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ABSTRACT
The remote operation of underwater vehicles at depth is complicated by the presence of invisible and unpredictable en-

vironmental disturbances such as cross‐currents. Communicating the presence of these disturbances to an operator on the

surface is made more difficult by the nature of the disturbances and the lack of visible features to highlight in the visual display

presented to the operator. Here we explore the use of a novel interactive soft haptic touchpad that utilizes vibration and particle

jamming to provide information about the presence and direction of cross‐currents to the operator of an ROV (remotely

operated vehicle). An in‐water experiment using a thruster‐based ROV and artificially generated cross‐current was performed

with nonexpert ROV operators to evaluate the effectiveness of multimodal haptic feedback to communicate complex en-

vironmental information during high‐risk operations. Advanced haptic displays can signal both the presence of external factors

as well as their direction, information that can enhance operational performance as well as reduce operator cognitive load.

Using haptic feedback resulted in a statistically significant reduction in cognitive load of 24.3% and an increase in positioning

accuracy of 28.3% for novice operators. Deviation from an ideal path was also reduced by 29.5% for experienced operators when

using haptic feedback compared to without. While this experiment took place in controlled conditions with a fixed direction

cross‐current and haptic interface, this approach could be extended to communicate real‐time environmental information in

real‐world unstructured environments.

1 | Introduction

Underwater robots or remotely operated vehicles (ROVs) are
mobile robots generally intended for deep sea exploration, un-
derwater biological surveys and underwater structure inspec-
tion. These tasks require significant precision in some of the
most hostile conditions that a robot or remotely teleoperated
device can encounter. Limited visibility, floating debris, com-
plex environmental geometry, and invisible water currents are

among the hazards that a mobile robot may encounter when
operating at depth. To address these and other challenges posed
by operating ROVs, researchers are beginning to consider
haptic feedback to convey additional state and environmental
information to a remote human operator.

Teleoperation remains the preferred mode of controlling ROVs
in many contexts, even when autonomous operation is available
(Yuh 2000). Giving real‐time control of a robot to a human
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operator may be preferred where tasks are safety‐critical,
require an established chain of liability, are likely to become
complex and require human intervention, or for extended
operations in complex, unstructured environments. For ex-
ample, a recent review of underwater robot sensor technology
given in Cong et al. (2021) identified widespread limitations in
modern sensors' range, accuracy, efficiency and robustness.
Teleoperation is essential as direct sensing of environmental
characteristics underwater is often insufficient to build a com-
plete and trustworthy model of a robot's surroundings. An even
more recent review of underwater localization techniques fur-
ther makes the distinction between clear and cluttered en-
vironments, warning that autonomous robots may struggle to
operate safely in complex environments with many hazards
(Wu et al. 2024). These reviews further highlight that multiple
streams of information are often needed to completely and
correctly understand an underwater environment, indicating
that multiple streams of information output, including haptics,
are likely to be useful when teleoperating a robot underwater.

By way of a concrete example of a challenging underwater
operation, operating a tethered ROV through a shipwreck at
depth, such as shown in Figure 1 presents a significant HRI
challenge. The ROV must be operated in a very controlled
manner, avoiding obstacles in the environment while pro-
gressing towards an identified target—in this case a safe exit
from the wreck. The confined nature of the shipwreck causes
currents that impact ROV performance. Transitions in the
underwater environment—such as the point at which the ROV
exits the wreck—can be associated with significant cross cur-
rents, which can impact vehicle performance, threatening
mission success and even the vehicle itself by pushing or
pulling it away from the operator's intended and expected

path, often without strong visual cues to serve as a warning to
the operator.

Most recent and ongoing HRI (human–robot interaction) research
relevant to underwater robots focusses on the communication from
a human to a robot, for example to deliver instructions. Most ex-
isting means for underwater robots to relay information to human
operators are visual, such as relaying of an onboard camera feed to a
control post, or flashing onboard lights at a diver in the water
(Birk 2022). Above the surface, haptic feedback has been shown to
impart safety‐critical information to a remote robot operator
including presence of obstacles (Lamam et al. 2007; Tang et al. 2009;
Farkhatdinov et al. 2008), unsafe roll and pitch (Corujeira et al.
2018), and loss of traction (Luz et al. 2018). Beyond the robotics
domain, tactile feedback has been used to alert drivers to changing
road conditions and even to return their attention to the road if the
driver appears unfocused (Ho et al. 2005; Spence and Ho 2008).
Haptic feedback has also been employed to relay information about
the robot's state that may not be obvious from conventional visual
feedback, such as velocity when climbing stairs (Horan et al. 2008)
and complex pose information to avoid self‐collisions (Selvaggio
et al. 2017). Advanced haptic interfaces such as Spiers and Dollar
(2017), Corujeira et al. (2018), and Stanley et al. (2014) can be used
to provide complex time‐varying haptic signals in navigation and
teleoperation tasks. Such devices can be used to signal the presence
and nature of unusual environmental conditions, which could lead
to improvements in vehicle operations as well as reduced load on
the operator. There is however very little empirical evidence for this,
especially in the case of ROVs, where experiments are rarely con-
ducted in‐water with a real robot (Zhou et al. 2022).

The work presented here aims to address the challenge of tel-
eoperating an ROV through an invisible cross‐current by pre-
senting environmental information nonvisually via advanced,
multimodal haptic feedback. This question is addressed by a
controlled in‐pool experiment using an ROV operated towards a
visual target in the presence (or absence) of a cross‐current.
Conventional visual feedback is given, but advanced haptic
feedback is also provided by an experimental vibrating and
hardness‐changing touchpad.

The study demonstrates that advanced haptic information can
enhance operational accuracy as well as reduce cognitive load on
the operator. Given the cost and complexity of ROV operations,
and the risk of potential vehicle loss, the integration of sophisti-
cated haptic cues within the teleoperation interface is appropriate
to aid the operator in complex underwater vehicle deployments.

The remainder of this paper is organized as follows. Section 2
reviews the experimental vibrating and hardness‐changing
haptic device used in this work. Section 4 describes the ex-
perimental method in detail. Section 5 provides the results,
while Section 6 summarizes the key results and suggests
directions for future research.

2 | Background

The underwater environment presents unique challenges for
the safe and efficient teleoperation of underwater vehicles.
These include severe mechanical constraints that govern the

FIGURE 1 | A typical remotely operated vehicle (ROV) operating en-

vironment with a number of hard‐to‐visualize hazards. The operator must

use available sensory feedback from the ROV to drive the robot to a goal—
here an exit from the wreck—while avoiding collisions with long, forward

facing obstacles, floating and moving debris and peripheral objects that are

about to pass out of the camera's field of view, highlighted in green, red, and

purple. The constrained nature of the environment can focus currents in the

wreck with openings, such as those highlighted in yellow, associated with

significant changes in current that can cause the vehicle to move in

unexpected ways. [Color figure can be viewed at wileyonlinelibrary.com]
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design of underwater electronics enclosures, which limits the
options for mounting cameras and providing the operator a
clear view of the environment. This issue was partially ad-
dressed in the early 21st century through the use of three‐
dimensional (3D) models of the ROV and environment to create
a virtual third person view of the robot and environment (Lin
and Kuo 1997, 2001). At about the same time, force feedback
was proposed as a means of warning operators of the presence
of obstacles outside the robot's field of view (Diolaiti and
Melchiorri 2002). Communication with ROVs is also difficult,
with most wireless communication systems being unable to
penetrate the water column and provide the desired commu-
nication bandwidth. Shared control has been proposed as a
means of compensating for this communication issue by gen-
erating commands automatically while waiting for user input
(Di Lillo et al. 2018, 2021). Haptic feedback has also been used
to support multiple operators working with the same vehicle
(for instance to distribute motion and manipulation tasks)
(Stewart et al. 2016; Ryden et al. 2013). Semi‐autonomous
action by the robot itself can also be encoded through advanced
haptic feedback, with the autonomous actions taken by a robot
signaled to the operator by forces applied to the control joystick
(Konishi et al. 2020). Although not all of these systems have
been evaluated with users, those that have were found to pro-
duce measurable improvements in performance (Sakagami
et al. 2022), estimated task difficulty, and error rates (such as
collisions) (Huang et al. 2019).

Teleoperated manipulation in underwater environments has
also been addressed through haptics, with sophisticated multi‐
DoF haptic robots being used to maintain safe paths and keep‐
out zones during object handling tasks, though not tested in‐
water (Ryden et al. 2013). Force‐feedback through a haptic
interface has also been found to be beneficial for manipulation
tasks when visibility is limited—a common problem in deep‐sea
operations (Utsumi et al. 2002). Upcoming work, which is yet to
be published, extends this concept to OceanOneK, an advanced
humanoid ROV (Khatib et al. 2016), which uses a pair of 6DoF
force feedback interfaces to replicate physical interactions
between the robot's two dexterous hands and the environment
(Wu 2022). Tactile sensors have been added to underwater
manipulators, potentially allowing higher‐definition haptic
feedback to be provided during teleoperated manipulation tasks
(Kampmann and Kirchner 2015; Lin et al. 2020). This concept
has been extended more recently with a whole body haptic
interface being proposed to relay the automatic actions of an
ROV's manipulators back to the user via haptic feedback
(Brantner and Khatib 2021). Finally, face movements and hand
gestures have been proposed as an intuitive means of com-
manding an ROV underwater (Kapicioglu et al. 2021; Jenkin
and Codd‐Downey 2023).

Haptics, the process of transmitting information in a user
interface through the sense of touch, has a long history in
robotics and virtual reality (see Stone 2001; Hamza‐Lup
et al. 2019; and Hayward et al. 2004 for a review of the litera-
ture). Often, haptic feedback is based on very simple tactators or
vibrators, such as those found in video game controllers or
mobile phones. However, more sophisticated haptic devices
have been developed (Hamza‐Lup et al. 2019). Haptics has been
found to be an effective mechanism for human–machine

interaction in a wide range of different applications (see
Okamura and Chang 2003; Dongseok et al. 2005; Kim
et al. 2001; Pacchierotti and Prattichizzo 2024). While early
haptic devices could only provide limited haptic feedback such
as a short pulse of vibration, more modern devices are capable
of providing complex haptic signals to encode information and
accurately replicate real‐world interactions.

Haptic feedback is rarely incorporated into commercially
available teleoperation systems, leading to poor operator per-
formance in many real‐world tasks. For example, whilst many
popular systems use gamepad‐style controllers with built‐in
vibrating motors to command an ROV neither the Dronecode
QGroundControl or Blue Robotics Cockpit software applica-
tions provide any facility to drive this feedback without custom
commands (Dronecode 2019; Blue Robotics 2024). Higher‐end,
fully integrated solutions such as DexROV do support haptic
feedback via proprietary hardware devices that are tailored to
specific use cases. For example, the DEXO haptic exoskeketon
integrates closely with the DexROV software and Underwater
Dexterous Gripper (DexROV 2025). This has been shown to
improve performance in inspection and manipulation tasks
(Gancet et al. 2015), however it is a highly specialized device
that does not provide any haptic feedback that could support
maneuvering tasks that are made hazardous by the presence of
obstacles and unpredictable currents (Xia et al. 2022, 2023).

Of particular interest here is the development of haptic devices
that can communicate via multiple, simultaneous haptic cues.
One such class of devices are those which borrow heavily from
the flexible and modifiable technologies emerging from
research in soft robotics, such as particle jamming (Biroli 2007).
Haptic interfaces based on particle jamming are widely used to
create the sensation of softness under a user's finger or hand
(Follmer et al. 2012; Brown and Bello 2024a) but with the
inclusion of other technologies, they can also change shape
(Stanley et al. 2013; Stanley and Okamura 2017; Li et al. 2014)
or vibrate (Brown and Farkhatdinov 2020, 2022; Kurihara
et al. 2014) to introduce other tactile sensations. Particle jam-
ming haptic interfaces have also been used in kinesthetic in-
terfaces to restrict the movement of joints in haptic gloves
(Zubrycki and Granosik 2017; Simon et al. 2014) and exosuits
(Al Maimani and Roudaut 2017) by stiffening strategic areas of
the suit with a small mass of particles.

3 | Soft Haptic Touchpad

To demonstrate and evaluate this concept, a prototype soft
haptic touchpad has been developed that can provide 2D touch
input (finger position and force magnitude) interaction while
providing physical feedback to the user by altering the hardness
of the surface using the particle jamming effect, and using a
voice coil motor to produce a vibration over this surface. The
touchpad design is unusual in a teleoperation interface, which
would normally use a gamepad or joystick style device, or
potentially a keypad for input. A number of studies have eval-
uated and compared such interfaces in teleoperation contexts
(Kechavarzi et al. 2012; Bonaiuto et al. 2017; Amaya et al. 2021).
The selection of a touchpad style interface was intentional
as these have been shown to be less intuitive to use in
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teleoperation tasks (Kechavarzi et al. 2012), so this interface
goes some way to negate potential performance differences
between participants who may have prior video game, remote
control vehicle or teleoperation experience, and those who
don't, whilst offering the multiple degrees of tactile feedback
that are needed to evaluate the hypothesis of this study.

3.1 | Operating Principles

The device consists of three major sub‐systems that provide two
distinct haptic sensations as well as accepting user input. First,
particle jamming is used to effect controllable hardness‐change
in the touch surface of the device. Particle jamming—the action
of changing the viscosity of a granular fluid by compressing its
constituent grains—is a popular approach to hardness change
in the soft robotics community. Here, a rigid, airtight container
is filled with particles (e.g., seeds) which are compressed by the
soft touch surface under the action of low air pressure inside the
device.

Vibration is afforded by the inclusion of a large voice coil motor
within the particles. When this vibrates, it agitates the particles,
transmitting a vibration to the user's finger via the touch surface.
Prior work has demonstrated that the jamming effect can reduce
the amplitude of these vibrations, but does not significantly alter
the received frequency (Brown and Farkhatdinov 2022). This
effect allows complex vibration signals to be produced and
transmitted to the user.

User input is received in two dimensions—position and force.
Both are measured by a pair of load cells fixed under the
touchpad. This arrangement, a simplified version of that dem-
onstrated in Schmidt et al. (2003), allows for the fingertip
position from left‐right to be calculated as the ratio of force
detected on each side of the touchpad, with the magnitude
taken as an average of the two forces. This allows a user to move
their finger from left to right to give input in one dimension,
whilst pressing down harder or more softly yields an input in a
second dimension.

All three of these sub‐systems are shown in Figure 2. As a
haptic interaction device, this allows the interface to provide
multiple streams of information encoded as separate cues (e.g.,
distance to a goal location signaled by surface hardness and the
presence of a cross‐current by manipulating the vibration of the
interaction surface) whilst simultaneously recording input from
the user (e.g., yaw of a robot commanded by moving a finger left
or right and the speed of a robot by applying more or less force
to the touchpad).

3.2 | Prototype Design and Construction

The prototype itself consists of a rigid aluminum box with an
internal cavity measuring 120 mm(w)× 70 mm(d)× 30 mm (h)
which is filled with particles (quinoa seeds of approximately 1.5
mm in diameter) that provide the hardness‐changing effect via
jamming and covered with a soft, 3D printed silicone touch sur-
face (of shore hardness 50A) and thickness 1.5mm. The particle
fluid also transmits the motion of the voice coil motor (Actronika
HapCoil Plus) within the device to the user. The voice coil motor is
encased in a ribbed plastic sleeve (3D printed plastic) which acts as
a mechanical antenna to better agitate the particles radially to the
motor during vibration (Figure 3a). The hardness and vibration of
the interaction surface is altered through control of air pressure via
a vacuum pump (single stage, 7 CFM (cubic feet per minute), min
pressure 5 Pa) and regulator (SMC ITV0090‐3BS) and voice coil
motor driven by a high impedance sound card (Actronika HSD‐
Mk1). Two beam‐style load cells (each rated for 20 kg with Man-
tracourt ICA2H amplifiers) attached to a large, stiff plastic base,
monitor the user's interaction with the device and report their
finger position accurate to approximately ±0.06 mm and force
magnitude accurate to approximately 0.1 μN.

FIGURE 2 | A schematic view of the soft, multimodal haptic

touchpad, with a large voice coil motor suspended in a granular fluid

and a force sensing base measuring user interaction. [Color figure can

be viewed at wileyonlinelibrary.com]

FIGURE 3 | Haptic touchpad. (a) shows the touchpad with the cover and most seeds removed. Insert: the voice coil motor (VCM) inside the

vibration transferring sleeve. (b) the underlying control for the touchpad and its connection to the remotely operated vehicle (ROV). [Color figure can

be viewed at wileyonlinelibrary.com]
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The haptic touchpad is controlled by a Raspberry Pi 4 with an
additional ADC module (32‐bit Texas Instruments ADS1263
connected via an SPI interface) to read the load cells. The Linux
install on the Raspberry Pi supports a range of software fra-
meworks including ROS, MAVlink and simple TCP/IP com-
munication (Figure 3b).

3.3 | Limitations

Whilst effective in presenting haptic feedback via multiple
modalities—the central aim of this study—the multimodal
haptic touchpad does have two key limitations. First, as stated
previously, the touchpad design is known to be less intuitive to
use in teleoperation tasks than more conventional gamepads
and joysticks. This was a necessary scientific handicap to place
on users in the context of a scientific study. However, in real‐
world use, where no such constraints exist, the same types of
haptic feedback could and should be integrated into a more
typical and comfortable interface.

Second, particle jamming‐based devices are known to be slow to
actuate, with a full hard‐soft transition in the touchpad taking
2–3 s1. This was not a significant limitation in the context of the
experiment, as hardness changed gradually as the robot
approached the touchpad, an activity that could be expected to
take at least 15 s; however, recent research has identified
mechanical approaches to particle jamming that can be actu-
ated much more quickly, so future extensions or deployments of
this technology could be able to adjust their hardness much
faster (Brown and Bello 2024b).

4 | User Study

4.1 | Participants

Eight participants (five self‐reported as male and three self‐
reported as female) between the ages of 26–65 were recruited
from York University and Seneca College, both in in Toronto,
Canada. Five participants (four males) reported experience
playing 3D video games. No participant reported impaired
visual or tactile sensation or motor skills. Participants read
and signed an informed consent form before participating in
the experiment. The experiment was approved by the York
University Ethics Board with certificate number e2022‐266.

4.2 | Setup

4.2.1 | Environment

The experiment was conducted in indoor swimming pools at
York University and Seneca College to achieve an isolated,
controllable environment in which artificial hazards could be
induced in a predictable manner. A visual target was positioned
4 m ahead of the robot's starting position, indicated by a red ball
suspended in the water. A cross‐current was generated halfway
between the robot and the target by a fixed thruster (Blue
Robotics T200) to provide an optional invisible force that would

push the robot off the operator's desired course (depicted in
Figure 7b). This length of trial was expected to take 30–60 s to
complete, which is short enough to allow multiple repeated
trials to be conducted without causing participant fatigue and
improving the reliability of the data collected. An operator
station was established on the pool deck such that the operator
did not have a direct view of the robot operating and would only
receive information from the ROV via the visual and haptic
feedback available at the operator's console.

4.2.2 | ROV

A Blue Robotics Blue ROV2, (Figure 4 insert) was maneuvered
in this environment at a constant depth between the starting
point and the target. The Blue ROV2 was configured to provide
six degrees of movement, however depth was automatically
maintained at 1.5 m (the depth of the ball) and automatic sta-
bilization was applied to both roll and pitch. Lateral movement
and stabilization were deactivated in software so that the robot
would be displaced by the external current. A front‐facing RGB
camera and four spotlights were used to capture the view in
front of the robot and relay visual feedback to the operator
console.

4.2.3 | Visual Feedback

Visual feedback was provided via the ROV's onboard camera.
This streamed the view in front of the ROV to both the par-
ticipant and experimenter at 30 frames per second at a resolu-
tion of 1280 h× 720 v pixels. The participant's view was
augmented with a red circle in the center of the video feed
(visible in the display shown in Figure 5 to provide visual
guidance when attempting to align the robot with the target.
This was presented at the native resolution of a 22” computer
monitor behind the haptic touchpad.

FIGURE 4 | The remotely operated vehicle (ROV) was operated

from a starting table to a red ball target suspended in front of it. A large

visual target was used to localize the ROV. A fixed thruster was used to

induce cross‐current. Insert shows the the ROV operating in the set up.

[Color figure can be viewed at wileyonlinelibrary.com]
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4.2.4 | Haptic Touchpad

Haptic feedback was provided by a soft haptic touchpad
(adapted from Brown and Farkhatdinov 2021, see Figure 5) to
indicate the presence and direction of this current in some
trials, as well as the distance to the target position. The selection
of the touchpad interface was intentional. While such devices
are common on laptop computers, they are not at all widely
used in teleoperator systems. This makes it less likely that any
participant will enter the study with experience controlling
robots in this way, making it possible to observe learning ef-
fects. When present, haptic feedback was presented in two
modalities. First, the touchpad was made to vibrate when the
robot entered the cross‐current. To cue directionality, an
asymmetric sine wave was used to drive the vibrating linear
motor such that the touchpad exerted a net force on the fin-
gertip from left to right (Tappeiner et al. 2009; Culbertson
et al. 2016). This was in the same direction as the current in the
teleoperator's view when the cross‐current was present.

4.3 | Procedure

Each participant operated the ROV from the displays shown in
Figure 5 without direct sight of the robot operating in the pool.
Three different operating conditions were presented:

• Control: Visual feedback was provided via the robot's
forward‐facing camera. No cross‐current was generated and
no haptic feedback was provided.

• Cross‐current: Visual feedback was provided and a cross‐
current was created flowing left‐to‐right, midway between
the robot and the target. No haptic feedback was provided.

• Haptics + current: Visual and haptic feedback (vibration
signaling the cross‐current and hardness signaling distance
to target) were provided and a cross‐current was created
between the robot and the target.

Visual feedback was provided in all conditions for two reasons.
First, the haptic feedback provided in this task was designed to

complement visual feedback rather than to replace it (e.g., the
hardening of the touchpad doesn't indicate what direction the
target is in, only that it is getting closer or farther away),
meaning that a non visual condition would have been too dif-
ficult for operators, providing little additional scientific insight.
Second, the number of conditions needed to be constrained to
allow sufficient time to conduct repeat trials ensuring scientific
reliability without fatiguing participants.

Each condition was presented 10 times in two blocks of five
presentations. The first block (repeats 1–5) in each condition was
labeled the “familiarization” phase whilst the second (repeats
6–10) was labeled the “experienced” phase. All three familiar-
ization blocks were presented, followed by the three experienced
blocks. In this way, broad changes in performance could be
observed as participants became acquainted with the robot and
control interface. Within each phase, the order of presentation of
blocks was randomized for each candidate, with the requirement
that the order of block presentation for a given candidate did not
present the same condition in sequence.

Each experimental condition involved having the operator tel-
eoperate the ROV from the start table to the target ball (see
Figure 4) relying only on the tactile and visual cues provided by
the operator interface shown in Figure 5. The operator was
screened from the operation of the ROV so as to not be able to
view the ROV operating directly. At the end of each condition,
the robot was moved manually by a diver back to the start table
for the next condition. Each experimental condition took
approximately 30 s for the participant to drive the robot from
the start table to the target. When driving the robot the operator
had control of the direction of motion (yaw) and forward speed,
but roll, pitch, heave and sway were held constant and out of
their control. After each block of five trials in each experimental
condition, participants were asked to complete the NASA Task
Load Index (TLX) survey which is an established tool for
assessing the cognitive load associated with a defined task (Hart
and Staveland 1988).

Telemetry from the robot was logged. This consisted of the
robot's heading, ground speed, angular velocity in each axis
(roll, pitch, and yaw), acceleration in each axis of the robot
frame and absolute position and orientation in the world frame,
obtained by visual pose estimation using a 1.2 × 1.2 m ArUco
marker (Romero‐Ramirez et al. 2018) located at the end of the
experiment area, beyond the red ball target. The ArUco target
was used to estimate the robot's pose underwater, and the
robot's final position was estimated from the ArUco target using
a seven point sample moving average filter to remove jitter,
primarily caused by visual artefacts inherent in video recorded
underwater (Leonard and Bahr 2016; Hogue et al. 2007;
Emberton et al. 2018). The touchpad inputs (finger position and
force) and outputs (vibration and hardness) were also logged
and synchronized with robot telemetry.

5 | Results

Performance was assessed via a number of indicator metrics
relevant to either the specific task being performed or char-
acteristics of successful and efficient robot operation. Results

FIGURE 5 | The operator (participant) control station set up on the

pool deck. [Color figure can be viewed at wileyonlinelibrary.com]
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are presented in terms of the familiarization and experienced
phases of the study, as well as aggregated over both blocks. All
inferential statistics were computed with MATLAB R2022b
using the Statistics and Machine Learning Toolbox.

5.1 | Cognitive Load

After the familiarization and experienced sessions, cognitive
load was assessed using the NASA TLX scale—a self‐reported
assessment of cognitive workload measured across six dimen-
sions (mental, physical, and temporal demand, perceived per-
formance, required effort, and frustration) and summarized as a
weighted workload score between 0 and 100 (lower scores
indicate a lower workload, which is better) (Hart and
Staveland 1988). See Figure 6 and Table 1 for overall workload
results in each condition and phase. The NASA TLX scale is a
well established means of assessing cognitive workload in a
variety of HCI and psychological domains, including tele-
operation (Shao et al. 2021; Zhu et al. 2021; Whitney et al. 2020)
and has been in widespread use for over 20 years (Hart 2006).
NASA TLX was used over secondary task performance as the
inclusion of a secondary task would have represented too much
of a departure from real‐world operating conditions and
because the complexity involved in selecting a task that would
fairly compete with the multisensory (visual and tactile) inter-
actions in the main task (Esmaeili Bijarsari 2021). EEG‐based
evaluation of cognitive load was not used due to the significant
complexity of setup and operation alongside an already complex

in‐water experiment, potential participant risk, and limited
reliability of EEG data outside of a tightly controlled lab en-
vironment (Antonenko et al. 2010).

Differences in the familiarization, experienced and combined
conditions were analyzed using a two‐tailed, paired t‐test. There
were significant differences between the control and cross‐
current conditions overall (p = 0.0262) and specifically in the
familiarization phase (p = 0.0149). Providing haptic feedback
in the Haptics + current condition yielded a significant reduc-
tion in workload compared to the cross‐current alone in the
familiarization phase (p = 0.0261) but a slight (nonsignificant)
increase in the experienced phase. Haptic feedback slightly
improved workload overall, but this was not significant. There
were no significant differences between the control and Hap-
tics + current conditions either overall or in either learning
phase.

5.2 | Performance

5.2.1 | Missing Data in Quantitative Analysis

In total, 240 trials (participants (8) × conditions (3) × phases
(2) × repeats (5)) were run. A small number of trials were aborted
due to the participant straying too far off course to be able to
locate the target, or due to the participant giving up out of
frustration (Control—14, Cross‐current—23, Haptics + current—
18) resulting in a total of 185 valid trials. In the quantitative
analyses below, responses more than 1.5*IQR below the 25th
percentile or above the 75th percentile were identified as outliers
and also excluded from analysis. For the purposes of this study,
IQR is defined as the difference between the 75th and 25th
percentiles. Given the missing data, statistical analysis of quan-
titative results could not be performed using ANOVA tests.

5.2.2 | Accuracy

Accuracy was measured as the Euclidean distance between the
robot's final position and the target ball, projected onto the
horizontal plane. This is shown in green in Figure 7b.

A Jarque‐Bera test indicated that the final distance results from
each condition were not normally distributed at the 5% confi-
dence level in all conditions (Control: p = 0.0674, Cross‐
Current p = 0.0088, Haptics + current: p = 0.1426). Therefore,
the non‐parametric Kruskal–Wallis test was used to determine
statistically significant differences between conditions. Mean
accuracy results are summarized in Table 2 and are plotted in
Figure 8.

FIGURE 6 | Cognitive workload (NASA TLX) scores reported in

each condition and phase. *Denotes a statistically significant difference

in results with a 95% confidence interval (p< 0.05). **Denotes a 99%

confidence interval (p< 0.01). [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 | Cognitive workload by condition.

Mean cognitive load (NASA TLX scale)

Condition Familiarization Experienced Combined

Control 26.4 23.3 24.8

Cross‐current 38.7 25.4 32.1

Haptics + current 29.3 33.0 31.1
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Most participants ended the task less than 1 m away from the
target, though there are high variances across all conditions,
possibly due to differences in performance characteristics
(visual acuity, fine motor control, reaction time, hand‐eye
coordination, etc.) between participants. In the control condi-
tion, participants finished on average 0.37 m away from the
target, with the best trial ending 0.08 m from the ball. Partici-
pants performed best in the control condition across both
phases. The mean errors were not significantly different in the
familiarization and experienced phases of the experiment. With
the cross‐current applied, accuracy worsened with an overall
average of 0.54 m (familiarization: 0.60 m; experienced: 0.49 m).
With haptic feedback indicating the cross‐current and ball
position, the average distance remaining to the ball was reduced
to 0.43 m, which is consistent in both familiarization and ex-
perienced phases.

Participants performed significantly worse when the cross‐
current was turned on compared to the control condition, both
in the combined group (p = 0.0008) as well as during the
familiarization phase (p = 0.0029). Haptic feedback was found

FIGURE 7 | (a) Recorded robot paths from a representative participant based on visual odometry. (b) An example path annotated to demonstrate

key performance indicators (accuracy, ideal path deviation, and maximum lateral displacement) and the location of the cross‐current. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE 2 | Mean remaining distance to target at the end of the experiment.

Distance (m)

Condition Familiarization Experienced Combined

Control 0.38 0.37 0.37

Cross‐current 0.60 0.49 0.54

Haptics + current 0.43 0.43 0.43

FIGURE 8 | Accuracy: remaining distance to target at the end of

each trial (with outliers removed). *Denotes a statistically significant

difference in results with a 95% confidence interval (p< 0.05).

**Denotes a 99% confidence interval (p< 0.01). [Color figure can be

viewed at wileyonlinelibrary.com]
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to yield a statistically significant improvement in accuracy
compared to the cross‐current without haptic feedback overall
(p = 0.0468) and during the familiarization phase (p = 0.0172).
There were no statistically significant differences between
conditions in the experienced phase. There was no significant
difference between performance in the control condition (still
water) and with the cross‐current present and represented by
haptic feedback, although the results suggest a slight increase in
positional error.

5.2.3 | Ideal Path Deviation

The ideal path in this study is a straight line 4 m ahead of the
robot, shown in orange in Figure 7b. Whilst achievable, oper-
ator error and displacement due to the cross‐current could
move the robot off this course, increasing the path length and
completion time, and in a real world scenario increasing the
risk of a collision with an obstacle in the robot's periphery.
Paths taken by a representative participant in each condition
are shown in Figure 7a. This path error was quantified as the
root mean square error (RMSE) between the ideal path and the
actual path taken by the robot, as recorded by visual odometry.

A Jarque‐Bera test indicated that the RMSE path deviation
results from each condition were normally distributed at the 5%
confidence level (Control: p = 0.0017, Cross‐Current p < 0.001,
Current +Haptics: p = 0.0011). Therefore, a two‐tailed, paired
t‐test was used to determine statistically significant differences
between conditions. Mean displacement results are summa-
rized in Table 3 and are plotted in Figure 9.

Deviation from the ideal path was low in the control condition
(expectedly, as there was no cross‐current) but significantly
worse with the cross‐current, both overall (p e= 3.5 −4) and in
the familiarization phase of the experiment (p = 0.0027),indi-
cating that the cross‐current with haptic feedback reduced the
straight line deviation significantly both overall (p = 0.0165)
and in the experienced phase (p = 0.0492).

5.2.4 | Displacement Due to Current

The maximum displacement due to the cross‐current is also a
useful metric. This records the maximum sideways perturba-
tion, as shown in Figure 7b. Here, a larger displacement indi-
cates that the robot operator was slower or otherwise less able
to correct the robot's course, whilst a lower number indicates
that that the operator made course corrections quickly and
effectively.

A Jarque‐Bera test indicated that the maximum path deviation
results from each condition were normally distributed at the 5%
confidence level (Control: p < 0.001, Cross‐Current p = 0.0141,
Current +Haptics: p = 0.0058). Therefore, a two‐tailed, paired
t‐test was used to determine statistically significant differences
between conditions. Mean displacement results are summa-
rized in Table 4 and are plotted in Figure 10.

As would be expected, maximum displacement was signifi-
cantly lower in the control condition than both the cross‐
current (overall: p e= 1.1664 −7, familiarization: p = 0.0017,
experienced: p e= 1.4469 −5) and Haptics + current (overall:
p e= 8.4436 −7, familiarization: p e= 1.1120 −4, experienced:
p = 0.0026) conditions. Lateral movement was significantly
lower in the haptics + current condition compared to the cross‐
current condition but only in the experienced phase of the ex-
periment (p = 0.0422).

6 | Discussion and Future Work

The experimental results point to two conclusions. First and
foremost, there are clear improvements in ROV operator per-
formance when haptic feedback is available and used to convey
environmental information. Accuracy, path efficiency and resist-
ance to the perturbation were all improved when haptic feedback
was offered. Visual feedback was deemed essential for this task, so
it was provided in all conditions. Previous studies have investi-

TABLE 3 | Mean root mean square (RMS) deviation from an ideal straight line path.

Mean RMS deviation (m)

Condition Familiarization Experienced Combined

Control 0.75 0.99 0.87

Cross‐current 1.34 1.39 1.36

Haptics + current 1.03 0.93 0.98

FIGURE 9 | RMSE from an ideal straight line path for each con-

dition and phase (with outlier values beyond 1.5*IQR from the mean

removed). *Denotes a statistically significant difference in results with a

95% confidence interval (p< 0.05). **Denotes a 99% confidence interval

(p< 0.01). IQR, interquartile range; RMSE, root mean square error.

[Color figure can be viewed at wileyonlinelibrary.com]
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gated the individual roles of visual and haptic feedback in tele-
operation tasks and shown that robot operators consistently ex-
press a preference to be given visual feedback, even when not
relevant to the task or performance metrics in question (Glover
et al. 2009). Studies have also shown that adding haptic feedback
to visual feedback improves performance but increases perceived
task difficulty across a variety of haptic and visual feedback
modalities and task scenarios (Gibbs et al. 2022; Al‐Mouhamed
et al. 2010), which is broadly in line with the results of this study.

That being said, the specifics of how environmental information
was presented by the haptic interfaces in this study may or may
not be optimal, and there is much room for future work to
investigate, for example, what vibrotactile signals would best
indicate the cross‐current, or what modalities of haptic feed-
back may best encode each relevant characteristic of the robot's
or environment's state. Significant further technical work would
be required to engineer additional haptic signals into the
touchpad to allow this to be investigated.

Second, the learning effects observed in this study point to dif-
ferences in how novice and experienced operators make use of
haptic feedback. The performance indicators described above can
broadly be linked to two separate haptic effects. Accuracy (final
distance to the target) was most affected by tactile hardness (en-
coding distance to the target). Likewise, path accuracy and
resistance to perturbation were most affected by vibration (en-
coding interaction with the cross‐current). The results above show
that accuracy was most improved by haptic feedback during the

familiarization phase of the study, when participants were
intentionally unfamiliar with the control interface, task and en-
vironment. Conversely, resistance to the perturbation and the
ideal path error were most improved during the experienced
phase of the study. This distinction could be explained by the
notion of where, in the interaction flow, the haptic feedback was
inserted. Hardness change was designed to make it physically
harder to depress the touchpad, forcefully encouraging operators
to slow down and stop as they got close to the target. The
vibration on the other hand did not move the operator's finger to
steer them back on course, but merely communicated that they
were drifting to the side and that they needed to correct. We
hypothesize that novice robot operators benefit most from haptic
assistance that physically interacts with them close to the input
interface, whilst experienced operators benefit most from haptic
feedback that relays information which they must then act on. If
proven by a more targeted study, this could have implications for
the deployment of ever more popular force‐feedback interfaces,
which may be of limited use in professional grade teleoperator
systems that are usually intended for professional robot operators.

Future research in this area could extend these findings to other
classes of mobile robots. Drones and ROVs share many common
configurations and kinematics, and ground‐based mobile robots
are not immune from hazardous situations or complex environ-
ments. The concept of using advanced haptic interfaces to relay
environmental information is also very relevant to the operation of
other manned vehicles which could benefit from haptic assistance
systems. Moreover, visually impaired pedestrians currently
receive very limited information about their environment from a
white cane or guide dog. As environmental mapping sensors
become smaller and more portable, this type of haptic commu-
nication could be of great value to those who cannot benefit from
visual information about the world around them.

The haptic feedback used in this study was developed from the
design principle of natural mapping (Norman 1991), supported
by several short pilot studies. In addition to the application of
this research, future studies could more extensively investigate
optimal parameters for haptic communication through multiple
different modes of physical feedback. This would allow inter-
action designers to better communicate environmental infor-
mation to the operators of vehicles, making interfaces quicker
to learn and haptic signals easier to interpret in real‐time.

6.1 | Limitations

A key limitation of the study is the limited sample size of eight
participants. This is a consequence of the cost and complexity of
undertaking an in‐water experiment with a real robot, and limits
the generalizability of the results presented above. However,

TABLE 4 | Maximum lateral displacement in the cross‐current.

Mean displacement (m)

Condition Familiarization Experienced Combined

Control 0.12 0.09 0.10

Cross‐current 0.29 0.31 0.30

Haptics + current 0.34 0.23 0.28

FIGURE 10 | Maximum lateral displacement in the cross‐current
for each condition and phase (with outlier values beyond 1.5*IQR from

the mean removed). *Denotes a statistically significant difference in

results with a 95% confidence interval (p< 0.05). **Denotes a 99%

confidence interval (p< 0.01). [Color figure can be viewed at

wileyonlinelibrary.com]
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statistically significant results were obtained from this small study
group.

An additional limitation is the choice of haptic display/input
touchpad. The touchpad design was selected to provide an
artificial usability handicap on the system, which could be
improved by the selection of a more user‐friendly device in real‐
world use. The underlying technology (particle jamming and
vibration) has been shown to behave in broadly the same way
regardless of form factor (Brown and Farkhatdinov 2022).

A minor limitation is the use of the NASA TLX assessment tool to
measure participant's cognitive load. Whilst this tool is well estab-
lished and has been widely used in similar studies (Shao et al. 2021;
Zhu et al. 2021; Whitney et al. 2020), it is limited in that it only
provides an overview of the user's cognitive load during the task as a
whole, and is reliant on users self‐reporting cognitive load reliably
and accurately. Its ability to produce meaningful overall assess-
ments of cognitive load compared to the individual dimensions of
workload reported by participants has also recently been ques-
tioned, although no alternative questionnaire‐based assessment of
cognitive workload has emerged in response (Bolton et al. 2023).

Finally, the study only investigated one specific environmental
configuration. This was done to improve the reliability and
reproducibility of the data whilst maintaining a manageable
scope for the study. Future work could usefully consider the
issue of different directions/intensities of cross currents, or
cross‐currents acting in different directions or locations. Moving
targets could be investigated to examine the utility of the
hardness‐changing feedback to understand a dynamic quantity.
Additional environmental characteristics such as depth or the
presence of obstacles could be introduced via additional haptic
channels (force feedback, shape‐change, etc.) to probe the
limitations of information delivery via the haptic channel.

6.2 | Extending to Real‐World Use

Future application of this technique to real‐world underwater
teleoperation scenarios is possible, but the techniques and
methodologies described above would require some extension
and modification to be applicable in the real world.

First, the haptic feedback provided only represented a cross‐
current acting in one dimension and with constant intensity.
The intensity of the current could be indicated by varying the
strength of the vibration, however this would need to be eval-
uated experimentally. Currents acting in different directions
could be represented by vibrations in different directions, either
produced by a 2D array of vibrating motors, or a mechanized
motor that can be re‐oriented to match the current direction.
Presenting 3D currents on a 2D touchpad would be difficult,
and gesture or multi‐DoF robotic interfaces might be better
suited to this. It is useful to note that even if an area of water is
subject to multiple currents in different directions, the robot
will only be pushed in a single vector so the 1D voice coil motor
remains a suitable vibration source for real world use.

Second, the haptic feedback was generated artificially by the
experiment control software rather than being generated

dynamically from the robot's sensor data. The two environ-
mental features under investigation—distance to a target or
obstacle and interaction with cross‐currents—could be easily
obtained from sensor data. Sonar is a well developed technique
for detecting underwater objects and performing underwater
localization (relative to a target position), whilst onboard IMU,
propellors or doppler sensors would be able to measure currents
and their impact on an ROV.

Third, the experiment reported here was performed in an
indoor pool environment rather than open water. Whilst less
realistic than open water, the pool was selected for this study to
ensure scientific rigor by providing a controlled environment in
which identical cross‐currents could be generated for each
participant, and additional apparatus could be deployed to
support the tracking of the robot's movements. Performing the
experiment in open water would also have compromised the
safety of the dive team and left the experiment vulnerable to
adverse weather and other operational challenges. The con-
trolled, directed currents used in this experiment would not
have affected the robot differently in either setting.

Finally, the particle jamming mechanism implemented here
relies on a large and heavy vacuum pump to actuate the jam-
ming effect. Whilst this works in controlled environments, it is
very inconvenient for a portable interface that may need to be
deployed rapidly in remote locations. Fully mechanical ap-
proaches now exist for actuating a particle jamming system,
though these only came to light following the completion of this
study (Brown and Bello 2024a).
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