
Remote Piloting Development of an ROV
Jefferson Osowsky

Department of Innovation
OceanPact - Serviços Marı́rimos S.A.

Rio de Janeiro, RJ, Brazil
Email: jefferson.osowsky@oceanpact.com

Tin Muskardin
Department of Innovation

OceanPact - Serviços Marı́rimos S.A.
Rio de Janeiro, RJ, Brazil

Email: tin.muskardin@oceanpact.com

Leonardo M. Barreira
Department of Innovation

OceanPact - Serviços Marı́rimos S.A.
Rio de Janeiro, RJ, Brazil

Email: leonardo.barreira@oceanpact.com

Abstract—This work presents a project that consists of turning
a commercial Remote Operated Vehicle (ROV) into a Remotely
Piloted ROV. It was taken two approaches. First we developed
a serial/ethernet converter to transfer data from the hand
controller to the ROV control console and vice-versa. In this
approach, an ESP32 microcontroller was used to receive serial
data in the 9-bit framing protocol and transmit them over a
network connection. The reverse operation was carried out on
the other side by another ESP32. The second approach was based
on replacing the ROV remote control with an Single Board
Computer (SBC), whose function was to emulate the signals
sent to the ROV by the remote control. It will be presented
the development and the achieved results for these two methods.

I. INTRODUCTION

In this project, we intend to upgrade the video and control
systems of the Outland 2000 Remotely Operated Vehicle1

(ROV) [1], [2], turning it into a remotely piloted ROV as
illustrated in Figure 1. Thereby, instead of connecting by wire
the control console to the hand controller we have inserted be-
tween them a subsystem composed of serial/ethernet convert-
ers and video encoder and decoder. Through this subsystem
we will have built a full ROV piloting solution via remote
connection by means of satellite or wireless network links.
This is also known as ‘Onshore Piloting System’.

Searching the scientific literature, we did not find many
works concerned with solving problems similar to this one.
Indeed, only a few projects were found in the literature,
namely [3], [4], [5] and [6]. On the other hand, companies
like TechnipFMC, Oceaneering, and Subsea7 have already
developed and tested their own remotely piloted ROVs since
2022, 2016, and 2023, respectively.

This work is divided as follows: First, in Section II the
authors present the development of this project, turning the
original ROV system into a teleoperated ROV solution. Then,
in Section III the results achieved so far are presented. Finally,
in Section IV we present some concluding remarks about this
project.

II. DEVELOPMENT

In this work, we approach the remote piloting problem
by dividing it into a video transmission problem and a data
exchange problem through an RS-485 serial interface. The
former will not be addressed in this paper because we consider

1https://www.outlandtech.com/rov-home/rov2000

that its solution is already well defined with the use of video
streaming encoders and decoders. The latter has been solved
by means of the development of a RS-485 Serial/Ethernet
converter. Note in Figure 1 that the control console and hand
controller when connected by wire, exchange data through
standard RS-485 serial communication. In a remote piloting
system, this connection must necessarily go through a satellite
or wireless communication network. Thus, first we need to
translate from RS-485 serial data into ethernet data. Next, eth-
ernet data are transmitted to the other Ethernet/Serial converter
via switches/routers. Finally, these data are converted back to
Serial data.

However, an issue that arises in this project is that the data
framing protocol used in the RS-485 multidrop communication
between the control console and the hand controller is 9-bit
data framing instead of the usual 8-bit, the differences between
them are shown in Figure 2. This uncommon type of serial
communication protocol is used to identify if a sequence of
8-bits transmitted to a device is an address message (setting
the parity bit to mark) or a data message (setting the parity
bit to space). This way, it is possible to create a half-duplex
serial master/slave network where two or more devices, each
identified by a unique address, can exchange data with each
other.

Since most Universal Asynchronous Receiver-Transmitter
(UART) chipsets in commercial microprocessors and micro-
controllers are 8-bit mode only, we had to implement our own
serial UART 9-bit mode to Ethernet converter by software.
The processing hardware chosen for this development was
the ESP32-DevKitC module from Espressif with the following
main features: Xtensa® dual-core 32-bit LX6 CPU, frequency
up to 240MHz; 448 KB of ROM, 520 KB of SRAM, and 4
MB of Flash memory; WiFi 802.11b/g/n; and up to 26 General
Purpose Input/Output (GPIOs). The source code of this project
has been implemented in C programming language and we
have chosen the ESP-IDF from Espressif as development
framework. The result of this work is shown in Figure 3. On
the right side is the Serial/Ethernet converter that is connected
to the hand controller. On the other hand, the left side is
the Serial/Ethernet converter that is connected to the control
console. Below, in Figure 4, it is shown an example of an
RS-485 serial output signal from the hand controller which is
sent to the ROV control console.

 
 
979-8-3315-4008-1/24/$31.00 ©2024 IEEE

O
CE

AN
S 

20
24

 - 
Ha

lif
ax

 |
 9

79
-8

-3
31

5-
40

08
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

O
CE

AN
S5

51
60

.2
02

4.
10

75
37

04

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on December 17,2024 at 16:06:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. System architecture for IP-based remote control.

Fig. 2. Comparation of 8-bit and 9-bit data framing protocol.

Fig. 3. Serial/Ethernet converter connected to the ROV hand controller (right
side), and Serial/Ethernet converter connected to the ROV control console
(left side).

It is worth noting in this Figure that the commands that
control the ROV are repeated periodically at an interval of
61.20 milliseconds. We figured out that if this interval is
greater than 100 milliseconds then the ROV stop working.

As will be presented in Section III, the results achieved
by the approach were good enough when the system was
connected to a Local Area Network (LAN), allowing us to
pilot remotely the ROV, but not good enough when it was

Fig. 4. An example of an RS-485 serial output signal from the hand controller
to the control console.

connected to a Wide Area Network (WAN) duo to some
network communication failures, loss of data packets, timing
issues, and network latency.

In contrast with the above development, we decided to
tackle this problem by mean of another approach. So far,
our system could be considered only as a gateway equipment
that received serial data from the hand controller (client side),
turned it into an network data packet, sent this packet to the
server side via a network connection, turned it into serial data
again to sent it to the ROV control console.

In this new approach, we introduce a Single Board Com-
puter (SBC), namely a Rapberry Pi 4, which is connected to
the control console directly, and operates as the ROV hand
controller, sending periodically commands to the ROV. A
block diagram of the ROV side is presented in Figure 5.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on December 17,2024 at 16:06:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Block diagram of the sub-system that is connected to the control console (deck unit). This connection is made by means of a Raspberry Pi 4 SBC.

Fig. 6. Block diagram of the sub-system that is connected to the joystick. This side of the system will change the ROV states.

As in the development of the serial/ethernet converter using
the ESP32 microcontroller, described previously, our efforts
were concentrated on serial communication with the 9-bit
protocol between the control console and the SBC. Since
the Raspberry Pi Operating System (OS) is a Linux OS, its
UART does not support the 9-bit protocol, so it was necessary
to implement a code in C programming language that could
emulate it. The implementation of this code was possible due
to the possibility of changing the serial port configuration
parameters dynamically. Thus, we could transmit/receive an
address message by dynamically setting the parity bit to Mark
or transmit/receive a data message by dynamically setting the
parity bit to Space.

A second feature of this side of the remote piloting system
is the architecture used to allow the exchange of information

between the ROV control console and the remote station,
where the joystick that controls the ROV is installed. Initially,
we are using the Secure Shell (SSH) service for this message
exchange, allowing us to control the ROV states in real time.
However, to increase the system security, this message ex-
change will be performed via the Message Queuing Telemetry
Transport (MQTT) protocol, as shown in Figure 5.

Finalizing the system development, Figure 6 presents the
remote sub-system that is connected to the joystick and it is
responsible for acting in the ROV states. A joystick action is
transferred to the ROV via a network connection over SSH
service or MQTT protocol.

Figure 7 illustrates an emulated control signal that the
Raspberry Pi 4 sends to the ROV control console (red signal)
and its respective response (blue signal).

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on December 17,2024 at 16:06:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. An example of an RS-232 serial output signal from Raspberry Pi 4
to the control console.

III. RESULTS

Figures 8-10 show the ROV being piloted remotely over
a Wifi LAN connection by using the ESP32 Serial/Ethernet
converter. In Figure 8, we can see an overview of the exper-
iment. On the left side, there is the pilot and the client side
Serial/Ethernet converter, in the center, there is the water tank
with the ROV submerged, and on the right side, there is the
server Serial/Ethernet converter and the control console.

Fig. 8. ESP32 controller: Overview of the experiment.

The server Serial/Ethernet converter and the ROV control
console are shown in Figure 9. On the other hand, the pilot,
the client Serial/Ethernet, the ROV joystick, and the ROV are
shown in Figure 10.

It is worth noting that this experiment was carried out via
a Wifi connection on a LAN. In this configuration latency
and jitter were very low and the teleoperation task was easily
executed. Subjectively there was no difference to the direct
control version via cable connection. On the other hand, when
we connected this system to a WAN via the Starlink network
it was not possible to pilot the ROV. For this reason, a second
approach was developed and tested.

Fig. 9. ESP32 controller: ROV side view.

Fig. 10. ESP32 controller: Remote piloting view.

The second approach uses a Raspberry Pi 4 to emulate the
ROV hand controller. It is connected directly to the ROV and
sends commands to the control console periodically.

Figures 11-13 show the results of this second experiment.
On the ground floor there is all the equipment on the ROV
side, see Figure 11. On the upper floor, there are devices for
the remote piloting of the ROV, see Figure 12.

Fig. 11. Raspberry Pi: ROV side overview.

In Figure 13, we can see the Raspberry Pi 4 connected to a
Serial converter (green enclosure) which is connected via RS-
485 to the ROV control console. Furthermore, the Raspberry
Pi 4 is also connected via cable to a Wifi router. This router
sends and receives network packets to/from the remote station

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on December 17,2024 at 16:06:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 12. Raspberry Pi: Remote piloting view.

Fig. 13. Raspberry Pi: View of the electronic devices on the ROV side.

Fig. 14. Raspberry Pi: TUI on the remote control station side.

as illustrated in Figure 12. On the remote control station side
there is a laptop that has a Text-based User Interface (TUI),
see Figure 14, for sending commands to the ROV and a video
stream from the ROV camera, as shown in Figure 15.

In this experiment, we can point out that the teleoperation
performance was excellent, and the latency was in the order
of milliseconds. All thrusters, lights, and cameras could be
controlled via the laptop keyboard with greater accuracy than
that obtained from the ROV joystick.

IV. CONCLUDING REMARKS

In this paper we have presented two methods to turn a
commercial ROV into a Remotely Piloted ROV. The first

Fig. 15. Raspberry Pi: Video stream from ROV camera.

one, which was based on a ESP32 Serial/Ethernet converter,
achieved an excellent performance on a Wifi LAN connection.
The second one, which was based on a Raspberry Pi 4
connected directly to the ROV control console to emulate
its joystick, equally achieved a flawless performance on a
Wifi LAN connection. Based on the results achieved using
the Raspberry Pi 4, some steps are already being planned to
allow the remote piloting of the ROV over a WAN network,
which are: 1) implement the MQTT protocol for data exchange
between the ROV and the remote control station; 2) reduce the
video stream latency a jitter; 3) Implement a graphical user
interface (GUI) connected to a generic joystick.

ACKNOWLEDGMENT

The authors would like to thank OceanPact Serviços
Marı́timos S.A. for funding the project development. Further-
more, the authors extend their gratitude to Outland Technology
Inc. for providing technical information, which was instrumen-
tal in the project’s development.

REFERENCES

[1] ROV-2000 System, Doc. Number: 04-0024 Rev B1, Outland Technology,
Inc, Louisiana: U.S.A, 2021.

[2] User Manual OUTLAND ROV 1000, 2000 & 2500, Doc. Number: 46-
0002 Rev B1, Outland Technology, Inc, Louisiana: U.S.A, 2021.

[3] G. Bruzzone, R. Bono, M. Caccia, P. Coletta, and G. Veruggio, ”Internet-
based teleoperation of the Romeo ROV in the Arctic region”, IFAC
Proceedings Volumes, Vol. 36, no. 21, pp. 265–269, 2003.

[4] J. Gancet, D. Urbina, P. Letier, M. Ilzokvitz, P. Weiss, F. Gauch, G. An-
tonelli, G. Indiveri, G. Casalino, A. Birk, M. F. Pfingsthorn, S. Cali-
non, A. Tanwani, A. Turetta, C. Walen, and L. Guilpain, ”Dexrov: Dexter-
ous undersea inspection and maintenance in presence of communication
latencies”, IFAC-PapersOnLine, Vol. 48, no. 2, pp. 218-223, 2015.

[5] A. J. Dalpe, S. Suman, M. V. Jakuba, and A. Bowen, ”Teleoper-
ation of Remotely Operated Vehicles: Development, Challenges, and
Future Directions”, OCEANS 2022, VA, USA, 2022, pp. 1-7, doi:
10.1109/OCEANS47191.2022.9977341

[6] A. A. Dalhatu, A. M. Sa’ad, R. C. de Azevedo, and G. de Tomi, ”Re-
motely Operated Vehicle Taxonomy and Emerging Methods of Inspec-
tion, Maintenance, and Repair Operations: An Overview and Outlook”,
Journal of Offshore Mechanics and Arctic Engineering, vol. 145, doi:
10.1115/1.4055476.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on December 17,2024 at 16:06:21 UTC from IEEE Xplore.  Restrictions apply. 


