

Fig. 1. The Icefin vehilce deployed under the ice in McMurdo Sound,
Antarctica.

Modular Controls and Instrumentation Software for

Icefin ROV

Charles Ramey1,2, Matthew Meister1, Anthony Spears1,

Josh Lutz1, Daniel Dichek1, Ben Hurwitz1, Justin

Lawrence1, Jade Lawrence1, Margaret Philleo1, & Britney

E. Schmidt1.
1Earth and Atmospheric Science Department, Georgia

Institute of Technology, 2College of Computing

Georgia Institute of Technology, Atlanta, Georgia,

cramey7@gatech.edu

Abstract— Icefin is a hybrid ROV/AUV, designed to function

as a robotic oceanographer in the Antarctic under-ice waters.

Autonomous command, control, and navigation of such robotic

platforms in remote sub-ice environments is extremely

challenging, but also niche enough of an application to not

benefit from the foundation of a wide community of open-source

research. We will present here our approach and lessons learned

in addressing this challenge through the integration of

commercial off-the-shelf and open-source tool sets while working

inside a framework that supports rapid, modular expansion of

the vehicle’s command and control software.

Keywords—AUV, ROV, UUV, LCM, Software, Controls,

Antarctica

I. INTRODUCTION

The Icefin vehicle is a modular, battery-powered,
underwater vehicle with five thrusters that enable full control
of XY position, depth, yaw, and pitch. Most importantly, the
vehicle serves as a platform for an extensive suite of scientific
instruments. A fully functioning Icefin vehicle was deployed to
Antarctica for the austral summer 2017, where it collected high
definition imagery, bathymetric, chemical, and sonographic
data in never-before-observed environments. This vehicle
leveraged lessons learned from the deployment of the
prototype Icefin vehicle in 2014. Future deployments to
Antarctica will involve surveying beneath the Ross Ice Shelf
and the Ross Ice Shelf grounding line. The eventual goal for
this project will be the development of an AUV capable of
searching for life in Europa’s ocean [1]. For more complete
details, see the companion paper for this meeting, Meister et al
2018 (OCEANS 2018)[2].

The main software component of the Icefin system is
composed of a customized version of Greensea’s Balefire

software. This software provides a framework for streaming
sensor data and vehicle status to a control station, calculating
inertial navigation estimates onboard the vehicle in real time,
controlling the vehicle actuators in real time, and transferring
high-level control signals from the surface control station to the
vehicle during mission operation. The control software
provides the capability for both real-time human operator
control as well as autonomous control of the vehicle. Vehicle
state and estimated position information is presented through a
graphical interface to the operator at the surface control station.
The actuator control architecture consists of a low-level front
seat driver application running on the vehicle’s onboard
computer, whereas a higher-level back seat driver application
is run at the surface control station. The front seat driver
application controls the actuators directly through low-level
hardware commands. The back seat driver application uses
input from the autopilot or human operator to generate set
points, which guide control signal mixing and generation with
a set of PID controllers. Video streams from both vehicle
cameras, and a visual representation of the sonar data is also
presented at the control station in real time using an external
host computer. Because recovery of the Icefin vehicle through
the thick Antarctic ice shelves requires the use of a tether, the
current configuration of the vehicle is designed to remain
tethered with constantcommunication and control from the
surface. Autonomy capabilities were not used during the 2014
Antarctic missions due to the early nature of the deployments,
but they are fully integrated into the Balefire system and will
be used in the 2018 season, enabled by custom enhancements
to the software interface.

II. MODULAR COMMAND AND CONTROLS

The two latest design iterations of Icefin rely on an RTD
Intelligent Data Acquisition Node (IDAN) onboard computer,
which is installed inside of the vehicle’s main pressure vessel.
The IDAN is a PC104 form-factor computer comprised of an
Intel i7 powered single board computer, a serial
communications module, an 18-bit A/D simultaneous sampling
data acquisition module, and an ATX power supply unit. A
fiber optic tether passes serial data, imagery data, and Ethernet
packets between the IDAN inside the vehicle and the topside
base station by way of MOOG fiber optic multiplexer boards.

Software for the IDAN is deployed on the Ubuntu 14.04
Linux operating system, which runs on the single board
computer and provides a full development stack. Topside
command and controls are hosted on a portable base station
distributed across several laptops. The Lightweight
Communications and Marshaling (LCM) protocol is used for
intercommunication between software modules [3]. Multicast
LCM messages are used both locally on the vehicle as well as
across the fiber optic tether to the topside base station.

Balefire is built around LCM, which facilitates custom and
experimental software modules developed outside of the
Greensea Systems software ecosystem. The current Icefin
software architecture extends the Balefire system’s capabilities
with a series of modules written in Python and C++ (Figure 2).
For high-level tasks such as simultaneously parsing
asynchronous serial inputs, Python modules were written
which receive and parse each system or sensor’s serial
messages, encode the information as LCM messages, and then
broadcast the messages for other scientific and control modules
to utilize. To interface with low-level system components such
as the IO board for controlling the digital to analog convertors
(DACs) and analog I/O interfaces, several modules were
written in C++ to optimize for embedded real-time processing
and ease of working with vendor-supplied drivers and C
libraries. Similar to the Python modules, each C++ module
accepts data through an I/O or serial interface, encodes the data

into an LCM message, and then broadcasts the messages over
UDP multicast. Each software module that has developed in
house for the vehicle is listed and described below in Table 1.

The vehicle also relies on several embedded computers to
interface between vehicle subsystems and the IDAN control
computer. For the 2017 field season, a Teensy microcontroller
running the Arduino bootloader was utilized to control the
vehicle’s master power control board and main thruster power
control board. The Teensy power controller was programmed
to receive commands over serial and then execute functions
such as monitoring voltage levels on the power control boards,
monitoring temperatures on the power control boards, and
switching power control boards on and off.

TABLE I. CUSTOM ICEFIN SOFTWARE MODULES

Custom Software Modules

Module Module Functionality

ADCP parser

This Python module scrapes

acoustic Doppler current

profiler measurements from
the serial output of the

Doppler velocity log,

encodes the data as an LCM
message, and publishes the

LCM message.

DO parser

This Python module parses
the serial output from the

dissolved oxygen sensor,

encodes the data as an LCM
message, and publishes the

LCM message.

CTD parser

This Python module parses
the serial output from the

conductivity and temperature

sensor, encodes the data as an
LCM message, and publishes

the LCM message.

ALT parser

This Python module parses

the serial output from the
altimeter, encodes the data as

an LCM message, and

Fig. 2. The Icefin software architecture. Blue (solid arrows) represent LCM traffice. Green (dashed arrows) represent ananlog and discrete digital I/O
signals.

Fig. 3. Balefire waypoint following behavior testing in the Gulf of Mexico.

Custom Software Modules

Module Module Functionality

publishes the LCM message.

Analog instruments manager

This Python module sends
analog read commands to the

DAQ controller, parses the

data returned from the analog
to digital convertor, encodes

the data as an LCM message,

and publishes the LCM
message.

Relay board controller

This C++ module accepts

relay control LCM
commands from the Balefire

GUI and switches the USB

relay board relays
accordingly.

Relay status manager

This Python module monitors

LCM relay control

commands and sends LCM

relay status commands to

update the Balefire GUI relay
status states.

DAQ board controller

This C++ module receives

LCM commands for the
analog to digital convertors

and digital to analog

convertors, handles all low-
level device configuration,

executes analog and discrete

digital I/O commands, and
sends LCM response

messages with result data.

Battery logger

This Python module parses
the serial output from the

battery management system,

encodes the data as an LCM
message, and publishes the

LCM message.

Main thruster encoder

This Python module sends

LCM analog read commands
to the DAQ controller to

monitor the output of the
main thruster’s rotation

encoder, receives the ADC

read result LCM message
from the DAQ controller,

encodes the data as an LCM

message, and publishes the
LCM message.

Power Board Controller

This Arduino program

receives control commands

over serial, monitors power
control board status, and

controls the vehicle’s master
power switching board.

T200 thruster controller

This Arduino program

receives thruster commands

over serial and outputs PWM
signals to the vehicle’s T200

thrusters.

III. RESULTS

The Icefin vehicle was deployed 12 times during the 2017
Antarctic summer field season. Over the course of the dives
several minor software upgrades were necessitated. In order to
monitor the vehicle’s power system status and charge level
during deployments, a Python module was written to parse the

battery management system status outputs. The battery-
monitoring module reports battery charge levels, battery
current outputs, and battery cell statuses to the Balefire GUI
through LCM messages. Additionally, exception handling was
added to all Python scripts to recover and reconfigure in the
event of sensor power loss or system restart.

The usage of a Teensy microcontroller as the control
interface for the master power control board and the thruster
power controller board proved to be a success during the 2017
Antarctic field season. The Teensy board was easy to
prototype with, provided reliable operations as the power
controller, and was inexpensive to replace in the event of a
system failure. After the field season, a decision was made to
utilize additional Teensy microcontrollers in the vehicle. A
second Teensy has been added to the vehicle for the purpose
of controlling a set of four Blue Robotics T200 thrusters via
pulse width modulation (PWM). The Teensy has been
programmed to receive serial commands from the IDAN
control computer and then output PWM signals to control
each individual thruster.

Throughout the development and deployments of Icefin,
the LCM protocol and its associated suite of tools has proven
effective at logging and replaying vehicle and sensor data.
Over the course of the 2017 field season, Python modules for
publishing LCM messages were written for several vehicle
subsystems. Each module allowed further information about
vehicle engineering operations and scientific instrumentation
to be captured in a format that provided for easy visualization
and storage. As Icefin engineering efforts continue, LCM
modules will be written for every new sensor and engineering
control system as they are integrated into the vehicle.

Since the 2017 Antarctic field season, additional full
vehicle testing and tuning was performed at Georgia Institute
of Technology, Lake Allatoona, and the Florida State
University Marine and Coastal Laboratory. During these
testing deployments PID control loops were tuned within the
Balefire Open Command system to control the vehicle across
its full 5 degrees of freedom (X, Y, Z, Yaw, Pitch). With the

PID control loops operational, waypoint following and station
keeping operations can now be exercised during deployments.
Waypoint following has been utilized in Lake Allatoona and
the Gulf of Mexico to conduct autonomous surveys with the
vehicle. Using DVL based positioning data, waypoint
following will enable autonomous under-ice surveys during the
2018 austral summer Antarctic field season.

IV. FUTURE WORK

In preparation for the 2018 field deployment, the Icefin
software team is currently developing a Doppler velocity
logger (DVL) sensing module which will enable acoustic
Doppler current (ADCP) profiling and will supplement the
Balefire openINS (open Inertial Navigation System). In
addition to developing custom supplemental software modules,
the team is also experimenting with structure from motion
software to create 3D models from vehicle imagery data.
During the 2018 field deployment an NVIDIA Jetson TX2
embedded computer will be used to prototype real-time
computer vision pipelines for feature recognition and
simultaneous localization and mapping (SLAM). Real-time
feature recognition and SLAM will greatly advance under-ice
autonomy capabilities.

The establishment of bridges between the Balefire system
and the custom software modules of Icefin and the MOOS [4]
and ROS [5] simulation, planning, and controls software will
further extend both the autonomous and human controlled
capabilities of the vehicle. This will further incorporate open
source command and control software into the Icefin vehicle.
LCM bridges will allow units from each platform to
communicate and collaborate with each other. The bridge
architecture will allow for Balefire to run as normal, which will
maintain the existing level of software systems reliability.

Additional future software developments will be focused
on the in-house development of an inertial navigation system
(INS), an open source sensor sampling and logging suite, and

advanced autonomy utilities for navigation and scientific
discovery. The 2018 field deployment will see the most
capable version of this vehicle to date. In presenting our
development efforts and field deployment experiences, we
hope to support similar research in the community and provide
a catalyst for future collaborative discussion around such
unique applications.

ACKNOWLEDGMENT

This work was supported by NASA PSTAR RISE-UP
program grant NNX16AL07G, PI B.E. Schmidt as well as
funds from the EAS department and Georgia Tech. Field work
in Antarctica was supported by NASA and NSF under USAP
project number B-041-M. The authors thank the USAP
McMurdo Station staff for their assistance in the success of this
program.

REFERENCES

[1] A. Spears, M. West, M. Meister, J. Buffo, C. Walker, T. Collins, A.
Howard, B. Schmidt, "Under Ice in Antarctica: The Icefin Unmanned
Underwater Vehicle Development and Deployment," in IEEE Robotics
& Automation Magazine, vol. 23, no. 4, pp. 30-41, Dec. 2016. doi:
10.1109/MRA.2016.2578858

[2] M. Meister, D. Dichek, A. Spears, B. Hurwitz, C. Ramey, J. D.
Lawrence, M. Philleo, J. Lutz, J. Lawrence, B. E. Schmidt. “Icefin:
Redesign and 2017 Antarctic Field Deployment”. Oceans 2018.
Charleston, South Carolina. 22-25 October 2018.

[3] A.S. Huang, E. Olson, and D.C. Moore, 2010, October. LCM:
Lightweight communications and marshalling. In Intelligent robots and
systems (IROS), 2010 IEEE/RSJ international conference on (pp. 4057-
4062). IEEE.

[4] M.R. Benjamin, H. Schmidt, P.M. Newman, and J.J. Leonard, 2010.
Nested autonomy for unmanned marine vehicles with MOOS‐IvP.
Journal of Field Robotics, 27(6), pp.834-875.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A.Y. Ng, 2009, May. ROS: an open-source Robot
Operating System. In ICRA workshop on open source software (Vol. 3,
No. 3.2, p. 5)

View publication statsView publication stats

https://www.researchgate.net/publication/330298436

