
 

Fig. 1. The Icefin vehilce deployed under the ice in McMurdo Sound,  
Antarctica. 
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Abstract— Icefin is a hybrid ROV/AUV, designed to function 

as a robotic oceanographer in the Antarctic under-ice waters. 

Autonomous command, control, and navigation of such robotic 

platforms in remote sub-ice environments is extremely 

challenging, but also niche enough of an application to not 

benefit from the foundation of a wide community of open-source 

research.  We will present here our approach and lessons learned 

in addressing this challenge through the integration of 

commercial off-the-shelf and open-source tool sets while working 

inside a framework that supports rapid, modular expansion of 

the vehicle’s command and control software. 
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I. INTRODUCTION  

The Icefin vehicle is a modular, battery-powered, 
underwater vehicle with five thrusters that enable full control 
of XY position, depth, yaw, and pitch. Most importantly, the 
vehicle serves as a platform for an extensive suite of scientific 
instruments. A fully functioning Icefin vehicle was deployed to 
Antarctica for the austral summer 2017, where it collected high 
definition imagery, bathymetric, chemical, and sonographic 
data in never-before-observed environments. This vehicle 
leveraged lessons learned from the deployment of the 
prototype Icefin vehicle in 2014. Future deployments to 
Antarctica will involve surveying beneath the Ross Ice Shelf 
and the Ross Ice Shelf grounding line.  The eventual goal for 
this project will be the development of an AUV capable of 
searching for life in Europa’s ocean [1]. For more complete 
details, see the companion paper for this meeting, Meister et al 
2018 (OCEANS 2018)[2].  

The main software component of the Icefin system is 
composed of a customized version of Greensea’s Balefire 

software. This software provides a framework for streaming 
sensor data and vehicle status to a control station, calculating 
inertial navigation estimates onboard the vehicle in real time, 
controlling the vehicle actuators in real time, and transferring 
high-level control signals from the surface control station to the 
vehicle during mission operation. The control software 
provides the capability for both real-time human operator 
control as well as autonomous control of the vehicle. Vehicle 
state and estimated position information is presented through a 
graphical interface to the operator at the surface control station. 
The actuator control architecture consists of a low-level front 
seat driver application running on the vehicle’s onboard 
computer, whereas a higher-level back seat driver application 
is run at the surface control station. The front seat driver 
application controls the actuators directly through low-level 
hardware commands. The back seat driver application uses 
input from the autopilot or human operator to generate set 
points, which guide control signal mixing and generation with 
a set of PID controllers. Video streams from both vehicle 
cameras, and a visual representation of the sonar data is also 
presented at the control station in real time using an external 
host computer. Because recovery of the Icefin vehicle through 
the thick Antarctic ice shelves requires the use of a tether, the 
current configuration of the vehicle is designed to remain 
tethered with constantcommunication and control from the 
surface. Autonomy capabilities were not used during the 2014 
Antarctic missions due to the early nature of the deployments, 
but they are fully integrated into the Balefire system and will 
be used in the 2018 season, enabled by custom enhancements 
to the software interface. 



II. MODULAR COMMAND AND CONTROLS 

The two latest design iterations of Icefin rely on an RTD 
Intelligent Data Acquisition Node (IDAN) onboard computer, 
which is installed inside of the vehicle’s main pressure vessel.  
The IDAN is a PC104 form-factor computer comprised of an 
Intel i7 powered single board computer, a serial 
communications module, an 18-bit A/D simultaneous sampling 
data acquisition module, and an ATX power supply unit. A 
fiber optic tether passes serial data, imagery data, and Ethernet 
packets between the IDAN inside the vehicle and the topside 
base station by way of MOOG fiber optic multiplexer boards.  

Software for the IDAN is deployed on the Ubuntu 14.04 
Linux operating system, which runs on the single board 
computer and provides a full development stack.  Topside 
command and controls are hosted on a portable base station 
distributed across several laptops. The Lightweight 
Communications and Marshaling (LCM) protocol is used for 
intercommunication between software modules [3]. Multicast 
LCM messages are used both locally on the vehicle as well as 
across the fiber optic tether to the topside base station.  

Balefire is built around LCM, which facilitates custom and 
experimental software modules developed outside of the 
Greensea Systems software ecosystem. The current Icefin 
software architecture extends the Balefire system’s capabilities 
with a series of modules written in Python and C++ (Figure 2). 
For high-level tasks such as simultaneously parsing 
asynchronous serial inputs, Python modules were written 
which receive and parse each system or sensor’s serial 
messages, encode the information as LCM messages, and then 
broadcast the messages for other scientific and control modules 
to utilize. To interface with low-level system components such 
as the IO board for controlling the digital to analog convertors 
(DACs) and analog I/O interfaces, several modules were 
written in C++ to optimize for embedded real-time processing 
and ease of working with vendor-supplied drivers and C 
libraries. Similar to the Python modules, each C++ module 
accepts data through an I/O or serial interface, encodes the data 

into an LCM message, and then broadcasts the messages over 
UDP multicast. Each software module that has developed in 
house for the vehicle is listed and described below in Table 1. 

The vehicle also relies on several embedded computers to 
interface between vehicle subsystems and the IDAN control 
computer. For the 2017 field season, a Teensy microcontroller 
running the Arduino bootloader was utilized to control the 
vehicle’s master power control board and main thruster power 
control board. The Teensy power controller was programmed 
to receive commands over serial and then execute functions 
such as monitoring voltage levels on the power control boards, 
monitoring temperatures on the power control boards, and 
switching power control boards on and off. 

TABLE I.  CUSTOM ICEFIN SOFTWARE MODULES 

Custom Software Modules 

Module Module Functionality 

ADCP parser 

This Python module scrapes 

acoustic Doppler current 

profiler measurements from 
the serial output of the 

Doppler velocity log, 

encodes the data as an LCM 
message, and publishes the 

LCM message. 

DO parser 

This Python module parses 
the serial output from the 

dissolved oxygen sensor, 

encodes the data as an LCM 
message, and publishes the 

LCM message. 

CTD parser 

This Python module parses 
the serial output from the 

conductivity and temperature 

sensor, encodes the data as an 
LCM message, and publishes 

the LCM message. 

ALT parser 

This Python module parses 

the serial output from the 
altimeter, encodes the data as 

an LCM message, and 

      

Fig. 2. The Icefin software architecture. Blue (solid arrows) represent LCM traffice. Green (dashed arrows) represent ananlog and discrete digital I/O 
signals. 



 

Fig. 3. Balefire waypoint following behavior testing in the Gulf of Mexico.  

Custom Software Modules 

Module Module Functionality 

publishes the LCM message. 

Analog instruments manager 

This Python module sends 
analog read commands to the 

DAQ controller, parses the 

data returned from the analog 
to digital convertor, encodes 

the data as an LCM message, 

and publishes the LCM 
message.  

Relay board controller 

This C++ module accepts 

relay control LCM 
commands from the Balefire 

GUI and switches the USB 

relay board relays 
accordingly.   

Relay status manager 

This Python module monitors 

LCM relay control 

commands and sends LCM 

relay status commands to 

update the Balefire GUI relay 
status states.   

DAQ board controller 

This C++ module receives 

LCM commands for the 
analog to digital convertors 

and digital to analog 

convertors, handles all low-
level device configuration, 

executes analog and discrete 

digital I/O commands, and 
sends LCM response 

messages with result data. 

Battery logger 

This Python module parses 
the serial output from the 

battery management system, 

encodes the data as an LCM 
message, and publishes the 

LCM message. 

Main thruster encoder 

This Python module sends 

LCM analog read commands 
to the DAQ controller to 

monitor the output of the 
main thruster’s rotation 

encoder, receives the ADC 

read result LCM message 
from the DAQ controller, 

encodes the data as an LCM 

message, and publishes the 
LCM message.  

Power Board Controller 

This Arduino program 

receives control commands 

over serial, monitors power 
control board status, and 

controls the vehicle’s master 
power switching board. 

T200 thruster controller 

This Arduino program 

receives thruster commands 

over serial and outputs PWM 
signals to the vehicle’s T200 

thrusters. 

III. RESULTS 

The Icefin vehicle was deployed 12 times during the 2017 
Antarctic summer field season. Over the course of the dives 
several minor software upgrades were necessitated. In order to 
monitor the vehicle’s power system status and charge level 
during deployments, a Python module was written to parse the 

battery management system status outputs. The battery-
monitoring module reports battery charge levels, battery 
current outputs, and battery cell statuses to the Balefire GUI 
through LCM messages. Additionally, exception handling was 
added to all Python scripts to recover and reconfigure in the 
event of sensor power loss or system restart.  

The usage of a Teensy microcontroller as the control 
interface for the master power control board and the thruster 
power controller board proved to be a success during the 2017 
Antarctic field season. The Teensy board was easy to 
prototype with, provided reliable operations as the power 
controller, and was inexpensive to replace in the event of a 
system failure. After the field season, a decision was made to 
utilize additional Teensy microcontrollers in the vehicle. A 
second Teensy has been added to the vehicle for the purpose 
of controlling a set of four Blue Robotics T200 thrusters via 
pulse width modulation (PWM). The Teensy has been 
programmed to receive serial commands from the IDAN 
control computer and then output PWM signals to control 
each individual thruster.  

Throughout the development and deployments of Icefin, 
the LCM protocol and its associated suite of tools has proven 
effective at logging and replaying vehicle and sensor data. 
Over the course of the 2017 field season, Python modules for 
publishing LCM messages were written for several vehicle 
subsystems. Each module allowed further information about 
vehicle engineering operations and scientific instrumentation 
to be captured in a format that provided for easy visualization 
and storage. As Icefin engineering efforts continue, LCM 
modules will be written for every new sensor and engineering 
control system as they are integrated into the vehicle.  

Since the 2017 Antarctic field season, additional full 
vehicle testing and tuning was performed at Georgia Institute 
of Technology, Lake Allatoona, and the Florida State 
University Marine and Coastal Laboratory. During these 
testing deployments PID control loops were tuned within the 
Balefire Open Command system to control the vehicle across 
its full 5 degrees of freedom (X, Y, Z, Yaw, Pitch). With the 



PID control loops operational, waypoint following and station 
keeping operations can now be exercised during deployments. 
Waypoint following has been utilized in Lake Allatoona and 
the Gulf of Mexico to conduct autonomous surveys with the 
vehicle. Using DVL based positioning data, waypoint 
following will enable autonomous under-ice surveys during the 
2018 austral summer Antarctic field season. 

IV. FUTURE WORK 

In preparation for the 2018 field deployment, the Icefin 
software team is currently developing a Doppler velocity 
logger (DVL) sensing module which will enable acoustic 
Doppler current (ADCP) profiling and will supplement the 
Balefire openINS (open Inertial Navigation System). In 
addition to developing custom supplemental software modules, 
the team is also experimenting with structure from motion 
software to create 3D models from vehicle imagery data. 
During the 2018 field deployment an NVIDIA Jetson TX2 
embedded computer will be used to prototype real-time 
computer vision pipelines for feature recognition and 
simultaneous localization and mapping (SLAM). Real-time 
feature recognition and SLAM will greatly advance under-ice 
autonomy capabilities.  

The establishment of bridges between the Balefire system 
and the custom software modules of Icefin and the MOOS [4] 
and ROS [5] simulation, planning, and controls software will 
further extend both the autonomous and human controlled 
capabilities of the vehicle. This will further incorporate open 
source command and control software into the Icefin vehicle. 
LCM bridges will allow units from each platform to 
communicate and collaborate with each other. The bridge 
architecture will allow for Balefire to run as normal, which will 
maintain the existing level of software systems reliability.  

Additional future software developments will be focused 
on the in-house development of an inertial navigation system 
(INS), an open source sensor sampling and logging suite, and 

advanced autonomy utilities for navigation and scientific 
discovery. The 2018 field deployment will see the most 
capable version of this vehicle to date. In presenting our 
development efforts and field deployment experiences, we 
hope to support similar research in the community and provide 
a catalyst for future collaborative discussion around such 
unique applications. 
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