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Abstract: In the context of multi-autonomous underwater vehicle (multi-AUV) operations, the target
assignment is addressed as a multi-objective allocation (MOA) problem. The selection of strategy for
multi-AUV target allocation is dependent on the current non-cooperative environment. This paper
establishes a multi-AUV allocation situation advantage evaluation system to assess and quantify the
non-cooperative environment. Based on this framework, a multi-AUV target allocation model using
a bi-matrix game theory is developed, where multi-AUV target allocation strategies are considered
as part of the strategic framework within the game. The payoff matrix is constructed based on
factors including the situational context of multi-AUV operations, effectiveness, and AUV operational
integrity. The Nash equilibrium derived from the game analysis serves as the optimal solution for
resource distribution in multi-AUV non-cooperative scenarios. To address the challenge of finding
the Nash equilibrium in bi-matrix games, this paper introduces a repulsion process quantum particle
swarm optimization (RPQPSO) algorithm. This method not only resolves the complexities of Nash
equilibrium computation but also overcomes the limitations of traditional optimization methods that
often converge to local optima. A simulation experiment of multi-AUV operations is designed to
validate the multi-AUV target allocation model, demonstrating that the RPQPSO algorithm performs
effectively and is applicable to multi-AUV task scenarios.

Keywords: game theory; multi-AUV; target assignment; Nash equilibrium; repulsion processes
quantum particle swarm optimization (RPQPSO)

1. Introduction

The target allocation problem in multi-AUV (autonomous underwater vehicle) opera-
tions represents a significant challenge in constrained combinatorial optimization, closely
analogous to resource allocation problems in other domains. This problem, first introduced
by [1] and established as NP-complete by [2] in 1986, is characterized by exponentially
increasing solution times as the number of targets grows. Traditional enumeration-based
algorithms [3] are therefore limited to addressing only small-scale problems. The central ob-
jective of target allocation is to minimize resource utilization while maximizing operational
benefits, requiring an effective allocation of targets to tasks under various scenarios. Two
critical aspects define the problem: the probability of AUV effectiveness, which determines
the success of the allocation strategy, and a refined analytical description of the allocation
process, which is essential for developing computational models and algorithms.

The target allocation problem can be categorized into static and dynamic allocation
problems [4]. In static allocation, all resources are assigned at one stage, with complete
knowledge of problem parameters, making the goal to optimize temporary operational
tasks. In contrast, dynamic allocation involves multiple stages, where decisions are made
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iteratively based on the outcomes of previous stages. In multi-AUV non-cooperative sce-
narios, the target allocation problem is inherently dynamic [5], and it can be modeled
as a finite-state Markov decision process [6]. Unlike static problems, dynamic allocation
considers not only the matching of resources to objectives but also the interrelations be-
tween decision phases, objectives, and resources, making it a complex triple-optimization
problem [7]. Effective algorithms for this problem must meet three requirements: rapidity,
rationality, and effectiveness of allocation.

Existing research on target assignment has primarily focused on two types of mod-
els: asset-based optimization models [6–11] and goal-based optimization models [12–14].
Ref. [15] proposed an asset-based dynamic target assignment optimization model, which
was later extended by [16] to incorporate four key constraints: capability, strategy, resource,
and feasibility. Dynamic target allocation has also been formulated as a Markovian decision
process, with [6] applying approximate dynamic programming (ADP) to solve representa-
tive examples. Other works, such as [9,10], have developed integer linear programming
models or linearization algorithms to address constraints and resource interdependencies.
Additionally, ref. [17] introduced a hierarchical approach within the observe–orient–decide–
act (OODA) framework for non-cooperative scenarios. In non-cooperative scenarios, asset-
based models often rely on intelligence gathering and analysis, which can be challenging
in real-world applications.

In non-cooperative environments, where asset-based models depend heavily on intel-
ligence gathering, some researchers have shifted toward goal-based optimization models
that focus on minimizing target threats or maximizing operational gains without relying
on asset values. For instance, ref. [18] proposed a dual-target allocation optimization
model balancing expected threat neutralization and resource expenditure, while ref. [19]
developed a two-target multi-stage tasking model emphasizing sensor-platform synergy.
Building on these approaches, ref. [12] defined an objective function that maximizes system
security and engagement sequence stability. To address uncertainty, ref. [20] introduced a
bi-objective optimization model using a conditional value-at-risk measure, and ref. [21] pro-
posed a multi-objective optimization model with probability thresholds and time window
constraints. Chandra et al. [22] explored the distributed decision-making problem in multi-
agent systems and proposed a game-theoretic control barrier function-based distributed
multi-robot navigation method. Other works, such as [23,24], explored nonlinear multi-
objective planning and zero-sum game approaches, with [14] synthesizing these methods
into a two-party zero-sum dual-matrix game model for multi-AUV scenarios. These models
are particularly useful in environments where intelligence is limited or unreliable, allowing
decision-makers to focus on high-level objectives rather than specific resource capabilities.

To solve dynamic target assignment problems, numerous algorithms have emerged, partic-
ularly with the advent of intelligent optimization techniques. Simulated annealing [25], genetic
algorithms [9,26,27], ant colony optimization [28,29], and particle swarm optimization [30,31]
have all been applied to this domain. Romano et al. [32] studied the social behavior of
robots, providing a foundation for researching collective intelligence. These studies [33–35]
reveal the influence of phenotypic traits, group structure, and dynamic principles on col-
lective movement and behavioral decision-making. Hybrid algorithms have also gained
traction: [36] combined ant colony optimization (ACO) with simulated annealing (SA),
while [29] integrated ACO with greedy algorithms for large-scale problems. Novel ap-
proaches, such as an improved membrane swarm algorithm [37], an (ABC) algorithm using
rule-based heuristic factors [38], and elite collaborative genetic algorithms [39], have been
proposed to address challenges like slow convergence and low search efficiency. Addition-
ally, ref. [40] developed an improved genetic algorithm for cross-regional collaborative task
allocation, and ref. [21] introduced a hybrid multi-objective discrete particle swarm opti-
mization algorithm for cooperative environments. Recently, ref. [41] proposed an adaptive
simulated annealing–particle swarm optimization (SA–PSO) algorithm, integrating simu-
lated annealing to enhance convergence speed and real-time performance in multi-objective
target assignment. However, most existing algorithms focus on reducing the number of
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iterations or improving convergence efficiency, often at the expense of robustness. This can
lead to suboptimal solutions, especially in dynamic, non-cooperative environments where
avoiding local optima is critical.

Despite these advancements, several gaps remain. Most existing models and al-
gorithms focus on either defensive strategies or offensive surprise tactics, with limited
attention to dynamic, non-cooperative target allocation models that simultaneously con-
sider the strategies of both sides in multi-AUV tasks. Additionally, while many studies aim
to improve computational efficiency, fewer efforts have been directed toward designing
algorithms that effectively escape local optima and achieve globally optimal solutions
in complex, real-world scenarios. To address these challenges, this paper makes the
following contributions:

• We established a game model for the non-cooperative target allocation problem in
multi-AUV tasks, creating an AUV dominance evaluation system and quantifying
and analyzing the benefits of target allocation schemes.

• We proposed a Nash equilibrium solution algorithm for the non-cooperative target
allocation game to address the computational challenges of the NP-hard problem.

• We improved the quantum particle swarm algorithm, which can be applied not only to
the solution of Nash equilibrium problems but also to hard NP problems with “steep”
non-global optimal solutions.

The remaining organizational parts of the article are as follows: Section 2 develops
a dual matrix game model for multi-AUV target assignment. In Section 3, we design a
repulsion-based quantum particle swarm Nash equilibrium solution algorithm. Finally,
in Sections 4 and 5, simulation experiments are designed to verify the effectiveness and
superiority of the proposed algorithm.

2. Game Modeling of Multi-AUVs Target Assignment Problem

To address the complex demands of target assignment in multi-AUV operations,
particularly in non-cooperative scenarios, this paper adopts game theory principles by
modeling the red and blue AUVs as participants in a strategic game. In multi-AUV
operations, target assignment refers to the process of allocating specific tasks or objectives
(targets) to each autonomous underwater vehicle (AUV) within a system to ensure the
effective completion of the overall mission. This task becomes especially critical in non-
cooperative scenarios, where opposing parties, such as red and blue AUV groups, act
independently and potentially in conflict with one another. The importance of solving the
target assignment problem lies in maximizing operational effectiveness while minimizing
resource waste and conflict. In non-cooperative settings, understanding and predicting
the behavior of the opposing side is crucial for achieving a strategic advantage. For
example, a poor assignment of targets could lead to redundant efforts, missed mission
objectives, or even jeopardizing the success of an operation due to adversarial interference.
In this paper, we establish a situation advantage evaluation model using the operational
information of both parties. The target assignment strategies of the red and blue AUVs
are treated as game strategies, and the interactions are formalized as a bi-matrix game. A
payoff function is constructed to evaluate the total gains and losses of both sides under
various target assignment combinations, capturing the competitive dynamics of resource
allocation and mission success. By solving the Nash equilibrium of the game, the optimal
target assignment strategy for each side is determined, ensuring that no participant can
unilaterally improve its outcome without disrupting the balance.

2.1. AUV Capability Model

The prerequisite for matching is the quantification of capability. In many existing stud-
ies, whether addressing AUVs or other unmanned systems in target allocation problems,
there is a lack of detailed explanation regarding threat capabilities. Typically, a simple
probability (often a fixed value) is used to represent it. While this approach has minimal
impact on algorithms in static allocation problems, in dynamic allocation scenarios, the
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distribution at different stages relies on feedback from the previous moment’s results. As
the task duration increases, using fixed values to represent allocation effects can lead to
cumulative errors that grow larger over time, resulting in significant deviations between ex-
perimental outcomes and actual situations. Therefore, before modeling the target allocation
problem, it is important to provide a clear description of the AUV’s threat capability.

In actual gameplay, there are scenarios where multiple AUVs select the same target.
This situation can be simulated as a simultaneous volley, ignoring the time interval of
the shooting process, and the threat capability can be described using coverage domains.
Assuming that all AUVs operate independently during this process, at time t, n AUVs
select a target, and their hit probabilities, depending on their respective states, are denoted
as q1, q2, . . . , qn. The capability function of each AUV follows a zero-bias circular normal
distribution, meaning that the capability of a single AUV can be expressed as follows:

PK = 1− e(−X/2), (1)

where X =
n
∑

i=1

R2
i

σ2
i

, the standard error of the error variable in each direction is σ, and the

threat radius of the AUV is R. The definition X =
n
∑

i=1

R2
i

σ2
i

represents the capability of this

group to simultaneously select targets.
In real-world scenarios, targets are often not singular, necessitating consideration of

multiple targets when modeling the threat capability of AUVs. To simplify this study,
the concept of a simultaneous “volley” scenario is introduced into the modeling process.
Although achieving truly simultaneous strikes on multiple targets is challenging in practice,
the underwater environment involves significant time costs for feedback on detection infor-
mation as well as other unique characteristics. For instance, underwater communication is
constrained by low efficiency and high latency due to the physical properties of acoustic
communication. Additionally, AUVs in underwater environments face slower movement
speeds and limited navigation and positioning accuracy, which add complexity to task
planning and allocation. Therefore, the process can be simplified by assuming no immedi-
ate feedback after deploying the AUV, effectively treating the launches as “simultaneous”.
In this context, “simultaneous” does not emphasize precise timing consistency but rather
focuses on the absence of feedback after each AUV completes its mission, allowing for
modeling as a single, unified engagement phase.

2.2. Bi-Matrix Game Model of Multi-AUVs Target Assignment

The two-person zero-sum bi-matrix game Γ = (N, S∗R, S∗B; A, B; ) can be viewed as
an extension of the n-person finite game Γ = (N, {Si}, {ui}), where the game individual
set is N = {R, B}, and R, B are red and blue parties composed of multi-AUVs. S∗R and
S∗B are extensions of the strategy set {Si} to represent the mixed strategy set of game
individuals, respectively, which are the target assignment schemes of red and blue. A, B are
the extensions of the payoff function and the payoff matrix corresponding to the strategy,
respectively. Under the mixed strategy (x, y), the expected returns of individual R and
individual B are, respectively, ER(x, y) = xAyT and EB(x, y) = xByT . (x∗, y∗) is a mixed
Nash equilibrium of game Γ. {

xAy∗T ≤ x∗Ay∗T , ∀x ∈ S∗1
x∗ByT ≤ x∗By∗T , ∀y ∈ S∗2

. (2)

In the calculation of multi-AUV target assignment, the computational difficulty in-
creases significantly with the number of AUVs. Therefore, this paper introduces the concept
of strategic superior super [32], firstly slimming down the payoff matrix.
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Definition 1. In game Γ = (N, {Si}, {ui}), the strategies s(i)g and s(i)h of game i make

ui(s
(i)
g , s−i) > ui(s

(i)
h , s−i), ∀s−i ∈∏

k ̸=i
Sk. (3)

This indicated that strategy s(i)g of game i is superior to strategy s(i)h .
The relevant corollaries for the solution of the Nash equilibrium mixed strategy are given below.

A·j is the jth (i = 1, 2, · · · , m) column of A, and Ai· (j = 1, 2, · · · , n) is the ith row of A.

Inference 1. Let Γ = (S∗
1
, S∗

2
; A, B; )x∗ ∈ S∗1y∗ ∈ S∗2 be a bi-matrix game; then, (x∗, y∗) is a

mixed Nash equilibrium of Γ, IFF:{
Ai·y∗T ≤ x∗Ay∗T , i = 1, 2, · · · , m

x∗B·j ≤ x∗By∗T , j = 1, 2, · · · , n
, (4)


x∗Ay∗T = max

1≤i≤m
Ai·y∗T

x∗By∗T = max
1≤j≤n

x∗B·j
. (5)

Theorem 1. Let (x∗, y∗) be a mixed Nash equilibrium of Γ = (S∗
1
, S∗

2
; A, B; }; then, there are

complementary relaxation conditions:{
x∗i (x∗Ay∗T − Ai·y∗T) = 0, i = 1, 2, · · ·, m

y∗j (x∗By∗T − x∗B·j) = 0, j = 1, 2, · · ·, n
. (6)

According to Definition 1, (x∗, y∗) is the mixed Nash equilibrium of bi-matrix game Γ =
(S∗

1
, S∗

2
; A, B; ) only when (x∗, y∗) is the solution of the inequality set as follows:

Ai·y∗T ≤ x∗Ay∗T , i = 1, 2, · · · , m,

x∗B·j ≤ x∗By∗T , j = 1, 2, · · · , n,
m

∑
i=1

xi ≤ 1,

n

∑
j=1

yj ≤ 1,

xi ≥ 0, i = 1, 2, · · · , m,

yj ≥ 0, j = 1, 2, · · · , n.

. (7)

Definition 2. By solving the above equation, the Nash equilibrium mixed strategy (x∗, y∗) of the
individual game can be obtained.

2.3. Multi-AUVs Confrontation Superiority Evaluation System

Based on the analysis of the multi-AUVs countermeasures problem, the situation
advantage function based on the heading, velocity, and distance of both sides and the
attack and defense efficiency advantage function based on the attack performance of
both sides’ AUVs is established to form the multi-AUVs attack and defense countermea-
sures dominance evaluation system, which provides the basis for the establishment of the
payment matrix.

2.3.1. Situation Advantage Function

The red AUV cluster is R = {R1,R2, . . . , Ri}, where Ri represents the ith red AUV. The
blue AUV cluster is B = {B1,B2, . . . , Bj}, where Bj represents the jth blue AUV. The offensive
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and defensive situations of Ri and Bj are shown in Figure 1. In Figure 1, Dij is the linear
distance between two AUVs, and VRi and VBj are the velocity vectors of the red AUV and
blue AUV, respectively. qij is the off-axis angle of Ri relative to Bj, and is defined as the
entry angle of the target.

ijq

jiq

ijD

iR

jB

iRV

jBV

Figure 1. Antagonistic situation diagram.

The right deviation of the target bearing and target entry angle is positive, and the left
deviation is negative. According to the confrontation situation between red and blue, the
heading advantage is defined as follows:

Wa =
1
2

[
1 +
|qij| − |qji|

π

]
. (8)

When qij = 0 and qji = π, the red AUVs have the advantage of angle attack. When qij = π
and qji = π, the two sides are in a state of equilibrium. When qij = 0 and qji = 0, both sides
are at a disadvantage. When qij = π and qji = 0, blue AUVs are in the dominant state.

The velocity advantage function is shown in Equation (9):

Wv =



0.1 VRi ≤ 0.5VBj

0.2

(
VRi

VBj

)2

+0.5

(
VRi

VBj

)
-0.2 0.5VBj < VRi < 1.5VBj

1 VRi ≥ 1.5VBj

, (9)

where VRi and VBj are the velocity vectors of the red AUV and blue AUV, respectively. The
higher the velocity of the AUV, the greater the attack advantage will be.

The distance advantage function is shown in Equation (10):

Wr =

{
0 Dij < Rmin and Dij > Rmax

− σ2

16 (Dij − R0)
2 + 1 Rmin ≤ Dij ≤ Rmax

, (10)

where Dij is the linear distance between two red AUVs and blue AUVs, σ = 2(Rmax−Rmin),
R0 = (Rmax − Rmin)/2; Rmax is the maximum effective range of the AUV, and Rmin is the
minimum delivery distance of the AUV. When Dij > Rmax, the distance advantage is
considered to be zero, and the distance advantage gradually increases with the decrease in
distance; when Dij = R0, the distance advantage reaches the maximum, and the distance
advantage gradually decreases with the further decrease in distance.

According to the above frontal, velocity, and distance advantage functions, the multi-
AUV offensive and defense situation advantage function is shown in Equation (11), where
k1, k2, k3 is the weighting coefficient, and k1 + k2 + k3 = 1.

f (Wa, Wv, Wr) = k1e−α1·Wa + k2ln(1 + β2 ·Wv) + k3
1

1 + γ3 ·Wr
. (11)
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2.3.2. AUV Capability Efficiency Evaluation Function

The confrontation capability of the AUV is mainly measured by six factors: maneuver
capability, detection capability, communication capability, load capability, stealth capability,
and AUV performance. The calculation method is as follows:

C =
[
ln B + ln

(
∑ A1 + 1

)
+ ln

(
∑ A2

)]
ε1ε2ε3, (12)

where B is the maneuver capability parameter, A1 is the performance parameter of the
AUV threat capacity, A2 is the detection performance parameter, ε1 is the communication
capability coefficient, ε2 is the stealth performance coefficient, and ε3 is the load capacity
coefficient. After the standardized operation of Equation (12), the advantage function of
red and blue AUVs can be obtained Wc.

Wc =



0 CRi /CBj < 0.3

0.25 0.3 ≤ CRi /CBj < 1

0.5 CRi /CBj =1

0.75 1≤ CRi /CBj < 1.5

1 CRi /CBj ≥ 1.5

, (13)

where CRi and CBj are the target assignment game advantages of red and blue, respectively.
In summary, the advantage function of the attack and defense game of multi-AUVs is

as follows:
W = ksWs + kcWc, (14)

where Ws is the situational advantage function of both sides, and Wc is the advantage
function of offensive and defensive effectiveness. ks and kc are the weighted coefficients,
and ks + kc = 1.

2.4. Multi-AUVs Target Assignment Game Payment

Through the establishment of a multi-AUV target assignment dominance evaluation
system, the basis of the multi-AUVs target assignment game payment matrix is provided.
The overall revenue function of red and blue is as follows:

UR=
NR

∑
i=1

ṽRR
i LR

i (K)−
NB

∑
j=1

ṽRB
j LB

j (K), (15)

UB=
NB

∑
j=1

ṽBB
j LB

j (K)−
NR

∑
i=1

ṽBR
i LR

i (K), (16)

where UR and UB are the total offensive and defensive gains of the red and blue sides,
respectively; NR and NB are the AUV numbers of red and blue, respectively. ṽRR

i , ṽRB
j (ṽBB

j ,

and ṽBR
i ), respectively, represent the value return of UUVRi and UUVBj relative to red

AUVs (blue AUVs); LR
i (K) are the survival probabilities of UUVRi and UUVBj after K steps,

which are determined by the following:

LR
i (k) = LR

i (k− 1) �
NB

∏
j=1

[
1− pB

ji(k)
]uB

ji(k), (17)

LB
j (k) = LB

j (k− 1) �
NR

∏
i=1

[
1− pR

ij (k)
]uR

ij (k), (18)

pR
ij (k) = Wij(k) � pR

ij � LR
i (k− 1), (19)
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pB
ji(k) = Wji(k) � pB

ji � LB
j (k− 1), (20)

where uB
ji(k) and pB

ji(k), respectively, represent k(k = 1, 2, . . . , K). The number of AUVs is
used by the jth AUV of blue AUVs to attack the ith AUV of red AUVs and the damage hit
probability of a single one; uR

ij (k) and pR
ij (k), respectively, represent the number of AUVs

used by the ith red AUV to attack the jth blue AUV in step k and the damage probability
of a single one. pB

ji and pR
ij represent the damage hit probability under ideal experimental

conditions; Wij(k) and Wji(k) are the dominance coefficients of the ith AUV of red AUVs to
the jth AUV of blue AUVs at the kth step and the dominance coefficients of the jth AUV of
blue AUVs to the ith AUV of red AUVs at the kth step. Definite LR

i (0) = 1 and LB
j (0) = 1,

and the initial survival probability of both parties is 1. According to the control of both
sides on the use of AUVs, the model constraint condition is determined as follows:

K

∑
k=1

NB

∑
j=1

uB
ji(k) ≤ MB

i , ∀i = 1, 2, . . . , NR, (21)

K

∑
k=1

NR

∑
i=1

uR
ij (k) ≤ MR

j , ∀j = 1, 2, . . . , NB, (22)

NR

∑
i=1

uB
ji(k) ≤ mB

j (k), ∀j = 1, 2, . . . , NB, (23)

NB

∑
j=1

uR
ij (k) ≤ mR

i (k), ∀i = 1, 2, . . . , NR, (24)

where MB
i and MR

j represent the maximum number of targets assigned by the red and blue

parties to the red ith boat and the blue jth boat in the K − round game. mR
i (k) and mB

j (k)
represent the maximum number of targets sent by red i/blue j AUV in the k− round game.

2.5. Nash Equilibrium of the Multi-AUVs Target Assignment Game

To address the Nash equilibrium problem in the bi-matrix game for target allocation,
the process begins with optimizing the payoff matrix through strategic refinement to
eliminate non-optimal strategies, thereby forming an optimal strategy set. Next, the
feasibility of a pure strategy solution is assessed. If feasible, both parties select the pure
strategy scenario as the optimal solution for target assignment at this stage. The mixed
Nash equilibrium solution is then calculated using quantum particle swarm optimization
based on a repulsion process. Targets are assigned according to the mixed Nash equilibrium,
with assignments made probabilistically. Given that the Nash equilibrium solution for
target assignment in multi-AUV non-cooperative scenarios is an NP-hard problem, this
paper will introduce the repulsion process quantum particle swarm optimization (RPQPSO)
algorithm to solve the Nash equilibrium in the subsequent chapter.

3. Repulsion Process Quantum Particle Swarm (RPQPSO) Hybrid Nash
Equilibrium Algorithm
3.1. Principles of Quantum Particle Swarm Optimization (QPSO)

QPSO is a new particle swarm optimization model based on quantum mechanics
theory. This algorithm is optimized for the shortcomings of PSO, such as the difference in
local search ability, weak robustness, and inaccurate selection of initial parameters, and it
enhances the ability of global search, fast parameter selection, and fast convergence. In the
QPSO algorithm, each particle represents a possible solution, and the fitness of each particle
is obtained by calculating the fitness payment function. Particles with quantum behavior
can appear at any position in the whole feasible solution space, the position of occurrence
is determined by the particle updating probability, and this position may have better
fitness than the population optimal particle in the current population, so the algorithm can
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achieve the optimal optimization in the feasible solution space. The algorithm principle is
as follows:

mk
best =

1
NP

NP

∑
t=1

pbest
k
t
, (25)

mk
best =

1
NP

NP

∑
t=1

pbest
k
t
, (26)

Xk+1
t = Pt ± α|mk

best − Xk
t | ln

(
1
u

)
, (27)

where Xk
t is the position of the t particle at the kth iteration, mk

best is the middle position of
the particle swarm at the kth iteration, and r and u are random numbers between [0, 1]. The
optimal value of the tth particle is pbest t

, and the optimal solution of the whole population
is gbest.

3.2. Design of the QPSO Algorithm

The mixed strategy of all game individuals is represented by each particle in the
algorithm; that is, X = {x1, x2, · · · , xn}. Since the generation of particles is random and
may exceed the range of feasible solutions, the algorithm also designs the particle updating
mechanism. By controlling the step size of algorithm iteration, the particles are guaranteed
to always be in the feasible solution space during algorithm iteration.

Theorem 2. If every particle is initialized in the space of possible solutions to the mixed strategy

combination of the game,
mi
∑

j=1
xi

j = 1,xi
j ≥ 0, i = 1, 2, · · · , n, and mi is the number of pure strategies

of game i. As long as the parameters of each particle in the algorithm are updated according to
Equation (28), where at ∈ [0, 1] is the largest step that keeps Xk+1

t within Ω={X|xi ≥ 0, · · · ,n}, all
particles can be guaranteed to remain in the feasible solution space of the mixed strategy combination
of the game during the iteration process.

Xk+1
t = Pt ± at · α|mk

best − Xk
t | ln

(
1
u

)
. (28)

Proof. If the ith vector xi in each initialized particle satisfies
mi
∑

j=1
xi

j = 1, xi
j ≥ 0, i =

1, 2, 3, · · · , n, xi is in a simplex, iterated according to Equations (25) and (26), where each
particle is a linear combination of the positions of the previous generation of particles;
that is, the ith vector in each particle is a linear combination of vectors in the hyperplane
mi
∑

j=1
xi

j = 1, i = 1, 2, 3, · · · , n. Therefore, in the iteration of the algorithm, the ith vector of the

particle will always remain in the hyperplane
mi
∑

j=1
xi

j = 1, i = 1, 2, 3, · · · , n.

According to Equation (27), if Xk+1
t jumps out of region Ω={X|xi ≥ 0,i = 1, 2, 3, · · · , n}

in the iterative process, the following is true:

α|mk
best − Xk

t | ln
(

1
u

)
; (29)

then, Xk+1
t can be kept within Ω by controlling step size βt ∈ [0, 1] in Equation (29):

Xk+1
t = Pt ± βt · α|mk

best − Xk
t | ln

(
1
u

)
, (30)
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where βt ∈ [0, 1] is the maximum step length, which makes Xk+1
t ≥ 0. Xk

t ≥ 0 can always
take βt and make Xk+1

t ≥ 0.(
Xk

t

)i

j
+ βi

j ·
(

α|mk
best −

(
Xk

t

)i

j
| ln
(

1
u

))
= 0,

i = 1, 2, · · · , n; j = 1, 2, · · · , mi

. (31)

Although β
j
i ,(Xk

t )
i
j is the corresponding element of Xk

t , and βt = min { β
j
i | β

j
i ≥

0, i = 1, 2, · · · n; j = 1, 2, · · · , mi } , βt is the biggest step that makes Xk+1
t ≥ 0.

3.3. Local Extreme Repulsion Process

In the process of solving an extreme problem with a particle swarm or quantum
particle swarm algorithm, the algorithm may converge to a local extreme that has been
detected. In this paper, a local extreme repulsion process is designed to alleviate the
multi-local extremum problem of the function.

Suppose X∗ = {X∗j ; j = 1, 2, · · · , m} is a series of extreme values detected by the
algorithm, if some extreme values X = {Xi; i = 1, 2 · · · } ⊆ X∗ have been detected for the
ith particle Xi, calculate ||Xi − X∗j || and check whether Xi is in the repulsion region, where
rij represents the range of the repulsion region. If the particle is in the repulsion region, the
particle will be repelled from the center of the local pole by the joint action of vector and
particle Xi, where pij represents a pre-specified constant and Zij is the unary vector from
X∗j to Xi representing the force of repulsion, as shown in the Equation (32):

Zij =
Xi − X∗j
||Xi − X∗j ||

. (32)

The value of input is X∗, S, rij, pij (i = 1, 2, · · · , Np, j = 1, 2, · · · , m). The pseudo code
of the Algorithm 1 is as follows:

Algorithm 1 RPQPSO algorithm

Input: Population size Np
Output: Updated positions Xi
for i = 1 To Np do

if X∗ ̸= 0 then
for j = 1 To m do

dij ← ∥Xi − Xj∥
if dij < rij then

Zij ←
Xi−X∗j
∥Xi−X∗j ∥

Xi ← Xi + pijZij
end if

end for
end if

end for

3.4. Flow of Algorithm

The algorithm flow for solving the mixed Nash equilibrium of the bi-matrix game
with the RPQPSO is as follows:

(1) Initialize the position information of particles and determine the particle population
size Np and particle dimension ∑ mi;

(2) Calculate the mbest value of the middle position of the particle swarm;
(3) Calculate the fitness of each particle, and select the particle with the optimal fitness as

the optimal particle pbest i
;
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(4) The fitness of all pbest are compared, and the particle with the best fitness is selected as
the global optimal particle gbest;

(5) For each dimension with particles, a random point Pi is obtained between gbest and
pbest i

according to Equation (27);
(6) Obtain a new position according to Equation (28);
(7) Check whether the tth particle meets the limit condition Xk+1

t > 0; otherwise, solve
the control step βt so that

Xk+1
t = Pt ± βt · α|mbestk − Xk

t | ln
(

1
u

)
, (33)

and make Xk+1
t return to the feasible mixed strategy space;

(8) The repulsion process ejects particles entering the local extremum field;
(9) Repeat steps 2–8 until the algorithm reaches the accuracy standard or the maximum

number of iterations, and output the global optimal particle position and its fitness.

4. Simulation Experiment of the Target Assignment for the Multi-AUVs Task

To verify the RPQPSO algorithm within the non-cooperative game process of multi-
AUV target assignment, this paper describes a multi-AUV simulation experiment. The game
payoff matrix for multi-AUV target assignment in non-cooperative scenarios was established.
To solve the mixed Nash equilibrium, a traditional particle swarm optimization algorithm was
implemented for comparison with the RPQPSO algorithm proposed in Section 5. This compar-
ison verified the algorithm’s real-time performance and accuracy. A multi-round game was
constructed based on the multi-AUV target assignment model, verifying the feasibility of
the solution method for the multi-AUV task allocation in non-cooperative scenarios.

4.1. Multi-AUVs Non-Cooperative Scenario Parameter Setting

In the unbounded calm (without the influence of waves and currents) seabed, there
were 12 isomorphic AUVs in the red team, denoted as AUVR1 , AUVR2 , . . ., AUVR12 ,
which constructed three AUV groups GR

1 , GR
2 , GR

3 . There were six isomorphic AUVs in
the blue group, denoted as AUVB1 , AUVB2 , . . ., AUVB6 , which constructed two AUV
groups GB

1 , GB
2 . The experiments were conducted on a Windows system for algorithm

computations, using VS2013 for numerical simulations and AnyLogic for visualization
simulations.

The red AUVs were informed of the general position of the blue AUVs and moved
towards them. Blue AUVs stayed on course. All the team members had good detection
and communication performance, and the group maintained communication and shared
information during the task. Tables 1 and 2 show the comparison of the parameters of
the basic AUV performance and the performance carried out by the two sides. The initial
velocity and pose assignment of the red and blue AUV groups are shown in Figure 2, where
(x, y, ϖ, u) represents the coordinate (x, y) of the current northeast coordinate system of
the AUV, the heading angle is ϖ, and the longitudinal velocity is u.

Table 1. AUV performance parameters of blue and red AUVs [42].

Parameter Red AUV Blue AUV

Max Thrust τu 150 N 200 N
Max Torque τr 20 N ·m 30 N ·m

Max Velocity umax 13.5 kn 15.5 kn
Max Detection Radius DR 10 nmile 12 nmile

Max Communication Range CR 15 nmile 15 nmile
Max Load Number Lmax 3 3
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Table 2. Target parameters [42].

Player Effectiveness Range Velocity

Red AUV 2–3.5 nmile 80 kn
Blue AUV 5–4.5 nmile 80 kn

( )N nmile

( )E nmile

1

5
UUV (10,14, ,12)

6
B




R5UUV (-3.5,5, ,10)
3



R6

3
UUV ( 3.5+ ,5.5, ,10)

2 3




R7UUV ( 3.5+ 3,5, ,10)
3




R8UUV ( 3.5+ 3,4, ,10)
3




2

3 5
UUV (10.5,14 , ,12)

2 6
B


 

3

5
UUV (11,14, ,12)

6
B




R9UUV (4, 3.5+ 3, ,10)
6




R10UUV (5, 3.5+ 3, ,10)
6




R11

3
UUV (5.5, 3.5+ , ,10)

2 6




R12UUV (5, 3.5, ,10)
6




R4

2
UUV (14,10, ,12)

3




R5

2
UUV (14,11, ,12)

3




R6

3 2
UUV (14 ,10.5, ,12)

2 3


 

R1UUV (0,0, ,8)
4



R2UUV (0,1, ,8)
4


R3UUV (1,1, ,8)

4



4 (1,0, ,8)
4

RUUV


2Rgroup

1Rgroup

3Rgroup

1Bgroup

2Bgroup

Figure 2. Multi-AUV confrontation initial situation diagram.

The AUV value parameter matrix of both sides is shown in Equations (33) and (34),
where ṽRR

i and ṽRB
j (ṽBB

j and ṽBR
i ), respectively, represent the value benefits of UUVRi and

UUVBj relative to red AUVs (blue AUVs), which are obtained from intelligence information.

ṽBB

ṽRB

[
0.8, 1.0, 0.8, 0.7, 0.9, 0.7

0.9, 1.1, 0.9, 0.9, 1.2, 0.9

]
, (34)

ṽRR

ṽBR

[
0.6, 0.5, 0.7, 0.5, 0.5, 0.6, 0.6, 0.5, 0.5, 0.6, 0.6, 0.5

0.7, 0.6, 0.8, 0.6, 0.5, 0.7, 0.7, 0.5, 0.5, 0.7, 0.7, 0.5

]
. (35)

Constraints on the maximum number of targets sent by UUVRi/UUVBj in each step:

mR
i (k) = mB

j (k) = 1, i = 1, 2, . . . , 12, j = 1, 2, . . . , 6. (36)

Blue AUVs/red AUVs maximum number of targets assigned to UUVRi and UUVBj
constraints:

MB
i = MR

j = 2i = 1, 2, . . . , 12, j = 1, 2, . . . , 6. (37)

4.2. First-Round Simulation of the Target Assignment

According to the proximity rule, the red group chooses the closest blue group to attack.
In the situation shown in Figure 2, red group GR

2 attacks blue group GB
1 , red group GR

3
attacks blue group GB

2 , and red group GR
1 does not participate in the confrontation. The

following takes the target assignment game in which red group GR
2 chooses to attack blue

group GB
1 in the first round of attack and defense as an example.
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According to the situation assessment system, the game advantage matrix of both
sides can be obtained:

B1 B2 B3

GR
2 (w) =

R5
R6
R7
R8


0.8874 0.8890 0.8854
0.8894 0.8894 0.8855
0.8916 0.8931 0.8891
0.8948 0.8961 0.8923

, (38)

R5 R6 R7 R8

GB
1 (w) =

B1
B2
B3

0.9125 0.9127 0.9084 0.9051
0.9109 0.9105 0.9069 0.9038
0.9146 0.9145 0.9109 0.9077

. (39)

Red group GR
2 has 34 − C1

3C1
2C3

4 − 3 = 54 target assignment schemes, and blue group
GB

1 has 43 − 4 = 60 target assignment schemes. The two sides’ task assignment schemes
are expressed as Equations (40) and (41).

sR
t =

R4
R5
R6
R7


R4,1 R4,2 R4,3
R5,1 R5,2 R5,3
R6,1 R6,1 R6,2
R7,1 R7,2 R7,3

, t = 1, 2, . . . , 54, (40)

sB
t =

B1
B2
B3

 B1,4 B1,5 B1,6 B1,7
B2,4 B2,5 B2,6 B2,7
B3,4 B3,5 B3,6 B2,7

, t = 1, 2, . . . , 60. (41)

In the equation, Ri,j represents the number of targets assigned by UUVRi to UUVBj,
and Bi,j represents the number of targets assigned by UUVBj to UUVRi.

All the load assignment schemes of Equations (40) and (41) of red group GR
2 and blue

group GB
1 and the advantage matrix formula refer to Equations (38) and (39), and we put

them into Equations (19) and (20) to obtain the actual hit probability of the AUV of both
parties. Then, we put Equation (19) into Equations (17) and (18) to obtain the predicted
survival probability of blue and red AUVs, and finally, the payment matrix is obtained.
Because the target assignment scheme of the two sides has 54 and 60 options, respectively,
the payment matrix of both sides is a complex matrix of 54*60, which is difficult to calculate
directly. Therefore, the strategy optimization is adopted to eliminate the strategy with low
payment value, simplify the payment matrix of both sides, and finally, simplify as follows:

B18 B28 B44

GR
2 (v) =

R8
R28
R41

−0.06677 0.11490 −0.20258
−0.06612 0.11425 0.11547
−0.38482 −0.20379 0.11612

, (42)

B18 B28 B44

BB
1 (v) =

R8
R28
R41

 0.132515 −0.37642 −0.37784
−0.16614 −0.37698 −0.37840
−0.16558 −0.07833 −0.07975

, (43)

where Ri represents the ith strategy of the red group, and Bj represents the jth strategy of
the blue group.

The scribing method is adopted to solve the Nash equilibrium. The maximum val-
ues of each column of GR

2 (v) are (R28, B18), (R8, B28), (R41, B44). The maximum values
of each row of GB

1 (v) are (R8, B18), (R28, B18), and (R41, B28), respectively. It can be seen
that (R28, B18) is the overlapping point, so (R28, B18) is the Nash equilibrium. The op-
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timal mixed Nash equilibrium solution of the bi-matrix game was obtained by PSO as
(0.0433, 0.9475, 0.0092; 0.9763, 0, 0.237), and the average time was 1.47 s. The optimal
mixed Nash equilibrium strategy of the bi-matrix game was obtained by the RPQPSO
as (0.0003, 0.9997, 0, 0.9999, 0, 0.0001), and the average time was 2.47 s. The calculation
result of QPSO based on the repulsion process was selected as the optimal result. That is,
the red side chose the 28th strategy with a probability of 0.9997, and the blue side chose
the 18th strategy with a probability of 0.9999. The expected returns of red and blue AUVs
implementing this game strategy were, respectively, (−0.06612,−0.16614).

If the GB
1 unilaterally chooses to execute the 44th strategy instead of the 18th strategy,

the GR
2 will continue to adopt the 18th strategy and obtain an expected return of 0.11547,

while the GB
1 can only obtain an expected return of −0.37840, which proves that the

individual players who unilaterally do not abide by the Nash equilibrium can only lead to
a reduction in benefits.

4.3. Simulation of the Multi-AUV Target Assignment Process

Because the game involves a delay for the targets to reach the designated positions, and
the multi-AUV task execution is not accomplished instantly, it generally requires multiple
rounds of interaction. When multi-AUVs engage in tasks based on target allocation, the
expected benefits and target assignment for both sides in the first round of task execution
can be determined. The expected rewards for the blue team and the AUVs are as follows:

GR
2 (v, k1) = −0.0661197, GR

3 (v, k1) = −0.145939, (44)

GB
1 (v, k1) = −0.166139, GB

1 (v, k1) = −0.284513, (45)

and the assignment is shown as follows:

GR
2 (s, k1) =

R5
R6
R7
R8


0 1 0
0 1 0
0 0 1
1 0 0

, (46)

GB
1 (s, k1) =

B1
B2
B3

 0 1 0 0
1 0 0 0
0 0 1 0

, (47)

GR
3 (s, k1) =

R9
R10
R11
R12


1 0 0
0 0 1
0 1 0
0 1 0

, (48)

GB
2 (s, k1) =

B4
B5
B6

 0 0 1 0
0 1 0 0
0 0 0 1

. (49)

After each round assignment for a mission, both sides’ AUVs maneuver. Players in
the second round were as follows: GR

2 vs. G2
1 ; GR

3 vs. GB
2 . Since the distributive effect in

the first round did not hit the target, neither side could determine the benefits of the first
round of assignment. Therefore, the expected rewards were calculated by combining the
distributive effect in the first round and the current maneuver situation.

GR
2 (v, k2) = −0.097709,GB

1 (v, k2) = −0.307278, (50)

GR
3 (v, k2) = 0.065799, GB

2 (v, k2) = −0.253934. (51)
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The opposing parties choose the target assignment scheme according to probability,
and the final target assignment is as follows:

GR
2 (s, k2) =

R5
R6
R7
R8


0 0 1
0 0 1
0 1 0
1 0 0

, (52)

GB
1 (s, k2) =

B1
B2
B3

 0 1 0 0
0 0 1 0
0 0 0 1

, (53)

GR
3 (s, k2) =

R9
R10
R11
R12


1 0 0
0 1 0
0 0 1
0 0 1

, (54)

GB
2 (s, k2) =

B4
B5
B6

 0 0 1 0
1 0 0 0
0 1 0 0

. (55)

The first round of assignment effected by the red and blue parties and the positions of
each AUV are shown in Figure 3. If the probability of survival is less than 0.4, the victim
will be wounded and will not participate in the confrontation.

( )N nmile

( )E nmile

2Rgroup

1Rgroup

3Rgroup

1Bgroup

2Bgroup

Figure 3. Situation of red and blue AUVs before the second load assignment.

When the second round of target assignment is completed, both sides begin to prepare
for the third round of assignment. Before the third round of the game, the first round of
engagement had already occurred, and its effects/consequences were known. Based on the
probability of target neutralization and the probability of failure, the survival probability
for both parties can be calculated as follows:

GR
1 (p, k1) =

[
1 1 1 1

]
, (56)

GR
2 (p, k1) =

[
0.45346 0.45264 0.45347 1

]
, (57)
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GR
3 (p, k1) =

[
1 0.45347 0.45264 0.45346

]
, (58)

GB
1 (p, k1) =

[
0.55258 0.30844 0.55546

]
, (59)

GB
2 (p, k1) =

[
0.55258 0.31057 0.45346

]
. (60)

The status before the third round of assignment and the situation from the second
round of target allocation can be assessed. It can be observed from the game results that
the loss for the red group GR

3 is significant, leading GR
3 to withdraw from the game in the

third round. Participation in the third round of the game involves GR
2 vs. GB

1 and GR
1 vs.

GB
2 . Since the targets from the first round have been engaged, and the second round of

targets have been deployed but have not yet reached the target area, the outcomes cannot
yet be determined. Therefore, by combining the second round of target assignments with
the results from the first round engagements, the expected returns for the second and third
rounds can be calculated as follows:

GR
1 (v, k3) = 1.048889, GR

2 (v, k2) = 0.065799, (61)

GB
1 (v, k2) = −0.253934, GB

2 (v, k3) = −1.482267. (62)

The two sides choose the target assignment scheme according to the probability results
obtained by the matrix game, and the final target assignment is as follows:

GR
1 (s, k2) =

R1
R2
R3
R4


1 0 0
0 0 1
0 0 1
1 0 0

, (63)

GB
2 (s, k2) =

B4
B5
B6

 1 0 0 0
0 0 0 0
0 0 1 0

, (64)

GR
2 (s, k2) =

R5
R6
R7
R8


0 0 0
0 1 0
0 0 1
0 1 0

, (65)

GB
1 (s, k2) =

B1
B2
B3

 0 0 0 0
0 1 0 0
0 0 1 0

. (66)

The final survival probability of each AUV group member on the red and blue sides is
shown as follows:

GR
1 (p, k3) =

[
0.45647 1 0.52135 1

]
, (67)

GR
2 (p, k3) =

[
0 0.45483 0.23204 0.46782

]
, (68)

GB
1 (p, k3) =

[
0 0.15332 0.26692

]
, (69)

GB
2 (p, k3) =

[
0.31845 0 0.33421

]
. (70)

At this point, the blue AUVs have lost the ability to continue the task, marking the
end of the game. An integrated analysis is conducted on the target distribution over three
rounds of tasks. For intuitive expression, the coding scheme for multi-round integration
is designed according to group, sub-target, and multi-round integration, as illustrated in
Figures 4 and 5. The first row in this diagram represents the AUV r21 in the red group G2

R
in the first distribution and the AUV b21 in the blue group G1

B that are selected. Similarly,
the blue target allocation in the figure is also represented according to these coding rules,
and the 0 in the figure indicates that the allocation did not participate in this round or that
the ability to continue allocation was lost in the previous round.
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Figure 4. Red target distribution.
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Figure 5. Blue target distribution.

5. Analysis of Algorithm Superiority

In order to prove the effectiveness of the proposed algorithm, a comparison experiment
was designed to compare the computational effects of RPQPSO, RPSO, QPSO, and PSO
on dynamic target allocation. The PSO algorithm takes the particle population number as
20, the maximum iteration times as 1000, and ωmax = 0.9, ωmin = 0.4, c1 = 2, c2 = 2, and the
updating formula ω adopts Equation (71).

ω = ωmax − (ωmax −ωmin) ∗
(

k
K

)2
. (71)

The QPSO algorithm takes the particle population as 20 and the maximum iteration
times as 1000, and amax = 0.8, amin = 0.6, a uses a linear value reduction strategy. The
process parameters of repulsion are, respectively, rij = 0.2, pij = 1.

ω = ωmax+(ωmax −ωmin) ∗
K− k

K
. (72)

The parameters in the formula refer to Section 2.4. In order to reduce the influence
of random factors, the offline calculation of each algorithm was repeated 50 times under
the same conditions. Figure 6 shows the comparison results of algorithm convergence.
Figures 7–9 are the statistical tables of optimal solution and optimization time of the
algorithm, respectively, where tmin represents the minimum operation time of the algorithm;
tavg represents the average running time of the algorithm; gmin represents the minimum
number of iterations the algorithm runs; gavg represents the average number of iterations
the algorithm runs; c is the number of times to find the optimal solution.

Compared with the experimental results, it can be seen that the particle swarm opti-
mization algorithm exhibits good convergence performance but is prone to falling into local
optima, achieving the optimal solution only 5 times out of 50 experiments. In contrast, the
quantum particle swarm optimization algorithm based on the repulsion process achieves
the optimal solution 42 times out of 50 experiments. Its convergence curve is smoother, less
prone to abrupt changes, and demonstrates stronger global convergence capability and
higher accuracy. However, the convergence speed is slower, resulting in a correspondingly
longer solving time.
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Figure 6. Algorithm performance comparison.
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In order to verify whether the error of early termination of the algorithm is small, the
quantum particle swarm optimization algorithm based on the repulsion process is run
100 times under the above conditions. The optimal fitness fs when the algorithm reaches
stability and the optimal fitness fm when the algorithm reaches the maximum number of
iterations, as well as the running time ts and the number of iterations gs when the algorithm
reaches stability, are obtained. Table 3 shows the statistical results of the effectiveness of
the particle swarm optimization algorithm based on the repulsion process when it reaches
stability, where fmax is the maximum difference between fs and fm in 100 experiments; favg
is the average of the difference between fs and fm.

Table 3. Target parameters.

Max Difference
fmax

Ave Difference
fave

Running Time
ts (s)

Iterations
gs (gen.)

0.17 0.11 4.17 450

As can be seen from Table 3, the stable state detection of the quanta particle swarm
algorithm based on the repulsion process can effectively reduce the running time of the
algorithm and has an error of 0.17 at most, which has little influence on the error of solving
accuracy and improves the real-time noise of the algorithm. In conclusion, the quantum
particle swarm optimization algorithm based on the repulsion process proposed in this
paper can solve mixed Nash equilibrium well, both concerning real-time and accuracy.

6. Conclusions

The target assignment problem has received extensive attention and research, but
research on non-cooperative target assignment problems is still relatively limited. This
paper studies target assignments in the context of multi-AUV non-cooperative tasks. Firstly,
a bi-matrix game model of target assignment based on a multi-AUV system was proposed.
Secondly, in order to solve the Nash equilibrium of the bi-matrix game effectively and
avoid local optima, a quantum particle swarm optimization algorithm with local exclusion
was designed to solve the Nash equilibrium. Finally, the advantages of the algorithm were
analyzed in terms of the number of iterations and the fitness value of the optimal solution.

Experiments show that the multi-AUV non-cooperative target assignment model
designed in this paper meets the requirements of non-cooperative scenarios and can ob-
jectively reflect real task conditions. The established AUV situation assessment system
provides a foundation for constructing the payoff matrix and subsequent target assign-
ment. Additionally, the dual matrix game-based non-cooperative target assignment model
designed in this paper can adapt to dynamic target assignment tasks. Experiments verify
that any deviation from the resolved Nash equilibrium solution by either party leads to a
decline in returns, confirming the model’s effectiveness.

Since this paper starts from the perspective of both parties and uses target assignment
as a means of managing non-cooperative scenarios, with Nash equilibrium as the final
assignment strategy, solving the Nash equilibrium becomes the focus. However, it is
challenging to solve the Nash equilibrium in practical situations. By designing a quantum
particle swarm optimization algorithm based on a repulsion process, the Nash equilibrium
solution meets the requirements of non-cooperative scenarios. A typical matrix game
experiment is designed to verify the effectiveness and superiority of the proposed algorithm
for solving Nash equilibrium in bi-matrix games.

Future research can further expand and enhance the outcomes of this study in the
following aspects: first, more complex non-cooperative scenarios can be explored, such
as multi-party games or mixed target assignment problems involving multiple types of
tasks, to improve the model’s applicability and real-world relevance. Second, incomplete
information game models could be introduced in dynamic environments, enabling AUVs
to make smarter decisions when faced with dynamically changing task conditions or
uncertain information. Additionally, algorithm performance can be further optimized
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by incorporating methods such as deep learning or multi-agent reinforcement learning,
thereby improving the efficiency and adaptability of Nash equilibrium solutions. Finally, in
practical applications, simulation tests or the actual deployment of multi-AUV task systems
can be conducted to validate the robustness and feasibility of the proposed approach. This
would provide stronger technical support for fields such as ocean resource exploration,
military confrontation, and environmental monitoring.
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