

L
+1:k (66) 

Then, inequality (66) is equivalent to 

P(B ε
L
(s(k) ) ∩ L = ϕ ) =

∏k

r=k− N
L
+1

(1 − pr(s∗) ) (67) 

The probability pr(s∗) is always nonnegative: pr(s∗) > 0, Eq. (66)
satisfies: 

lim
L →∞

P(B ε
L
(s(k) ) ∩ L = ϕ ) = 0 (68) 

which means the assumption fails. Then, the proof completes. □
To analyze the conservative bound of the NPL estimated error, 

Lemma 4 is given: 

Lemma 3. [18]: Given a sample point s ∈ L , it holds that:

l j

(

f̃ j(r), s(k), Ln,NL

)

≤ f̃ j(s(ξ) ) + Ln‖s(ξ) − s(r) ‖∞ + e, r ∈ Kk− NL +1:k

(69) 

where ξ = argminξ∈ L
‖s(ξ) − s(r) ‖∞, r ∈ Kk− NL +1:k represents the 

nearest sample point in the nominal minimal input space. 

Theorem 2. For the minimal input space L , the NPL estimated error 

Table 9 
Real-time performance evaluation of the LMPC controller.

Average computing time 
(ms)

Max computing time 
(ms)

MPC− 2 11.38 14.74
LMPC− 2 12.14 15.85
MPC− 3 12.87 15.21
LMPC− 3 13.14 15.85

B ε∗ (s(k) )⊂B ε
L
(s(k) ) =

{
s(r) ∈ S‖s(k) − s(r) ‖∞ ≤ ε

L

}
, k ∈ Kk− N

L
+1:k, r ∈ Kk− NL +1:k (63) 
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satisfies:

‖f(s(r) ) − f̂ (s(k), Ln,DL ) ‖∞ ≤
Ln + L∗

Ln
p + 2e, r ∈ Kk− NL +1:k (70) 

Under the Learning Rule, the NPL estimated error in inequality (70) 
still holds. 

Proof. : for the nearest sample point s(ξ) ∈ L , it holds:

u

(

f̃ j(r), s(k), Ln,NL

)

≤ f̃ j(s(ξ) ) + Ln‖s(ξ) − s(r) ‖∞ + e, r ∈ Kk− NL +1:k

(71) 

From Lemma 3, it holds: 

f̂ j(s(k), Ln,DL ) =
1
2

(

u j

(

f̃ j(r), s(k), Ln,NL

)

+ l j

(

f̃ j(r), s(k), Ln,NL

))

≤ f̃ j(s(ξ) ) + Ln‖s(ξ) − s(r) ‖∞ + e, r ∈ Kk− NL +1:k

(72) 

which is equivalent to: 
⃦
⃦
⃦
⃦
⃦

f̂ j(s(k), Ln,DL
) − f̃ j(s(ξ) )

⃦
⃦
⃦
⃦
⃦

∞

≤ Ln‖s(ξ) − s(r) ‖∞ + e, r ∈ Kk− NL +1:k

(73) 

Combining the bounded process noise
⃦
⃦
⃦f̃ − f

⃦
⃦
⃦

∞
≤ e and Assumption 

1, it holds that: 
⃦
⃦
⃦
⃦
⃦
f̃ j(s(ξ) ) − f(s(k))

⃦
⃦
⃦
⃦
⃦

∞

≤ L∗‖s(ξ) − s(r) ‖∞ + e, r ∈ Kk− NL +1:k (74) 

Based on triangle inequality, sum inequalities (73) and (74): 

‖f(s(k) ) − f̂ (s(k), Ln,DL ) ‖∞ ≤ (L∗ + Ln)‖s(ξ) − s(r) ‖∞ + 2e

≤
Ln + L∗

Ln
p + 2e, r ∈ Kk− NL +1:k

(75) 

where the second inequality holds in Theorem 1.
Under the Learning Rule, inequality (71) holds by providing 

L ̅̅→
ε

L L , and the nominal minimal input space L is ε
L

-dense to the 
input space L in Theorem 1. Then, the proof is completed. 

Remark 3. The closed-loop stability of the RDMV system using the 
cooperative control strategy can be ensured by the stability of the DMPC 
controller and LMPC controller, which is affected by the solution to 
optimal control problems (43), (44), (55) and (58) without terminal 
constraints. For this kind of the optimal control problem, choosing 
appropriate terminal constraints and horizons can ensure its closed-loop 
stability. Similar stability analysis can be found in [18]. Note that the 
stability of the LMPC controller also suffers from the model mismatch 
such as the parameter uncertainty and the external disturbance, and the 
enhanced NPL method is proposed to obtain the accurate 
control-oriented model. Thus, the appropriate set of the hyper-
parameters of the KI prediction function is also important for main-
taining the stability of the LMPC controller.

4. Results and discussion

Based on the kinematic model and the discretized state space model, 
a discrete RDMV model can be obtained as the controlled object, with 
sampling period all set as 0.05 s. To verify the cooperative control 
strategy’s superior robustness against model mismatch, a complex un-
known external ocean current disturbance, which combines the distur-
bance related to the speed and the time varying sinusoidal disturbance, 
is introduced. Besides, the model mismatch from parametric uncertainty 

is modeled as g̃2 = 0.1g2, g̃3 = 0.1g3. 

he2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0.1 ∗ u2
2 + 0.2 ∗ sin(0.4t)

v2 + 0.15 ∗ sin(0.4t)
ω2

2 + 0.1 ∗ sin(0.4t)
0

, he2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
0

0.1 ∗ w2 + 0.01 ∗ sin(0.4t)
0

(76) 

The unknown bounded process noise of the TROV is defined as: w2 =
(
w1

2, w
2
2, w

3
2, 0
)T. That of the HROV is defined as: w3 =

(
w1

3, w
2
3, w

3
3, w4

3,0
)T, 

w1
2, w2

2, w3
3, w1

3, w2
3, w3

3 ∈ T ∗ [ − 0.05,0.05], w4
3 ∈ T ∗ [ − 0.01,0.01]. Set the 

sampling period in the numerical simulations by T = 0.05s.
Note that the model mismatch from parametric uncertainty and the 

external ocean current disturbance are all unknown in the LMPC con-
trollers, and the enhanced NPL is utilized to estimate the nonlinear 
dynamics function to obtain the accurate state transition models used in 
the LMPC controllers. To validate the superiority of the proposed 
enhanced NPL method, a comparative numerical simulation was carried 
out, where a nominal model predictive control (MPC) controller is uti-
lized to replace the LMPC controller. The primary distinction in the 
simulation is the absence of a strategy to handle model mismatches. 
Then, numerical simulations are conducted to evaluate the learning 
performance of the enhanced NPL method and verify the control per-
formance of the cooperative control strategy, which are carried out 
using Matlab, with AMD Ryzen Threadripper PRO 3995WX 64-Cores 
2.70Ghz CPU and 256 GB RAM running Windows 10. The reference 
path of the MRT is generated by a sine curve: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xr = t

yr = 5sin0.05t

ψ r = arctan(0.25cos(0.05t))

ur = 1

dzr = 0.04

(77) 

where dzr is the reference value of the MRT’s body sinkage.
To visually demonstrate the control performance, the following three 

performance metrics are given. The MRT’s path tracking deviation is 

denoted by ep1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x1 + e2
y1

√
, and the MRT’s sinkage deviation is 

denoted by ez = dz − dzr. Similarly, the HROV’s synchronization devi-

ation is denoted by ep =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e2

x3 + e2
y3

√
.

4.1. Method validation based on a degenerated individual ROV model

The validation of the RDMV model and its cooperative control 
strategy are crucial to the feasibility of the research. However, the deep- 
sea mining system studied in this paper is a kilometer complex giant 
system, even the underwater mining system is not easy to establish an 
experimental model. Due to limited experimental conditions and fund-
ing, this paper uses the results of a degraded ROV model in the existing 
literature [38] to verify the proposed LMPC controller. The depth con-
trol and the yaw angle control using the proposed LMPC controller are 
conducted under the complex unknown external ocean current distur-
bance. An optimal control problem similar to (43) is formulated to 
obtain the ROV’s virtual speed control law, and an optimal control 
problem similar to (55) is formulated to track the speed control law.

To evaluate the control performance, the deviation results are shown 
in Tables 1 and 2. The smaller depth deviation and smaller yaw angle 
deviation can be achieved, and then both the feasibility and the supe-
riority of the proposed LMPC controller has been preliminarily verified. 
In the cooperative control strategy, the DMPC controller transforms 
control objectives of the RDMV into individual motion control of TROV 
and HROV. Since the LMPC controller has been proven feasible for 
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ROV’s individual control, the proposed LMPC controller is theoretically 
feasible for the RDMV.

4.2. Parameters set

The dynamic model of the RDMV deduced in Section 2 is used as the 
controlled object, where scale models are used. Besides, uncertain 
nonlinear dynamics learned by the NPL method are considered as un-
known. OCPs (43) and (44) are solved by MATLAB function “quadprog 
(⋅)”. OCPs (55) and (58) are solved by MATLAB function “fmincon(⋅)”.

To verify the superiority of the proposed cooperative control strat-
egy, a comparative numerical simulation is conducted. The only dif-
ference with the proposed cooperative control strategy is that the state 
transition models become: 

X 2(k + 1) = A 2X 2(k) + B 2U2(k) + g2(X 2(k)),
X 3(k + 1) = A 3X 2(k) + B 3U3(k) + g3(X 3(k))

(78) 

where the model mismatch from parametric uncertainties and external 
disturbance is not considered in the state transition models.

Parameters of the RDMV scaled model are shown in Table 3, where 
the hydrodynamic parameters of the TROV and HROV are set as the 
same, and parameters of the soft seafloor sediment are from [27,29,34].

Parameters in optimal control problems have great influence on 
control performance. In order to intuitively verify the superiority of the 
cooperative control strategy, weight matrices and constraints are all set 
as the same. Table 4 shows the parameters used in optimal control 
problems (43), (44), (55) and (58). For the NPL method used in the 
LMPC controllers, the nominal minimum number of sample points is set 
as: N

L 1 = N
L 2 = 5. The estimated Lipschitz constants are set as:Ln2 =

0.5578,Ln3 = 0.7957.

4.3. Learning performance evaluation

Note that the proposed NPL method is mainly developed from [18]. 
To intuitively demonstrate its superiority, numerical simulations are 
conducted on the stabilization control of the system from the literature 
[18]. As the results recorded in Table 5, the mean square error of the 
proposed NPL method is smaller than that of the comparative NPL 
method. After offline training, the number of the sample points in the 
proposed NPL method is nearly half of the comparative NPL method. 
Since the time complexity of the KI prediction equation is positively 
correlated with the number of samples, the simulation time for the 
whole stabilization control of the proposed NPL Method can be reduced 
by approximately 33 %.

As shown in Fig. 4 and Fig. 5, the estimated value fits the actual value 
well, and NPL estimated error is bounded. The absolute value of the NPL 
estimated error is less than the conservative upper bound in Theorem 2. 
From the histograms in Fig. 4 left and Fig. 5 left, NPL estimated error 

shows a trend of normal distribution. In more detail, estimated values ̂f
3
1 

and ̂f
2
1 are more likely approach the noise upper bound with a sinusoidal 

trend. It can be seen that estimated values f̂
3
2, f̂

2
2, f̂

3
3 and f̂

2
3 also fit the 

actual values better, where it also shows a sinusoidal trend. The differ-

ence is that the amplitudes of f̂
3
1 and f̂

2
1 are larger. Besides, estimated 

values f̂
3
4 and f̂

2
4 are far much smaller than the noise upper bound, and 

fits the actual values best, whose amplitude is far smaller. Compared 
with the estimated values and the measured values with noise, it can be 
seen that process noise is filtered to some extent by the NPL method.

4.4. Cooperative control performance verification

To visually show the superiority of the proposed cooperative control 
strategy, the control trajectory of the proposed cooperative control 
strategy and the comparative numerical simulation are shown Fig. 6. 

From Fig. 6(a), the MRT’s path tracking trajectory under “LMPC” fits the 
reference trajectory accurately, and the HROV can keep synchronization 
with the MRT. However, the MRT’s path tracking trajectory under 
“MPC” fails to track the reference trajectory, especially at the amplitude 
of the sine curve. The MRT’s average path tracking deviation is up to 
0.32 m, and the MRT’s max average path tracking deviation is up to 
0.81 m. The HROV also fails to keep synchronization with the MRT. The 
HROV’s average synchronization deviation is up to 0.32 m, and the 
MRT’s max synchronization deviation is up to 0.81 m. As the MRT’s 
body sinkage shown in Fig. 6(b), using the proposed cooperative control 
strategy, the HROV can successfully keep the MRT’s body subsidence by 
applying a vertical pulling force via the two-force member. However, 
the MRT fails to keep its body subsidence in the comparative numerical 
simulation. The MRT’s average sinkage deviation is up to 0.03 m, and 
MRT’s max sinkage deviation is up to 0.08 m.

As shown in Section 4.3, the RDMV’s functions expressed in Eq. (30) 
and Eq. (31) can be accurately estimated, and the enhanced NPL method 
is effective to address the model mismatch of the state transition model. 
In the comparative numerical simulation, there is no strategy to address 
the model mismatch, leading to an inaccurate state transition model. 
Since the difference between the control trajectory of the proposed 
cooperative control strategy and that of the comparative numerical 
simulation is the state transition model, and the enhanced NPL method 
that obtain an accurate state transition model in optimal control prob-
lem (55). Besides, the model-based control law can meet the control 
objectives of the RDMV, and the validity of the state transition model 
utilized in the LMPC controller can be proven, and the accurate state 
transition model can achieve better control performance.

Since the control performance of MPC controller depends on its pa-
rameters, parameters that are consistent with the LMPC controller may 
not necessarily achieve the desired control performance. The parameters 
of the MPC controller are reset through trial and error, and the reset 
parameters are listed in Table 6. The simulation results are documented 
in Tables 7 and 8. It can be seen that the MRT’s average path tracking 
deviation is reduced by approximately 71 %, while the max path 
tracking deviation is reduced by around 68 %. The MRT’s average 
sinkage deviation is reduced by approximately 33 %, while the max path 
tracking deviation is reduced by 50 %. For the HROV’s synchronization 
deviation, the average deviation is reduced by 75 %, and the max de-
viation is reduced by 70 %. It can be seen that appropriate MPC pa-
rameters can enhance its robustness against the model mismatch. 
However, the deviation evaluation metrics for the MPC controller are 
still significantly larger than that for the LMPC controller. Such a com-
parison also visually demonstrates the superiority of the LMPC 
controller.

As the RDMV’s state using the proposed cooperative control strategy 
shown in Fig. 6(c) and Fig. 6(d), the TROV can tow the MRT to keep the 
desired surge speed, and the HROV can also maintain the surge speed 
synchronization with the MRT. For the sway speed, the heave speed, the 
yaw rate and the horizontal rotation angle of the TROV, they show the 
sinusoidal variation trend with random chattering.

To analyze the robustness of the LMPC controller and further explain 
the trend, numerical simulation results under the different environ-
mental disturbance cases using the proposed cooperative control strat-
egy are shown in Fig. 7 and Table 7. From Fig. 7(a) and Fig. 7(b), the 
values of the path tracking deviation and the synchronization deviation 
under the case “NoOcdRan” is are essentially zero. Under this case, the 
model mismatch from parametric uncertainties is considered, and the 
LMPC controller can effectively handle it. Under the case “Ocd”, the 
completely unknown complex sinusoidal disturbance is considered. 
Since the length and width of the MRT are 2 m and 1.4 m, respectively. 
the values of path tracking deviation and the synchronization deviation 
under the case “Ocd” are relatively small enough. It can be seen that the 
LMPC controller is robust against the complex sinusoidal disturbance. 
Under the two cases “OcdRanGs” and t “OcdRan”, the bounded process 
noise from uniform and Gaussian distributions is additionally 
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introduced, and the path tracking deviation and the synchronization 
deviation are only a litter larger than that of “Ocd”. Since the values of 
the two cases are almost the same, the LMPC controller could achieve 
good cooperative control performance suffered from the two kinds of 
process noise. It can be seen the LMPC controller is robust against the 
model mismatch consisted of the parametric uncertainties, the external 
disturbances under the process noise.

From Fig. 7(c) and (d), control input under the case “NoOcdRan” is 
relatively smooth. Since the TROV plays a role of the steer mechanism in 
the RDMV, which is driven by the control input TN2. Range of the control 
input TN2 around “0”, which is influenced by the controller parameters, 
mainly dynamically adjust the horizontal rotation angle of the TROV to 
converge the path tracking deviation. Compared with the control input 
under the case “Ocd”, the control input seems add a sinusoidal trend. 
Note that the ocean current disturbance is mainly sinusoidal signal, and 
the control input correspondingly addresses the disturbance with a 
similar changing trend. Compared with the control input under the two 
cases “OcdRan” and “OcdRanGs”, it adds a random chattering trend. 
Similarly, the control input correspondingly addresses the external 
disturbance and the process noise. It can also be explained that the range 
in Fig. 7(c) and (d) is a sinusoidal variation trend with random 
chattering.

Finally, the computing time of optimal control problems (55) and 
(58) is recorded in Table 9 to evaluate the real-time performance of the 
LMPC controller. “MPC-2” and “MPC-3” denote the computing time 
optimal control problems (55) and (58) in the comparative numerical 
simulation. “LMPC-2” and “LMPC-3” denote that of the proposed 
cooperative control strategy. It can be seen the computing time of the 
“MPC” is almost the same as the that of the “LMPC”. That means the NPL 
method will not bring much computational burden, and good real-time 
performance can be ensured.

5. Conclusion

In this study, an enhanced ROV-based deep-sea mining system is 
proposed, and the cooperative control strategy of the RDMV is studied 
based on three-dimensional space model. For the dynamic model of the 
RDMV, the TROV and the MRT are analogized as the front and rear 
wheels of an Ackermann steering vehicle in the horizontal plane. The 
HROV’s relative position to MRT is obtained by the rotation angles of the 
two-force member, the dynamics of the rotation angles is analyzed based 
on the deduce of the angular acceleration in rigid body kinematic. For 
the cooperative control strategy, the DMPC controller is developed to 
separately construct optimal control problems to obtain the virtual law 
to meet the cooperative control objects. The enhanced NPL can accu-
rately estimate the uncertain dynamics of the RDMV with good real-time 
performance, and LMPC controller is utilized to construct optimal con-
trol problems to track the virtual law with the estimated dynamics 
introduced in the state transition model.

The KI prediction equation is calculated once per prediction horizon, 
and good real-time performance can’t be ensured for long prediction 
horizon. Since long prediction horizon may achieve better control per-
formance in some special conditions, we plan to enhance the NLP 
method for a LMPC controller with long prediction horizon in our future 
work. Since the learning performance of the enhanced NPL method and 
the cooperative control performance have been verified by the numer-
ical simulation, a convincing demonstration would require experimental 
verification. In our future work, basic experiments in indoor environ-
ment for a scaled RDMV will be conducted.

Author declarations

The authors have no conflicts to disclose. We confirm that this 
manuscript is neither under consideration nor has been published in any 
other venue elsewhere.

Funding

This research work was funded by the National Natural Science 
Foundation of China (Grant No. 52071138), the Basic Research Program 
of Jiangsu (Grant No. BK20243019) and the Guangdong Basic and 
Applied Basic Research Foundation (Grant No. 2024A1515010683).

CRediT authorship contribution statement

Xu Daolin: Supervision, Resources, Project administration. Zhang 
Haihua: Validation, Resources, Project administration. Zou Weisheng: 
Supervision, Project administration, Funding acquisition, Conceptuali-
zation. Zhang Haicheng: Writing – review & editing, Visualization, 
Validation, Supervision, Project administration, Methodology, Investi-
gation, Formal analysis, Conceptualization. Chen Yuheng: Writing – 
original draft, Visualization, Validation, Software, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

References

[1] Sha F, Xi M, Chen X, Liu X, Niu H, Zuo Y. A recent review on multi-physics coupling 
between deep-sea mining equipment and marine sediment. Ocean Eng 2023;276: 
114229.

[2] Wu H, Liu W, Jiang M, Li C, Li J, Chen B, Wang C, Chen Y. Numerical simulation 
investigation on parameter optimization of deep-sea mining vehicles. Chin J Mech 
Eng 2023;36(1):54.

[3] Gao Y, Liu L, Fu S, Chai S, Shi C. Nonlinear dynamics of a vertical pipe subjected to 
a two-phase, solid-liquid internal flow. Appl Math Model 2023;120:651–66.

[4] Wang L, Chen X, Wang L, Li Z, Yang W. Mechanical properties and soil failure 
process of interface between grouser of tracked mining vehicle and deep-sea 
sediment. Ocean Eng 2023;285:115336.

[5] Zou W., Zhang H., Chen Y. An introduction to rov based intelligent deep sea mining 
system. presented at the the 20th international conference on transport and 
sedimentation of solid particles. Wroclaw, Poland; 2023.

[6] Chen Y, Zhang H, Zou W, Zhang H, Zhou B, Xu D. Dynamic modeling and learning 
based path tracking control for ROV-based deep-sea mining vehicle. Expert Syst 
Appl 2025;262:125612.

[7] Zeng Z, Yue W, Zhu L. Finite-time fuzzy cooperative control for multi-AUV systems 
under cyber-attacks with hybrid unknown nonlinearities. Ocean Eng 2024;304: 
117875.

[8] Jia Z, Lu H, Chen H, Zhang W. Robust distributed cooperative rendezvous control 
for heterogeneous marine vehicles using model predictive control. IEEE Trans Veh 
Technol 2024;73(8):11002–13.

[9] Bian Y, Zhang J, Hu M, Du C, Cui Q, Ding R. Self-triggered distributed model 
predictive control for cooperative diving of multi-AUV system. Ocean Eng 2023; 
267:113262.

[10] Aryan P, Raja GL, Vilanova R, Meneses M. Repositioned internal model control 
strategy on time-delayed industrial processes with inverse behavior using 
equilibrium optimizer. IEEE Access 2023;11:54556–68.

[11] Mayne DQ. Model predictive control: recent developments and future promise. 
Autom, Artic 2014;50(12):2967–86.

[12] Yang Z, Li S, Yang S. Anti-roll trajectory tracking control based on adaptive weight 
allocation law in phase space stable region. IEEE Trans Veh Technol 2024;73(12): 
18208–21.

[13] Chen Y, Zhang H, Zhou X, Guo B, Xu D. Hybrid control strategy for efficiency 
enhancement of a raft-type wave energy converter. Energy 2024;300:131519.

[14] Tran C, Øveraas H, Johansen TA. ROV recovery with wave-motion compensation 
using model predictive control. Ocean Eng 2024;293:116764.

[15] Luo G, Gao S, Jiang Z, Luo C, Zhang W, Wang H. ROV trajectory tracking control 
based on disturbance observer and combinatorial reaching law of sliding mode. 
2024/07/15/ Ocean Eng 2024;304:117744.

[16] Long C, Hu M, Qin X, Bian Y. Hierarchical trajectory tracking control for ROVs 
subject to disturbances and parametric uncertainties. Ocean Eng 2022;266:112733.

[17] Mitsioni I, Tajvar P, Kragic D, Tumova J, Pek C. Safe data-driven model predictive 
control of systems with complex dynamics. IEEE Trans Robot 2023;39(4):3242–58.

[18] Zheng K, Shi D, Shi Y, Wang J. Nonparameteric event-triggered learning with 
applications to adaptive model predictive control. IEEE Trans Autom Control 2023; 
68(6):3469–84.

[19] Zhang X, Liu J, Xu X, Yu S, Chen H. Robust learning-based predictive control for 
discrete-time nonlinear systems with unknown dynamics and State Constraints. 
IEEE Trans Syst Man Cyber: Syst 2022;52(12):7314–27.

Y. Chen et al.                                                                                                                                                                                                                                    ISA Transactions xxx (xxxx) xxx 

16 



[20] Park J, Jeon S, Han S. Model-based reinforcement learning with probabilistic 
ensemble terminal critics for data-efficient control applications. IEEE Trans Ind 
Electron 2024;71(8):9470–9.

[21] Wang M, Lou X, Wu W, Cui B. Koopman-based MPC with learned dynamics: 
hierarchical neural network approach. IEEE Trans Neural Netw Learn Syst 2024;35 
(3):3630–9.

[22] Zabinsky ZB, Smith RL, Kristinsdottir BP. Optimal estimation of univariate black- 
box Lipschitz functions with upper and lower error bounds. Comput Oper Res 
2003;30(10):1539–53.

[23] Kandel A, Moura SJ. Safe learning MPC with limited model knowledge and data. 
IEEE Trans Control Syst Technol 2024;32(2):472–87.

[24] Calliess J-P, Roberts SJ, Rasmussen CE, Maciejowski J. Lazily adapted constant 
kinky inference for nonparametric regression and model-reference adaptive 
control. Automatica 2020;122:109216.

[25] Xu Z, et al. Research on contact model of track-soft sediment and traction 
performance of four-tracked seabed mining vehicle. Ocean Eng 2022;259:111902.

[26] Sun C, Li Q, Li B, Li L. A successive linearization in feasible set algorithm for 
vehicle motion planning in unstructured and low-speed scenarios. IEEE Trans Intell 
Transp Syst 2022;23(4):3724–36.

[27] Dai Y, Xue C, Su Q, Huang X. Numerical analysis on hydrodynamic characteristics 
of a deep-sea mining vehicle under three typical motions. Ocean Eng 2021;235: 
109446.

[28] Chen Q, Yang J, Mao J, Liang Z, Lu C, Sun P. A path following controller for deep- 
sea mining vehicles considering slip control and random resistance based on 
improved deep deterministic policy gradient. Ocean Eng 2023;278:114069.

[29] Al-Milli S, Seneviratne LD, Althoefer K. Track–terrain modelling and traversability 
prediction for tracked vehicles on soft terrain. J Terra 2010;47(3):151–60.

[30] Ruslan NAI, Amer NH, Hudha K, Kadir ZA, Ishak SAFM, Dardin SMFS. Modelling 
and control strategies in path tracking control for autonomous tracked vehicles: a 
review of state of the art and challenges. J Terra 2023;105:67–79.

[31] Yamada M, Yamauchi G, Hashimoto T. Fundamental study on underwater 
trafficability for tracked vehicle. J Terra 2021;98:42–9.

[32] Kar MK. Prediction of track forces in skid-steering of military tracked vehicles. 
J Terra 1987;24(1):75–84.

[33] Liu CH, Wong JY. Numerical simulations of tire-soil interaction based on critical 
state soil mechanics. J Terra 1996;33(5):209–21.

[34] Zeng R, Kang Y, Yang J, Qin B, Chen S, Cao D. An integrated terrain identification 
framework for mobile robots: system development, analysis, and verification. 
IEEE/ASME Trans Mechatron 2021;26(3):1581–90.
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