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Abstract
In the navigation of unmanned surface vessels (USVs), external disturbances, particularly ocean waves, frequently
induce deviations from the desired trajectory. To mitigate these challenges, we propose a novel disturbance rejection
control strategy based on Stackelberg game theory, designed to address unmodeled system dynamics, complex en-
vironmental conditions, and other external perturbations. This approach incorporates several key innovations. First,
we introduce a velocity error dynamic system coupled with a non-cooperative Stackelberg game model, where the
USV’s control inputs (as the leader) and external disturbances (as the follower) interact within an alternating update
framework. This leader-follower interaction facilitates the joint optimization of both the disturbance rejection and
performance-optimal control strategies, enhancing the USV’s tracking accuracy while maximizing its disturbance re-
jection capacity. Second, we rigorously verify the existence of a cooperative optimal solution through an analysis
of the Nash equilibrium under sequential decision-making between the leader and follower. Building on this, inte-
gral reinforcement learning and neural networks are employed to approximate the optimal Stackelberg solution. The
boundedness and convergence of the proposed approach are validated using Lyapunov functions, ensuring stability
and optimal performance under dynamic operating conditions. Finally, simulation results confirm the efficacy of the
proposed strategy, demonstrating its ability to concurrently optimize control robustness and performance - such as
minimizing tracking error and energy consumption - when confronted with unmodeled dynamics and external distur-
bances.
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1. INTRODUCTION
Unmanned surface vessels (USVs) offer substantial advantages for performing hazardous or repetitive tasks,
owing to their autonomy and adaptability, which significantly reduce operational costs and mitigate associated
risks [1–3]. In practical applications, robust disturbance-resistant control methods are crucial to ensuring both
the safety and maneuverability of USVs, particularly in missions such as environmental monitoring [4] and
maritime rescue [5]. The significance of these methods becomes even more pronounced in complex marine
environments, where USVs are exposed to various unpredictable disturbances, including wave dynamics, un-
modeled vessel behaviors, and potential cyber-physical attacks [4]. Ocean waves, in particular, continuously
apply forces and torques that alter the vessel’s motion, affecting its velocity and direction, thereby causing sub-
stantial deviations from the intended trajectory. Moreover, the intensity of these disturbances can sometimes
overwhelm the control system’s computational capacity, complicating the maintenance of stable and accurate
trajectory tracking. The compounded effect of such unknown disturbances can severely undermine both the
control stability and tracking precision of the USVs, leading to significant deviations from the planned route
and, in some cases, putting mission success at serious risk.

Disturbance control for USVs is pivotal, not only ensuring the vessel’s operational safety but also enhancing the
success rate of mission execution. Early research has predominantly concentrated on disturbance estimation
techniques under the assumption of bounded disturbances, such as disturbance observers, neural network
observers, and adaptive disturbance observers. Leveraging these estimates, disturbance-rejection strategies,
including sliding mode control and robust control, have been developed, creating an “estimation + robust
control” paradigm. This framework improves the reliability and robustness of USVs, enabling them to sustain
tracking performance despite inevitable disturbances [6–9]. In the context of path-tracking tasks, Xu et al. intro-
duced a disturbance-resistant algorithm that combines adaptive neural network estimation with backstepping,
incorporating an event-triggered mechanism to counteract input disturbances arising from unknown actua-
tor faults [9]. Zhao et al. proposed a fault-tolerant tracking control strategy, integrating “estimation + adaptive
sliding mode robust control” to mitigate the impacts of external disturbances and propeller faults on tracking
accuracy [10]. Furthermore, Yu et al. designed a disturbance-resistant approach based on integral sliding mode
control combined with disturbance estimation to address the challenges posed by comprehensive propeller
failures and complex variations in control inputs [11]. However, while these disturbance-resistant techniques
have demonstrated effectiveness, they remain fundamentally reliant on the precision of disturbance estima-
tion. The accuracy of the disturbance estimate directly influences the performance of robust tracking control.
Yet, in dynamic and complex environments, achieving high-precision estimation that can account for diverse
and evolving disturbances remains a significant challenge. Moreover, the increasing complexity of USV tasks
in such environments demands greater adaptability and interaction between the disturbance control strate-
gies and the surrounding conditions. This highlights a critical limitation of the “estimation + robust control”
paradigm, underscoring the need formore synchronized and adaptive coordination between the USV’s control
mechanisms and the dynamic environment in which it operates.

To address the aforementioned challenges, in the interaction capability between the disturbance-resistant con-
trol paradigm and the environment, as well as the disturbance-resistant strategy, Stackelberg game theory
characterizes the interactive dynamics between leaders and followers in a game context [12], providing a novel
perspective for enhancing the tracking performance of unmanned vessels while mitigating disturbances. In
this framework, the leader first establishes its strategy, followed by the follower’s selection of an optimal strat-
egy based on the leader’s choices [13]. This model forms a robust foundation for analyzing the leader-follower
relationship within control systems. Consequently, a non-cooperative game is formulated within the Stack-
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elberg framework, accounting for external disturbances, unmodeled dynamics, and control inputs, with the
objective of deriving an optimal anti-disturbance control strategy that ensures the tracking performance of
USVs. However, Stackelberg games introduce unique challenges that traditional optimal theory does not eas-
ily resolve. Prior research has applied a variational inequality algorithm to address synchronization issues in
multi-agent systems within the Stackelberg game framework [14]. It is important to highlight that this approach
depends on precise system model information, necessitating high-level accuracy in dynamic modeling. An al-
gorithm for solving multiplayer Stackelberg–Nash games within nonlinear dynamic systems is proposed in [15].
This method allows the leader to optimize its strategy based on followers’ responses, utilizing a two-tiered re-
inforcement learning framework that ensures convergence to equilibrium under weak coupling conditions.
Consequently, within the interactive decision-making context of Stackelberg games, the leader must antici-
pate and integrate the follower’s strategic responses into its decision-making process, while the follower adjusts
based on the leader’s choices. This dynamic interplay compels both the leader and follower to continuously
refine their control strategies in response to an evolving environment. Utilizing the evaluation-action control
mechanism in reinforcement learning, USVs autonomously evaluate the effectiveness of their control actions
concerning environmental conditions, iteratively refining their strategies to maximize rewards. This adap-
tive approach enables USVs to identify optimal control strategies within dynamically shifting environments,
presenting a novel pathway to achieving Nash equilibrium solutions in Stackelberg games through alternating
and iterative optimization [2,5,16,17]. An online integral reinforcement learning algorithm is introduced to tackle
Stackelberg games with unknown dynamics [18]; however, it is important to note that this method is limited to
linear systems. In [19], an adaptive neural network tracking control method based on integral reinforcement
learning is developed for continuous-time nonlinear systems with unknown control directions. Simulation
results demonstrate the stability and boundedness of the closed-loop system while effectively managing an
autonomous underwater vehicle model, thereby offering a promising strategy for addressing uncertainties in
USV systems through reinforcement learning.

Inspired by the aforementioned research, this paper delves into a disturbance rejection control strategy for
unmanned vessels based on Stackelberg game theory, aiming to overcome unmodeled dynamics, complex
oceanwaves, and other external disturbances. The strategy seeks to achieve a cooperative optimal solutionwith
disturbance rejection robustness and optimal control performance (such as minimal energy consumption),
leading to the following innovations:

1. In the anti-jamming method based on Stackelberg game theory, the interactive behavior of the USVs in
the alternating update framework of non-cooperative games was elucidated. This interaction optimizes
the cooperative search for both the anti-jamming strategy and the performance-optimal control strategy.
The goal is to maximize the USV’s anti-jamming capability while simultaneously optimizing its tracking
control performance. To simplify the control strategy design, a virtual control variable is introduced to
reduce the complexity of the USV’s motion model, leading to the development of a velocity error dynamics
model. Based on this, a control strategy that integrates robustness and optimality under the Stackelberg
game framework is proposed.

2. Compared to existing Stackelberg game solutions that neglect dynamic factors, our proposed anti-jamming
control strategy effectively addresses challenges posed by unknown drift dynamics and external bounded
disturbances in the USVs. Furthermore, the Nash equilibrium of the anti-jamming strategy under sequen-
tial decision-making is analyzed, and the theoretical effectiveness of the proposed strategy is rigorously
demonstrated.

3. Utilizing the StackelbergNash equilibrium and the “critic-action” control framework of reinforcement learn-
ing, an approximationmethod for the optimal anti-jamming strategy based on neural networks is presented.
Additionally, the boundedness of the proposed method is proven using Lyapunov functions, and the con-
vergence of the reinforcement learning algorithm under interactive performance metrics is elucidated.

This paper is structured as follows: Section 2 focuses on the formulation of the disturbance-resistant tracking
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problem for unmanned vessels. In Section 3, we present the derivation of the disturbance-resistant control
law. Section 4 assesses the effectiveness and superiority of the proposed control scheme through numerical
simulations. Finally, Section 5 provides the concluding remarks of this study.

2. PROBLEM FORMULATION
2.1. USVs dynamics
In this study, considering the unmodeled dynamics inherent to the unmanned vessel and the presence of
external disturbances, its kinematics and dynamics are expressed as follows:

¤ℵ = ℘(ℵ)𝑣, (1)
¤𝑣 = 𝐹 (𝑣) + 𝑔𝜋𝜏 + D(ℵ, 𝑣, 𝑡),

where ℵ = [𝑥, 𝑦, 𝜓]𝑇 represents the pose components. 𝜈 =
[
𝑢, 𝜈, 𝑟

]𝑇 denotes the velocity vector, and 𝐹 (𝜈)
represents the known dynamic characteristics of the unmanned vessel. 𝑔 signifies the control input gain. 𝜋𝜏
indicates the control input. D(ℵ, 𝜈, 𝑡) accounts for time-varying external disturbances and the unmodeled
dynamics of the system. Furthermore, the rotation matrix ℘(𝜂) is given by:

℘(ℵ) =


cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

 . (2)

Furthermore, considering the external disturbances experienced by the unmanned vessel, along with system
uncertainties and unmodeled dynamics, the control input of the unmanned vessel is given as follows:

𝜋𝜏 = 𝜋𝜏𝑐 + 𝜋𝜏𝑑 , (3)

where 𝜋𝜏𝑐 is the disturbance-resistant controller to be designed, and 𝜋𝜏𝑑 represents the disturbance caused by
unknown factors such as disturbances and the unmodeled dynamics of the unmanned vessel.

2.2. Control objectives
In this context, the attitude error vector 𝑒 = ℵ−ℵ𝑑 is introduced to assess the interaction between the command
inputs to the unmanned vessel and the disturbances, which subsequently influences its trajectory performance.
To effectively utilize the inherent structural characteristics of the unmanned vessel system (1), an intermediate
virtual control variable is designed to streamline the controller design process while ensuring the convergence
of the attitude error, as given below:

𝑣𝑑 = ℘(ℵ)−1
(
−Γ1𝑒 + ¤ℵ𝑑

)
, (4)

where Γ1 is a positive definite control gainmatrix. Thedifference between the actual velocity 𝑣 of the unmanned
vessel and the desired control law 𝑣𝑑 plays a crucial role in determining the convergence of the pose error 𝑒.
To this end, the velocity error vector =𝑒 = 𝑣 − 𝑣𝑑 is denoted as:

¤=𝑒 = 𝑓 (=𝑒) + 𝑔
(
𝜋𝜏𝑐 + 𝜋𝜏𝑑

)
, (5)

where 𝑓 (=𝑒) = 𝐹 (𝑣) + D(ℵ, 𝑣, 𝑡) − ¤𝑣𝑑 represents the unknown component in the dynamic system.

Control Objectives:

The control objective of this paper is to design an adaptive intelligent disturbance-resistant control scheme for
unmanned vessels within the context of Stackelberg game theory. This scheme aims to achieve boundedness
of the tracking error 𝑒 and =𝑒 , as well as all signals within the closed-loop system, even in the presence of
unknown dynamics and external disturbances.
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Figure 1. Stackelberg game-based framework for anti-disturbance control of unmanned aerial vehicles.

To achieve the aforementioned control objectives, the following definitions are introduced before proceeding
with the design of the controller in this paper:

Definition 1: (Stackelberg Game) A unique Stackelberg equilibrium control pair {𝜋∗𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋∗𝜏𝑐)} must satisfy
the following properties:

1. For the control output 𝜋𝜏𝑐 , there exists a unique follower control output 𝜋∗𝜏𝑑 (𝜋𝜏𝑐) that minimizes the objec-
tive function 𝐽1. Moreover, for any 𝜋𝜏𝑐 , it follows that 𝐽1(𝜋𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋𝜏𝑐)) ≤ 𝐽1(𝜋𝜏𝑐, 𝜋𝜏𝑑 (𝜋𝜏𝑐)).

2. For the optimal response of the follower 𝜋∗𝜏𝑑 (𝜋𝜏𝑐), there exists an optimal leader response 𝜋∗𝜏𝑐 such that
𝐽2(𝜋∗𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋∗𝜏𝑐)) ≤ 𝐽2(𝜋𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋𝜏𝑐)) is satisfied.

3. DESIGN OF THE DISTURBANCE-RESISTANT SATURATION CONTROL SCHEME BASED ON
STACKELBERG GAME THEORY
3.1. Design framework for the disturbance-resistant controller based on Stackelberg game theory
In scenarios where the control inputs of unmanned vessels are subject to disturbances, it is imperative to iden-
tify the time-varying nature of these disturbances. To address this, we propose an intelligent optimal control
strategy for disturbance rejection within the Stackelberg game framework, accounting for actuator input limi-
tations. A non-cooperative game model is developed around the dynamic system of speed errors, wherein the
disturbance signal (𝜋𝜏𝑑) is represented as the follower, and the disturbance rejection control strategy (𝜋𝜏𝑐) is
represented as the leader in the Stackelberg game, as shown in Figure 1. This framework engenders a sequen-
tial decision-making process between the leader and follower, facilitating alternating iterative optimization, as
outlined below:

1. The sequential decision-making beginswith the initial output of the unmanned vessel’s disturbance-resistant
saturation controller 𝜋0

𝜏𝑑 .
2. Subsequently, the control output of the disturbances is regarded as the follower, interacting with the de-

signed saturation controller to achieve the optimal control quantity aimed at maximizing the tracking error
𝑒,=𝑒 and the control input 𝜋∗𝜏𝑑 .

3. Conversely, the disturbance-resistant controller is regarded as the leader in this study, actively adjusting
its strategy 𝜋𝜏𝑐 based on the follower’s control output 𝜋∗𝜏𝑑 , and selecting the optimal disturbance-resistant
strategy 𝜋∗𝜏𝑐 to minimize the tracking error 𝑒,=𝑒 .

To establish a robust optimal disturbance rejection control strategy for unmanned vessels under alternating
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iterations between the leader and follower, the leader’s decision-making process is contingent on the ratio-
nal choices of the follower. This mutual dependence guarantees the simultaneous minimization of the cost
functions for both parties. These cost functions are given as follows:

𝐽1 (=𝑒0, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) =
∫ ∞

𝑡
𝑟1 (=𝑒, 𝜏𝑑 , 𝜏𝑐) d𝑠 =

∫ ∞

0

(
𝜋𝑇𝜏𝑑𝐺𝜋𝜏𝑑 + 𝜋𝑇𝜏𝑐𝑅𝜋𝜏𝑑 − =𝑒𝑇𝑄=𝑒

)
d𝑠, (6)

𝐽2 (=𝑒0, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) =
∫ ∞

𝑡
𝑟2 (=𝑒, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) d𝑠 =

∫ ∞

0

(
=𝑒𝑇𝑄=𝑒 + 𝜋𝑇𝜏𝑐𝑅𝜋𝜏𝑐 + Π (𝜋𝜏𝑑)

)
d𝑠, (7)

where 𝐺,𝑄, 𝑅 represents positive definite matrices, and Π(𝜋𝜏𝑑) = 𝜗𝑇 ¤̂𝜆1 denotes the control input influence
associated with the follower.

It is noteworthy that the performance metric functions 𝐽1 and 𝐽2, as defined within the Stackelberg game
framework, are characterized as follows:

1. 𝐽1 encapsulates the robustness of the unmanned vessel system, particularly focusing on the degradation of
tracking performance under maximum disturbance conditions.

2. 𝐽2 governs the vessel’s optimal tracking control performance, striving to minimize tracking error while
minimizing control energy expenditure.

3. Through an alternating iterative optimization process of both 𝐽1 (robustness) and 𝐽2 (optimality), a Nash
equilibrium is attained. In this equilibrium, the disturbance rejection robustness and optimal control (min-
imal energy consumption and tracking error) of the unmanned vessel cannot be further improved by in-
dependently altering either control strategy. Consequently, the system reaches a cooperative optimal state,
thus fulfilling the design objectives of the proposed control strategy.

Furthermore, their corresponding value functions are expressed as follows:

𝑉1
(
=𝑒 (𝑡), 𝜋𝜏𝑑 , 𝜋𝜏𝑐

)
=
∫ ∞

𝑡
𝑟1
(
=𝑒, 𝜋𝜏𝑑 , 𝜋𝜏𝑐

)
d𝑠, (8)

𝑉2
(
=𝑒 (𝑡), 𝜋𝜏𝑑 , 𝜋𝜏𝑐

)
=
∫ ∞

𝑡
𝑟2
(
=𝑒, 𝜋𝜏𝑑 , 𝜋𝜏𝑐

)
d𝑠.

The optimal value function for the follower is defined as

𝑉∗
1 (=𝑒0) = min

𝜋𝜏𝑑

∫ ∞

0
𝑟1 (=𝑒, 𝜋𝜏𝑐, 𝜋𝜏𝑑) d𝑠, (9)

In this case, considering the velocity error dynamics (5), the Hamiltonian function for the follower is defined
as

𝐻1 (=𝑒,∇𝑉1, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) = 𝑟1 (=𝑒, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) + ∇𝑉𝑇1 ( 𝑓 (𝑧) + 𝑔𝜋𝜏𝑐 + 𝑔𝜋𝜏𝑑) , (10)

where ∇𝑉1 = 𝜕𝑉1/𝜕=𝑒 denotes the partial derivative of the Hamiltonian with respect to the variable =𝑒 . Fur-
thermore, based on 𝜕𝐻1/𝜕𝜋𝜏𝑑 = 0, the optimal control output 𝜋∗𝜏𝑑 for the follower is given by:

𝜋∗𝜏𝑑 = −1
2
𝐺−1𝑔𝑇∇𝑉𝑇1 − 1

2
𝐺−1𝑅𝜋𝜏𝑐, (11)

Furthermore, introducing the definition ¤̂Λ1 = ∇ ¤𝑉1 = −𝜕𝐻1/𝜕=𝑒 , the following co-state equations are obtained:

¤̂Λ1 = 2𝑄=𝑒 − ∇ 𝑓 𝑇∇𝑉1, (12)

where ∇ 𝑓 = 𝜕 𝑓 (=𝑒) /𝜕=𝑒 . Thus, the follower adopts the optimal strategy (11) as its predetermined decision.
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Subsequently, the leader’s disturbance-resistant controller formulates its strategy by considering the follower’s
strategy (11) and the co-state constraints (12). Therefore, the constrained optimal control problem Π(𝜏𝑑) =
𝜗𝑇 ¤̂𝜆1 for the leader is expressed as:

𝑉∗
2 (=𝑒) = min

𝜋𝜏𝑐

∫ ∞

0
𝑟2 (=𝑒, 𝜋𝜏𝑑 , 𝜋𝜏𝑐) d𝑠, (13)

where 𝜗 is the designed Lagrange multiplier.

Thus, the Hamiltonian function for the leader can be expressed as follows:

𝐻2
(
=𝑒,∇𝑉2, 𝜋

∗
𝜏𝑑 , 𝜋𝜏𝑐

)
= 𝑟2

(
=𝑒, 𝜋∗𝜏𝑑 , 𝜋𝜏𝑐

)
+ ∇𝑉𝑇2

(
𝑓 (=𝑒) + 𝑔𝜋𝜏𝑐 + 𝑔𝜋∗𝜏𝑑

)
, (14)

where ∇𝑉2 = 𝜕𝑉2/𝜕=𝑒 . By utilizing the necessary conditions for optimality, the leader’s optimal disturbance-
resistant saturation control strategy and co-state equations can be derived, with the specific steps outlined as
follows:

𝜋∗𝜏𝑐 = −1
2
𝑅−1𝑔𝑇∇𝑉𝑇2 (15)

¤𝜗 = −𝜕𝐻2

𝜕𝜆̂1

𝑇

=
1
2
𝑔𝐺−1𝑔∇𝑉1 + ∇ 𝑓 𝜗 (16)

To obtain the minimum cost function 𝑉∗
1 , 𝑉

∗
2 under the optimal control input 𝜋∗𝜏𝑑 , 𝜋

∗
𝜏𝑐 , the corresponding

Hamilton-Jacobi (HJ) equation can be derived after introducing the definition ∇𝑉∗
1 = 𝜕𝑉∗

1 /𝜕=𝑒 , ∇𝑉∗
2 =

𝜕𝑉∗
2 /𝜕=𝑒 , as follows:

0 = 𝑟1
(
=𝑒, 𝜋∗𝜏𝑑 , 𝜋∗𝜏𝑐

)
+ ∇𝑉∗𝑇

1
(
𝑓 (=𝑒) + 𝑔𝜋∗𝜏𝑐 + 𝜋∗𝜏𝑑

)
, (17)

0 = 𝑟2
(
=𝑒, 𝜋∗𝜏𝑑 , 𝜋∗𝜏𝑐

)
+ ∇𝑉∗𝑇

2
(
𝑓 (=𝑒) + 𝑔𝜋∗𝜏𝑐 + 𝜋∗𝜏𝑑

)
.

In a further step, by substituting 𝜋∗𝜏𝑑 (11) and 𝜋
∗
𝜏𝑐 (15) into (17), it can be inferred that:

0 =
1
4
∇𝑉∗

1 𝑔𝐺
−1𝑔𝑇∇𝑉∗𝑇

1 − =𝑒𝑇𝑄=𝑒 −
1
4
∇𝑉∗

2 𝑔𝑅
−1𝑔𝑇∇𝑉∗𝑇

2

+∇𝑉∗𝑇
1 𝑓 (=𝑒) −

1
2
𝑔𝑅−1𝑔𝑇∇𝑉∗𝑇

2 − 1
2
𝑔𝐺−1𝑔𝑇∇𝑉∗𝑇

1 ,

0 = =𝑒𝑇𝑄=𝑒 +
1
4
∇𝑉∗

2 𝑔𝑅
−1𝑔𝑇∇𝑉∗𝑇

2 + 2𝜗𝑇𝑄=𝑒 − 𝜗𝑇∇ 𝑓∇𝑉1

+∇𝑉∗𝑇
1 𝑓 (=𝑒) −

1
2
𝑔𝑅−1𝑔𝑇∇𝑉∗𝑇

2 − 1
2
𝑔𝐺−1𝑔𝑇∇𝑉∗𝑇

1 .

(18)

Based on the above content, Theorem 1 is formulated as follows.

Theorem 1: Under the optimal disturbance influence strategy, the velocity error dynamics constrained by
the cost function (6) can ensure stability by utilizing the optimal disturbance-resistant strategy designed in
(15). Furthermore, considering the disturbance-resistant problem of the velocity error dynamics (5) with the
cost function given by (7), the control for

{
𝜋∗𝜏𝑐, 𝜋

∗
𝜏𝑑 (𝜋∗𝜏𝑐)

}
achieves Stackelberg equilibrium if and only if the

coupled HJ equations in (17) have a solution.

Proof: To prove the stability of the tracking error dynamics, 𝑉∗
2 is selected as a candidate Lyapunov function.

Its derivative with respect to (18) is calculated as follows:

¤𝑉∗
2 =

(
𝜕𝑉∗

2
𝜕𝛿

)
¤=𝑒𝑖 +

(
𝜕𝑉∗

2
𝜕∇𝑉∗

1

)
¤𝑉∗
1 = −=𝑒𝑇𝑄=𝑒 −

(
𝜋∗𝜏𝑐

)𝑇
𝑅𝜋∗𝜏𝑐, (19)

Subsequently, based on 𝑄𝑖 > 0 and 𝑅𝑖 > 0, the conclusion can be made through ¤𝑉∗
2 < 0, indicating that under

the optimal strategy, the tracking error system (5) can achieve asymptotic stability.
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To demonstrate the Stackelberg equilibrium, it is noteworthy that the performance index (6) is reformulated
as follows:

𝐽1 (=𝑒0, 𝜋𝜏𝑑 , 𝜋𝜏𝑐)

=
∫ ∞

0

(
−=𝑒𝑇𝑄=𝑒 + 𝜋𝑇𝜏𝑑𝐺𝜋𝜏𝑑 + 𝜋𝑇𝜏𝑐𝑅𝜋𝜏𝑑

)
𝑑𝑠 +

∫ ∞

0
¤𝑉∗
𝑑 𝑑𝑠 +𝑉∗

𝑑 (=𝑒 (0)) −𝑉∗
𝑑 (=𝑒 (∞)) , (20)

By combining expressions ¤𝑉∗
1 =

(
∇𝑉∗

1
)𝑇 [ 𝑓 (=𝑒) + 𝑔𝜋𝜏𝑐 + 𝑔𝜋𝜏𝑑] and −2

(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋𝜏𝑑 =

(
∇𝑉∗

𝑑

)𝑇
𝑔𝜋𝜏𝑑 +𝜋𝜏𝑐𝑅𝜋𝑇𝜏𝑑 ,

and employing the complete square method, it yields:

𝐽1
(
=𝑒0, 𝜋𝜏𝑑 , 𝜋𝜏𝑐

)
=
∫ ∞

𝑡

(
𝜋𝜏𝑑 − 𝜋∗𝜏𝑑

)𝑇
𝐺

(
𝜋𝜏𝑑 − 𝜋∗𝜏𝑑

)
𝑑𝑠 +

∫ ∞

𝑡

(
−=𝑒𝑇𝑄=𝑒 −

(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋∗𝜏𝑑 +

(
∇𝑉∗

𝑑

)𝑇
(21)

×
[
𝑓 (=𝑒) + 𝑔𝜋𝜏𝑐

]
𝑑𝑠 +𝑉∗

𝑑

(
=𝑒 (0)

)
−𝑉∗

𝑑

(
=𝑒 (∞)

)
,

Subsequently, starting from −
(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋∗𝜏𝑑 =

(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋∗𝜏𝑑 +

(
∇𝑉∗

𝑑

)𝑇
𝑔𝜋∗𝜏𝑑 + 𝜋𝜏𝑐𝑅𝜋∗𝜏𝑑 , and utilizing the coupled

HJ equations for the follower as given in (18), this expression can be further simplified to:

𝐽1 (=𝑒0, 𝜋𝜏𝑑) =
∫ ∞

𝑡

(
𝜋𝜏𝑑 − 𝜋∗𝜏𝑑

)𝑇
𝐺

(
𝜋𝜏𝑑 − 𝜋∗𝜏𝑑

)
𝑑𝑠 +𝑉∗

1 (=𝑒0) −𝑉∗
1 (=𝑒 (∞)) , (22)

By setting 𝜋𝜏𝑑 = 𝜋∗𝜏𝑑 , the optimal value of the follower’s cost function is 𝐽1
(
=𝑒0, 𝜋∗𝜏𝑑

)
= 𝑉∗

1 (=𝑒0) −𝑉∗
1 (=𝑒 (∞)).

According to condition ¤𝑉∗
1 = =𝑒𝑇𝑄=𝑒 −

(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋∗𝜏𝑑 − 𝜋𝑇𝜏𝑐𝑅𝜋∗𝜏𝑑 , it is able to conclude that when inequality

=𝑒𝑇𝑄=𝑒 ≤ −𝜋𝑇𝜏𝑐𝑅𝜋∗𝜏𝑑 holds, one has:

𝐽1(𝜋𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋𝜏𝑐)) ≤ 𝐽1(𝜋𝜏𝑐, 𝜋𝜏𝑑 (𝜋𝜏𝑐)), (23)

Consequently, by applying a similar derivation process as outlined for the leader’s cost function, we derive:

𝐽2(𝜋∗𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋∗𝜏𝑐)) ≤ 𝐽2(𝜋𝜏𝑐, 𝜋∗𝜏𝑑 (𝜋𝜏𝑐)), (24)

Therefore, combined with Figure 1, assuming that the control strategy of the follower 𝜋𝜏𝑑 and the leader’s
disturbance-rejection control strategy 𝜋𝜏𝑐 in the Stackelberg game satisfy the aforementioned conditions, such
that neither the leader nor the follower can reduce their respective cost function values (𝐽1 or 𝐽2) by unilaterally
adjusting their strategy, the proof of the Stackelberg game Nash equilibrium, as defined in Definition 1, is thus
concluded.

3.2. Stackelberg game resolution via integral reinforcement learning techniques
As is well known, deriving an analytical solution to the coupled HJ Equation (17) is highly challenging due to
the current nonlinear characteristics. To address this issue, this subsection employs an action-evaluation neu-
ral network algorithmbased on integral reinforcement learning to solve the Stackelberg game in the disturbance-
resistant context of the USVs system. This algorithm includes an auxiliary neural network capable of effectively
handling the complexities arising from unknown dynamics. The discussion regarding the solution of the Stack-
elberg game will involve the follower, the unknown dynamics, and the leader.

To continue, an optimized evaluation neural network is developed to approximate the follower’s optimal value
function 𝑉∗

1 , enabling the representations of 𝑉
∗
1 and its gradient ∇𝑉∗

1 as follows:

𝑉∗
1 = 𝑊∗𝑇

1𝑐 Φ1𝑐 + 𝜁1𝑐,∇𝑉∗
1 = ∇Φ𝑇

1𝑐𝑊
∗
1𝑐 + ∇𝜁1𝑐, (25)

where 𝑊∗
1𝑐 represents the optimal weights of the follower’s evaluation network, Φ1𝑐 = Φ1𝑐 (=𝑒) denotes the

activation function of the evaluation network, and 𝜁1𝑐 = 𝜁1𝑐 (=𝑒) represents the estimation error. Furthermore,
let ∇𝑉∗

1 = 𝜕𝑉∗
1 /𝜕=𝑒,∇Φ1𝑐 = 𝜕Φ1𝑐/𝜕=𝑒 , ∇𝜁1𝑐 = 𝜕𝜁1𝑐/𝜕=𝑒 .
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Considering the unknown nature of the ideal weights 𝑊∗
1𝑐 , a neural network approximation to approach

𝑉∗
1 ,∇𝑉∗

1 is applied, resulting in:

𝑉̂1 = 𝑊̂𝑇
1𝑐Φ1𝑐,∇𝑉̂1 = ∇Φ𝑇

1𝑐𝑊̂1𝑐, (26)

where ∇𝑉̂1 = 𝜕𝑉̂1/𝜕𝑧.

𝜋̂𝜏𝑑 = −1
2
𝐺−1𝑔𝑇∇Φ𝑇

lc𝑊̂la, (27)

where 𝑊̂la is the estimate of the optimal weights𝑊∗
1 of the optimal evaluation network.

To avoid utilizing the unknown dynamics 𝑓 (=𝑒) throughout the learning process, the Bellman error equation
with arbitrary time integral 𝜆 is introduced as follows:

𝑒𝐽1𝑐 = 𝑊̂
𝑇
1𝑐ΔΦ1𝑐 +

∫ 𝑡

𝑡−𝜆
𝑟1
(
=𝑒, 𝜋̂𝜏𝑑 , 𝜋̂𝜏𝑐

)
𝑑𝑠, (28)

where 𝑟1 (=𝑒, 𝜋̂𝜏𝑑 , 𝜋̂𝜏𝑐) = 𝜋̂𝑇𝜏𝑑𝑅𝜋̂𝑇𝜏𝑑−=𝑒
𝑇𝑄=𝑒− 𝜋̂𝑇𝜏𝑐𝐺𝜋̂𝜏𝑐 , 𝜋̂𝜏𝑐 is the control strategy of the leader to be designed.

Additionally, ΔΦlc = Φlc(𝑡) −Φlc(𝑡 − 𝜆).

In addition, with the objective of minimizing the error 𝐸1𝑐 = 1
2𝑒
𝑇
1𝑐𝐽

𝑇 𝑒1𝑐 , the optimal weights 𝑊∗
1𝑐 of the

evaluation network are adaptively adjusted, leading to:

¤̂𝑊1𝑐 = −𝑘1𝑐
=𝑒Φ1𝑐

Φ1𝑐
𝑊̂𝑇

1𝑐𝑒
𝐽
1𝑐, (29)

where Φ1𝑐 =
(
1 + ΔΦ𝑇

1𝑐ΔΦ1𝑐
)2. Additionally, 𝑘1𝑐 > 0 represents the learning rate for adjusting the follower’s

evaluation network.

By substituting the follower’s control output (27) into equations (12) and (16), it can be deduced that:

¤̂Λ1 = 2𝑄=𝑒 − 𝑓 (=𝑒) ∇Φ𝑇
1𝑐𝑊̂1𝑎 , (30)

¤𝛽 = −𝜕𝐻2

𝜕Λ̂1

𝑇

=
1
2
𝑔𝐺−1𝑔∇Φ𝑇

1𝑐𝑊̂1𝑎 + 𝑓 (=𝑒) 𝜗,

Additionally, to fully leverage the state information for disturbance-resistant control and to enhance the mul-
tifunctionality of the unmanned vessel’s behavior, the optimal value function 𝑉2 is decomposed as follows:

𝑉∗
2 = Γ=𝑒

=𝑒𝑇=𝑒 + 2Γ𝑠=𝑒𝑇℘(ℵ)𝑒 + 2Γℎ=𝑒𝑇 𝑓 (=𝑒) + 𝐸∗
𝑉2
, (31)

where 𝐸∗
𝑉2

= 𝑉∗
2 − Γ=𝑒

=𝑒𝑇=𝑒 − 2Γ𝑒=𝑒𝑇℘(ℵ)𝑒 − 2Γℎ=𝑒𝑇 𝑓 (𝑧), Γ=𝑒
, Γ𝑠, Γℎ is the positive definite controller gain.

By taking the partial derivative with respect to =𝑒 and substituting (31) into (15), one obtains:

𝜋∗𝜏𝑐 = −1
2
𝑅−1𝑔𝑇

(
Γ=𝑒

=𝑒 + Γ𝑒℘(ℵ)𝑒 + Γℎ 𝑓 (=𝑒) + ∇𝐸∗
𝑉2

)
, (32)

where ∇𝐸∗
𝑉∗

= 𝜕𝐸∗
𝑉∗
/𝜕=𝑒 .

Consequently, the evaluation network for designing the leader’s (disturbance-resistant) control strategy is de-
veloped to approximate the value function 𝐸∗

𝑉2
and its gradient ∇𝐸∗

𝑉2
as follows:

𝐸∗
𝑉2

= 𝑊∗𝑇
2𝑐 Φ2𝑐 + 𝜁2𝑐,∇𝐸∗

𝑉2
= ∇Φ𝑇

2𝑐𝑊
∗
2𝑐 + ∇𝜁2𝑐, (33)

Where𝑊∗
2𝑐 represents the optimal weights of the leader’s evaluation network, andΦ2𝑐, 𝜁2𝑐 denote the activation

function and estimation error of the leader’s evaluation network, respectively.
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Similarly, by estimating 𝐸∗
𝑉2
and ∇𝐸∗

𝑉2
, one has:

𝐸̂𝑉2 = 𝑊̂
𝑇
2𝑐Φ2𝑐,∇𝐸̂𝑉2 = ∇Φ𝑇

2𝑐𝑊̂2𝑐, (34)

where ∇𝐸̂𝑉2 = 𝜕𝐸̂𝑉2/𝜕=𝑒 .

As a result of the preceding analysis, the leader’s disturbance-resistant controller can be expressed as follows:

𝜋̂𝜏𝑐 = −1
2
𝑅−1𝑔𝑇

(
Γ=𝑒

=𝑒 + Γ𝑠℘(ℵ)𝑒 +Γℎ 𝑓 (=𝑒) + ∇𝜑𝑇2𝑐𝑊̂2𝑎

)
, (35)

where 𝑊̂2𝑎 is the estimate of the optimal weights𝑊∗
2𝑐 of the leader’s evaluation network.

Moreover, akin to the formulation employed for the follower, the Bellman error corresponding to the leader
can be expressed as:

𝑒𝐽2𝑐 =
∫ 𝑡

𝑡−𝜆
𝑟2 (=𝑒, 𝜋̂𝜏𝑑 , 𝜋̂𝜏𝑐) 𝑑𝑠 + 𝑊̂𝑇

2𝑐ΔΦ2𝑐, (36)

where 𝑟2 (=𝑒, 𝜋̂𝜏𝑑 , 𝜋̂𝜏𝑐) = =𝑒𝑇𝑄=𝑒 + 𝜋̂𝑇𝜏𝑑𝐺𝜋̂𝜏𝑑 + 𝜗𝑇
¤̂Λ1 and ΔΦ2𝑐 = Φ2𝑐 (𝑡) −Φ2𝑐 (𝑡 − 𝜆).

Based on this, the adaptive update law for the evaluation networkweights thatminimizes the objective function
𝐸2𝑐 = 1

2𝑒
𝐽𝑇

2𝑐 𝑒
𝐽
2𝑐 are designed as follows:

¤̂𝑊2𝑐 = −𝑘2𝑐
ΔΦ2𝑐

Φ2𝑐
𝑊̂𝑇

2𝑐𝑒
𝐽
2𝑐, (37)

where Φ2𝑐 =
(
1 + ΔΦ𝑇

2𝑐ΔΦ2𝑐
)2. Additionally, 𝑘2𝑐 > 0 represents the learning rate for the adaptive update law

of the evaluation network weights.

Additionally, to maintain the stability of the policy updates, the weight update rule for the action network is
reformulated as follows:

¤̂𝑊1𝑎 = −𝑘1𝑎

[
𝜆

Γ2𝑐
∇Φ1𝑐 𝑓 (𝛿) 𝜗ΔΦ𝑇

2𝑐𝑊̂2𝑐 −
1
2
𝐷1𝑐𝑊̂1𝑐 (38)

− 𝜆

4Γ1𝑐

𝐷1𝑐𝑊̂1𝑎ΔΦ
𝑇
1𝑐𝑊̂1𝑐 −

1
2
∇Φ1𝑐𝑔𝐺

−1𝑔𝑇=𝑒

]
− 𝑘1𝑎𝑊̂1𝑎 ,

¤̂𝑊2𝑎 = −𝑘2𝑎

[
𝜆𝐷2𝑐𝑊̂2𝑎ΔΘ

𝑇
2𝑐

(
𝑊̂1𝑐

/
(4Γ1𝑐) − 𝑊̂2𝑐

/(
4Γ2

2𝑐

))
− 1

2
𝐷1𝑐𝑊̂2𝑐 −

1
2
∇Φ2𝑐𝑔𝑅

−1𝑔𝑇=𝑒
]
− 𝑘2𝑎𝑊̂2𝑎 ,

where, 𝐷1𝑐 = ∇Φ1𝑐𝑔𝑅
−1𝑔𝑇∇Φ𝑇

1𝑐, 𝐷2𝑐 = ∇Φ2𝑐𝑔𝑅
−1𝑔𝑇∇Φ𝑇

2𝑐 .

Building upon the preceding analysis, we can formulate the following Theorem 2:

Theorem 2: Consider an unmanned vessel system with partially unknown dynamics, subjected to the approx-
imately optimal disturbance strategy (27) and update rules (29) and (38). The unmanned vessel system is
designed with an approximately optimal disturbance-resistant control strategy (35), which includes update
rules (37) and (38), ensuring ideal tracking of the trajectory under disturbances, while keeping all signals, as
well as the tracking errors 𝑒 and =𝑒 , bounded within the closed-loop system.

Proof: The following Lyapunov function is utilized in our analysis to assess system stability and performance:

𝐿 = 𝐿1 + 𝐿2 + 𝐿3, (39)
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whereL1 = 𝑒𝑇 𝑒/2+=𝑒𝑇=𝑒/2,L2 = 𝑊̃𝑇
2𝑐𝑘

−1
2𝑐 𝑊̃2𝑐/2+𝑊̃𝑇

2𝑎𝑘
−1
2𝑎 𝑊̃2𝑎/2, L3 = 𝑉∗

𝑎 (=𝑒)+𝑊̃𝑇
1𝑐𝑘

−1
1𝑐 𝑊̃1𝑐/2+𝑊̃𝑇

1𝑎𝑘
−1
1𝑎 𝑊̃1𝑎/2.

Step 1: Taking the derivative of 𝐿1 with respect to time, it obtains ¤L1 = 𝑒𝑇 ¤𝑒 +=𝑒𝑇 ¤=𝑒 . Combining this with (4)
and 𝑒𝑇 ¤𝑒 = −𝑒𝑇Γ1𝑒 + 𝑒𝑇𝑣𝑑=𝑒 , one derives =𝑒𝑇 ¤=𝑒 , which can be expressed as:

¤L1 ≤ −𝑒𝑇Γ1𝑒 − =𝑒𝑇𝐾=𝑒
=𝑒 +

1
2
𝑧𝑇𝑖 𝐷1𝑊̃1𝑎 +

1
2
=𝑒𝑇𝐷2𝑊̃2𝑎 +

[
𝑏𝑖ℎ𝜀 + 1

2

(
𝑏1𝑖
𝜋 + 𝑏2𝑖

𝜋

)]
‖=𝑒 ‖, (40)

Step 2: By taking the time derivative of 𝐿2, we derive ¤𝐿2 = −𝑊̃𝑇
2𝑎𝑘

−1
2𝑎

¤̂𝑊2𝑎 − 𝑊̃𝑇
2𝑐𝑘

−1
2𝑐

¤̂𝑊2𝑐 . Following this, the
substitution of equations (37) and (38) into ¤𝐿2 yields the subsequent result:

¤L2 ≤ −𝑘2𝑎𝑊̃
′
2𝑎𝑊̃2𝑎 − 𝑘2𝑐𝑊̃

′
2𝑐𝑊̃2 −

1
2
𝑊̃

′
2𝑎𝐷

𝑇
2=𝑒 −

𝜆

4Γ2𝑐
𝑊̃

′
2𝑎𝐷4𝑊̂2𝑎=𝑒Φ

′
2𝑐𝑊̂2𝑐 + 𝑘2𝑎

(
𝑊∗

2𝑐
)𝑇
𝑊̃2𝑎

+ 𝑘2𝑐
(
𝑊∗

2𝑐
)𝑇
𝑊̃2𝑐 +

1
Γ2𝑐

𝑊̃
′
2𝑐ΔΦ2𝑐

(
𝑝𝑐 + Δ𝑉1

𝑐

)
, (41)

where 𝑘2𝑐 = ‖Φ2𝑐 ‖2 /Γ2𝑐 . Meanwhile, let 𝑝𝑐 =
∫ 𝑡
𝑡−𝜆

(
𝑟2𝑐

(
=𝑒𝑙𝑡𝑎, 𝜋̂𝜏𝑎 , 𝜋̂𝜏𝑐

)
+ 𝜗 ¤̂𝜋𝜏𝑐

)
𝑑𝑠. To further elaborate,

combining with 𝜀2𝑐
𝑙 ¤𝑔𝑏 = =𝑒𝑇𝑄=𝑒 +

(
𝜋∗𝜏𝑐

)𝑇
𝑅𝜋∗𝜏𝑐 + 𝜗 ¤𝜆1 +

(
∇Φ′

2𝑐𝑊
∗
2𝑐 + ∇𝑉1

𝑐

)𝑇 [
𝑓 (=𝑒) + 𝑔𝜋∗𝜏𝑑 + 𝑔𝜋∗𝜏𝑐

]
, it yields:

1
Γ2𝑐

𝑊̃ 𝑖𝑐𝑟

2𝑐 ΔΦ2𝑐

(
𝑝𝑐 + Δ𝑉1

𝑐

)
=

1
Γ2𝑐

𝑊̃
′
2𝑐ΔΦ2𝑐

[
𝑝𝑐 −

∫ 𝑡

𝑡−𝜆
∇𝑉1

𝑐 𝑑 (=𝑒) + Δ𝑉1
𝑐 (42)

+
∫ 𝑡

𝑡−𝜆

[
𝜋̂𝑇𝜏𝑐𝑅𝜋̂𝜏𝑐 −

(
𝜋∗𝜏𝑐

)𝑇
𝑅𝜋∗𝜏𝑐

]
𝑑𝑠

]
=
𝑝𝑐
Γ2𝑐

∇Φ𝑇
2𝑐𝑊̃2𝑐 −

𝜆

2Γ2𝑐
𝑊̃2𝑐𝐷2𝑐𝑊̃2𝑎 +

ℎ

4Γ2𝑐
𝑊̃𝑇

2𝑐ΔΦ2𝑐𝑊̃2𝑎𝐷4𝑊̃2𝑎 ,

where 𝑝𝑐 =
∫ 𝑡
𝑡−𝜆 𝜀

𝑐
ℎ 𝑗𝑏 −

(
𝑊∗

2𝑐
)𝑇 ∇Φ2𝑐

[
𝑓 (=𝑒) + 𝑔𝜋∗𝜏𝑐 + 𝑔𝜋∗𝜏𝑑

]
, 𝐷2𝑐 = ΔΦ2𝑐

(
∇𝑉∗

𝑐

)𝑇 Ψ𝑇𝑔𝑅−1𝑔𝑇Ψ∇Φ𝑇
2𝑐 . To take

it a step further, ¤𝐿2 can be further derived as:

L2 ≤ −𝑘2𝑎𝑊̃
𝑇
2𝑎𝑊̃2𝑎 +

𝜆

4Γ2𝑐

(
𝑊∗

2𝑐

)𝑇
ΔΦ2𝑐𝑊̃

𝑇
2𝑎Π4𝑊̃2𝑎 − 𝑘2𝑐𝑊̃

𝑇
2𝑐𝑊̃2𝑐 +

𝜆

4Γ2𝑐
𝑊̃𝑇

2𝑐ΔΦ2𝑐
(
𝑊∗

2𝑐
)𝑇 Π4𝑊̃2𝑎 (43)

− 𝜆

2Γ2𝑐
𝑊̃𝑇

2𝑐𝐷2𝑐𝑊̃2𝑎 + 𝑘2𝑎
(
𝑊∗

2𝑐
)𝑇
𝑊̃2𝑎 +

𝑝𝑐
Γ2𝑐

ΔΦ𝑇
2𝑐𝑊̃2𝑐 −

𝜆

4Γ2𝑐

(
𝑊∗

2𝑐

)𝑇
ΔΦ2𝑐

(
𝑊∗

2𝑐

)𝑇
Π4𝑊̃2𝑎

+ 𝑘2𝑐

(
𝑊∗

2𝑐

)𝑇
𝑊̃2𝑐 −

1
2
𝑊̃𝑇

2𝑎Π
𝑇
2=𝑒,

where,
∏

1 = 𝑔𝐺−1𝑔𝑇∇Φ𝑇
1𝑐, Π3 = ∇Φ𝑇

1𝑐
∏

1.

Step 3: By performing a time derivative of 𝐿3, we obtain ¤𝐿3 = −𝑊̃𝑇
1𝑎𝑘

−1
1𝑎

¤̂𝑊1𝑎 − 𝑊̃𝑇
1𝑐𝑘

−1
1𝑐

¤̂𝑊1𝑐 . The integration of
this result, in conjunction with equations (29) and (38), leads to the following outcome:

¤L3 ≤ −𝑘1𝑎𝑊̃
𝑇
1𝑎𝑊̃1𝑎 − 𝑘1𝑐𝑊̃

𝑇
1𝑐𝑊̃1𝑐 −

1
2
𝑊̃𝑇

1𝑎Π
𝑇
1=𝑒 −

ℎ

4Γ1𝑎
𝑊̃𝑇

1𝑎Π3𝑊̂1𝑎ΔΦ
𝑇
1𝑐𝑊̂1𝑐 + 𝑘1𝑎

(
𝑊∗

1𝑐
)𝑇
𝑊̃1𝑎 (44)

+ 𝑘1𝑐
(
𝑊∗

1𝑐
)𝑇
𝑊̃1𝑐 +

1
𝑚Γ1𝑎

𝑊̃𝑇
1𝑐ΔΦ1𝑐𝑝𝑎 ,

where Γ1𝑎 =
(
1 + ΔΦ𝑇

1𝑐ΔΦ1𝑐
)2 and 𝑘1𝑐 =



Φ1𝑐



2 /Γ1𝑎 .

By integrating 𝜀1𝑎
ℎ 𝑗𝑏 = −=𝑒𝑇𝑄=𝑒 +

(
𝜋∗𝜏𝑑

)𝑇
𝐺𝜋∗𝜏𝑑 + 𝜋̂𝑇𝜏𝑐𝑅𝜋∗𝜏𝑑 +

(
𝑊∗

1𝑐
)𝑇 ∇Φ1𝑐

[
𝑓 (=𝑒) + 𝑔𝜋̂𝜏𝑐 + 𝑔𝜋∗𝜏𝑑

]
with 𝑝𝑎 =∫ 𝑡

𝑡−𝜆

(
𝑟1𝑎

(
=𝑒, 𝜋̂𝜏𝑑 , 𝜋̂𝜏𝑐

) )
𝑑𝑠, and applying a differentiation process analogous to that employed in deriving ¤𝐿2,
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we can subsequently obtain ¤𝐿3 as follows:

L3 ≤ −𝑘 l𝑎𝑊̃
𝑇
l𝑎𝑊̃l𝑎 +

𝜆

4Γl𝑎

(
𝑊∗

l𝑐

)𝑇
ΔΦl𝑐𝑊̃

𝑇
l𝑎Π3𝑊̃l𝑎 − 𝑘 l𝑐𝑊̃

𝑇
l𝑐𝑊̃l𝑐 +

𝜆

4Γl𝑎
𝑊̃𝑇

l𝑐ΔΦl𝑐
(
𝑊∗

l𝑐
)𝑇 Π3𝑊̃l𝑎 (45)

− 𝜆

2Γ1𝑎

𝑊̃𝑇
1𝑐𝐷1𝑐𝑊̃1𝑎 + 𝑘1𝑎

(
𝑊∗

1𝑐

)𝑇
𝑊̃1𝑎 +

𝜆

2Γ1𝑎

𝐷1𝑐𝑊̃1𝑐 −
𝜆

4Γ1𝑎

(
𝑊∗

1𝑐

)𝑇
ΔΦ1𝑐

(
𝑊∗

1𝑐

)𝑇
Π3𝑊̃1𝑎

+ 𝑝𝑎
Γ1𝑎

ΔΦ𝑇
1𝑐𝑊̃1𝑐 + 𝑘1𝑐

(
𝑊∗

1𝑐
)𝑇
𝑊̃1𝑐 −

1
2
𝑊̃𝑇

1𝑎Π
𝑇
1=𝑒,

where Π2 = 𝑔Ψ𝑅−1𝑔𝑇Ψ∇Φ𝑇
2𝑐,Π4 = ∇Φ2𝑐Ψ𝑇𝑔𝑅−1𝑔𝑇Ψ∇Φ𝑇

2𝑐 .

Step 4: In light of the extensive analysis provided above, we are now positioned to derive:

L ≤ −Γ1𝑒
𝑇
𝑖 𝑒𝑖 − 𝐾=𝑒

=𝑒𝑇=𝑒 − 𝑘2𝑐𝑊̃
𝑇
2𝑐𝑊̃2𝑐 − 𝑘2𝑎𝑊̃

𝑇
2𝑎𝑊̃2𝑎 − 𝑘1𝑐𝑊̃

𝑇
1𝑐𝑊̃1𝑐

− 𝑘1𝑎𝑊̃
𝑇
1𝑎𝑊̃1𝑎 + Ψ1𝑊̃2𝑐 + Ψ2𝑊̃2𝑎 + Ψ′

3𝑊̃1𝑐 + Ψ4𝑊̃1𝑎 + 𝑊̃𝑇
2𝑐Ψ5𝑊̃2𝑎 (46)

+ 𝑊̃𝑇
1𝑐Ψ6𝑊̃1𝑎 + 𝑊̃ 𝑖𝑐𝛾

𝑎

𝜆

4Γ2𝑐

(
𝑊∗

2𝑐

)𝑇
ΔΦ2𝑐Π4𝑊̃

𝑖𝑐
𝑎 + 𝑊̃ 𝑖𝑎𝛾

𝑎

𝜆

4Γ1𝑎

(
𝑊∗

1𝑐

)𝑇
ΔΦ1𝑐Π3𝑊̃

𝑖𝑎
𝑎 ,

where Ψ1 = 𝑝𝑐
Γ2𝑐

ΔΦ𝑇
2𝑐 + 𝑘1𝑐

(
𝑊∗

1𝑐
)𝑇 , Ψ2 = 𝑘2𝑎

(
𝑊∗

2𝑐
)𝑇 − 𝜆

4Γ2𝑐

(
𝑊∗

2𝑐
)𝑇 ΔΦ2𝑐

(
𝑊∗

2𝑐
)𝑇 Π4, Ψ3 = 𝜆

2Γ1𝑎
𝐷1𝑐 + 𝑝𝑎

Γ1𝑎
ΔΦ𝑇

1𝑐 +
𝑘1𝑐

(
𝑊∗

1𝑐
)𝑇 , Ψ4 = 𝑘1𝑎

(
𝑊∗

1𝑐
)𝑇 − 𝜆

4Γ1𝑎

(
𝑊∗

1𝑐
)𝑇 ΔΦ1𝑐

(
𝑊∗

1𝑐
)𝑇 Π3𝑖 , Ψ5 = 𝜆

4Γ1𝑎
ΔΦ2𝑐

(
𝑊∗

2𝑐
)𝑇 Π4 − 𝜆

2Γ2𝑐
𝐷2𝑐 , Ψ6 =

𝜆
4Γ1𝑎

ΔΦ2𝑐 (𝑊1𝑐)𝑇 Π3 − 𝜆
2Γ1𝑎

𝐷1𝑐 .

In addition, leveraging the principles outlined in Young’s inequality, the following result can be deduced:

Ψ1𝑊̃2𝑐 ≤
𝑘2𝑐

2
𝑊̃𝑇

2𝑐𝑊̃2𝑐 +
(Ψ1)2

2𝑘2𝑐
,Ψ2𝑊̃2𝑎 ≤ 𝑘2𝑎

2
𝑊̃𝑇

2𝑎𝑊̃2𝑎 +
(Ψ2)2

2𝑘2𝑎
,

Ψ3𝑊̃1𝑐 ≤
𝑘1𝑐

2
𝑊̃𝑇

1𝑐𝑊̃1𝑐 +
(Ψ3)2

2𝑘1𝑐
,Ψ4𝑊̃1𝑎 ≤ 𝑘1𝑎

2
𝑊̃𝑇

1𝑎𝑊̃1𝑎 +
(Ψ4)2

2𝑘1𝑎
,

𝑏=𝑒
‖=𝑒 ‖ ≤

𝑘=𝑒

2
=𝑒𝑇=𝑒 +

𝑏2
=𝑒𝑡𝑎

2𝑘=𝑒

.

In this way, it can be effectively simplified to:

L ≤ −𝑎L + 𝑏, (47)

where 𝑎 = min
{
2𝜆min (Γ1) , 𝜆min

(
𝐾=𝑒

)
,

𝑘2𝑐
𝜆min(Γ−1

2𝑐 )
,

𝑘2𝑎
𝜆min(Γ−1

2𝑎 )
,

𝑘1𝑐

𝜆min

(
Γ
−1
1𝑐

) , 𝑘1𝑎
𝜆min(Γ−1

1𝑎 )

}
, 𝑏 = (Ψ1)2

2𝑘2𝑐
+ (Ψ2)2

2𝑘2𝑎
+ (Ψ3)2

2𝑘1𝑐
+

(Ψ4)2
2𝑘1𝑎

+
𝑏2
=𝑒

2𝑘=𝑒
.

In addition, recognizing that:

L(𝑡) ≤
(
L(0) − 𝑏

𝑎

)
𝑒−𝑎𝑡 + 𝑏

𝑎
≤ L(0) − 𝑏

𝑎
, (48)

Consequently, leveraging the principles established by the Lyapunov stability theorem [19], it can be inferred
that the variables 𝑒,=𝑒, 𝑊̃2𝑎 , 𝑊̃2𝑐, 𝑊̃1𝑎 , and 𝑊̃1𝑐 remain constrained within bounded limits throughout the
operation of the closed-loop system.

4. SIMULATION
This section examines the efficacy of the proposed Stackelberg game-based anti-disturbance strategy for trajec-
tory tracking of the USVs, addressing partially uncertain dynamics and externally bounded disturbances. The
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Figure 2. Comparision, desired and anti trajectory within the proposed Stackelberg game-oriented anti-disturbance framework.

dynamics of the USVs can be modeled for simulation purposes as shown in [19]. The simulation scenario pa-
rameters of the system, along with the user-defined control variables, are specified as follows: 𝑅 = 0.38𝐼3, 𝑄 =
20.3𝐼3, 𝐺 = 0.89𝐼3, Γ1 = 2.9𝐼3, 𝐾=𝑒

= 2.2𝐼3, 𝑘1𝑐 = 0.94𝐼6, 𝑘1𝑎 = 0.53𝐼6, 𝑘2𝑐 = 0.81𝐼6, 𝑘2𝑎 = 0.62𝐼6, where
𝐼𝑁 denotes an 𝑁-dimensional identity matrix. In addition, the initial position and velocity of the USVs
are specified as follows: ℵ = [−1.41,−1.98, 0]𝑇 , 𝑣 = [0.5, 0, 0]𝑇 , and the desired trajectory is as follows:

ℵ𝑑 =


[
0.23𝑡, 4 sin

(
𝑡

7.5
)
, arctan

(
4.1
6.8 sin (𝑡/6.8)

)]𝑇
,[

0.23𝑡, 4 sin
(

50
7

)
, arctan

(
4.1
6.8 sin (𝑡/6.8)

)]𝑇
,

if
if

𝑡 < 50
𝑡 ≥ 50

. Meanwhile, the external disturbances af-

fecting the USVs and the system uncertainties are set as follows: 𝐷 = [𝑑1, 𝑑2, 𝑑3]𝑇 , 𝑑1 = −7.5 sin(𝑡), 𝑑2 =

5.2 sin(𝑡) cos(0.1𝑡), 𝑑3 = −3𝑡, and Δ𝐹 (𝑣) =

Δ11 0 0
0 Δ22 Δ23
0 Δ32 Δ33

 , Δ11 = 0.68 + 1.29 |𝑢 | + 5.86𝑢2,Δ22 = 0.89 +

36.2 |𝑣 |+8.1 |𝑟 | ,Δ23 = −0.11+0.832 |𝑣 |+3.27 |𝑟 | ,Δ32 = −0.11−5.04 |𝑣 |−0.13 |𝑟 | ,Δ33 = 1.9−0.08 |𝑣 |+0.75 |𝑟 |.
Based on the adjustments made in the simulations described above, the numerical simulation results are pre-
sented as follows:

As illustrated in Figure 2, the trajectory tracking outcomes are depicted, highlighting a comparison with the
tracking performance achieved through sliding mode control supported by a disturbance observer, named as
Comparison trajectory, and the proposed Stackelberg game-based anti-disturbance approach demonstrates
the capability to achieve accurate and stable tracking of the desired trajectory for the USVs, even in the face
of significant unknown dynamics and external bounded disturbances, named as Anti trajectory. Figure 3
illustrates the tracking errors related to both attitude and velocity, providing compelling evidence of the ef-
fectiveness of this method in achieving precise trajectory tracking of the USVs in the presence of external
bounded disturbances. The conventional anti-interference approach, which combines observers with sliding
mode control, faces a critical limitation: when there is a deviation in the estimation of disturbances, the robust
nature of sliding mode control leads to large corrective actions aimed at driving the error to zero. While this
accelerates convergence, it often results in excessive overshoot, as observed in the trajectory within the [10, 15]
m interval. In contrast, this study introduces an innovative framework for estimating unknown disturbances,
coupled with a control strategy grounded in reinforcement learning. Through an iterative interaction process,
the framework simultaneously optimizes control strategies 𝜋𝜏𝑑 (27) and 𝜋𝜏𝑐 (35), ultimately achieving the
Stackelberg equilibrium. At this equilibrium, neither the interference rejection strategy nor the optimal con-
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Figure 3. Tracking errors 𝑒ℏ and 𝑒𝑣 within the proposed Stackelberg game-oriented anti-disturbance framework.
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Figure 4. Convergence of weights for actor and critic NNs within the Stackelberg game-based anti-disturbance framework.

trol strategy can further reduce the cost function values 𝑉1(𝐽1) (8) and 𝑉2(𝐽2) (9) by adjusting their respective
gains. This approach enables the USV to rapidly detect and respond to unknown environmental disturbances,
even under highly dynamic conditions. By optimizing the control strategy in conjunction with disturbance
estimation, the method ensures that the USV attains a Nash equilibrium, balancing robustness and optimal
control. As a result, the trajectory demonstrates enhanced accuracy and robustness, particularly evident in the
[10, 15] m range. This strategy effectively mitigates the limitations of traditional interference rejection meth-
ods, while keeping tracking errors within an acceptable threshold. In contrast, conventional approaches rely
primarily on disturbance estimation via observers and robust controllers, without the coordinated interplay be-
tween estimation and control, thereby limiting their capacity to address complex, time-varying environments.

In Figure 4, the convergence trends of the weights for the actor and critic neural networks, which illustrate
the disturbance-resistant control strategy and the auxiliary compensation policy for unmodeled dynamics
and external disturbances, are presented. Meanwhile, Figure 5 illustrates the norm convergence curve of the
weights utilized in the approximation of the unknown dynamics, which encompass several unmodeled system
dynamics and bounded external disturbances. Figures 4 and 5 demonstrate that, utilizing a sequential decision-
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Figure 5. Norm convergence of weights for unknown information that encompasses external disturbances and uncharacterized system
dynamics.
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Figure 6. Control input within the proposed Stackelberg game-oriented anti-disturbance framework.

makingmechanism, the weight curves of the neural networks converge rapidly to optimal values andmaintain
stability within a defined range. This finding offers substantial evidence that the proposed approach is capable
of achieving the Nash equilibrium solution for the Stackelberg game using integral reinforcement learning.
As illustrated in Figure 6, both the disturbance-assisted control signal and anti-disturbance input reveal that,
when employing the optimal disturbance-assisted control strategy, the anti-disturbance mechanism achieves
superior tracking accuracy, thereby enhancing the operational safety of the USVs.

5. CONCLUSION
This study explores the challengesUSVs encounter during navigation and introduces an innovative anti-disturbance
control strategy tailored for partially known dynamic systems, leveraging Stackelberg game theory. Within
this theoretical framework, we formulate a sequential non-cooperative game that incorporates control inputs.
To enhance the optimization process, we employ an action-evaluation integral reinforcement learning algo-
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rithm designed to directly minimize the Bellman error, deriving an approximately optimal solution. More-
over, auxiliary neural networks are integrated to accurately approximate the unknown dynamics and external
disturbances affecting the system. Simulation results substantiate the efficacy and superiority of the proposed
Stackelberg game-based integral reinforcement learning control strategy in mitigating disturbances in USVs.
Future research will concentrate on the development of optimal anti-jamming, fault-tolerant, and coopera-
tive obstacle avoidance strategies for multiple USVs, grounded in Stackelberg game theory, with a particular
emphasis on scenarios involving deception attacks and complex multi-obstacle environments.
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