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Abstract: In a complex and dynamic battlefield environment, enabling autonomous underwater
vehicles (AUVs) to reach dynamic targets in the shortest possible time using global autonomous
planning is a key issue affecting the completion of search tasks. In this study, ahierarchicalAUV task
planning method that uses a combination of hierarchical programming and a snake optimization
algorithm is proposed for two typical cases where the platform can provide initial target information.
This method decomposes the search task problem into a three-level programming problem, with
the outer task planning goal of achieving the shortest encounter time between AUV and dynamic
targets; the goal of task planning in the middle layer is to achieve the shortest actual navigation time
for AUVs under different operating conditions; and the internal task planning is responsible for
considering the comprehensive trajectory optimization under navigation constraints such as threat
zone, path length, and path smoothness. The snake optimization algorithm was used for solving
each layer of task planning. The feasibility of the proposed method was verified through simulation
experiments of AUV search tasks under two types of initial target information conditions. The
simulation results show that this method can achieve task planning for AUV searching for dynamic
targets under various constraint conditions, optimize the encounter time between AUV and dynamic
targets, and have strong engineering practical value. It has certain reference significance for task
planning problems similar to underwater unmanned equipment.

Keywords: autonomous underwater vehicles; search tasks; hierarchical programming approach;
snake optimization algorithm

1. Introduction

In recent years, with the rapid development of science and technology and the deepen-
ing understanding of the ocean, underwater space has become a new focus of international
strategic competition. As a multiplier of naval power, the autonomous underwater vehicle
(AUV) has seen unprecedented development in applications such as underwater reconnais-
sance, underwater communication, anti-submarine and anti-mine warfare, and information
warfare. As a manifestation of AUV’s intelligence level, the capability of autonomous
task planning significantly affects the success rate of AUV missions. Current global task
planning methods mainly focus on solving planning problems for static environments
or known navigation endpoints. However, in practical applications, due to the partial
observability of the task environment and the dynamic changes in target information, the
environmental information relied on for planning is uncertain. In fact, AUVs are more
often used for searching and exploring dynamic targets. Before being launched by the
platform, task planning can be divided into two categories based on the completeness of
the initial dynamic target information obtained through platform detection: task planning
under initially complete target information and task planning under initially incomplete
target information. Initial complete target information refers to the relatively complete
dynamic target information that can be obtained by the platform before deploying the AUV,
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including target location, distance, heading, and speed information. In contrast, initial
incomplete target information refers to the situation where the platform can only obtain
approximate dynamic target information before deploying the AUV, such as target location
and approximate distance information. In light of these circumstances, the key issue that
urgently needs to be solved is how to efficiently perform global task planning for the AUV
based on limited platform target information before deploying the AUV, so that the AUV
has a high degree of autonomy for locating dynamic targets.

The United States is the earliest country to research and equip combat aircraft mission
planning systems and has experienced three generations of development [1,2]. Gresh-
ler et al. [3] introduced cooperative conflict-basedsearch (Co-CBS) to integrate the CBS
algorithm based on a multi-agent collaboration framework, enabling collaborative task
allocation and path planning for multiple robots. Other studies proposed amodified A-Star
algorithm containing the bidirectional sector expansion and variable step search strat-
egy for penetration path planning for stealth unmanned aerial vehicles (SUAVs) [4]. An
innovative path planning algorithm that synergizes the A* algorithm with the rapidly-
exploring random tree (RRT) approach was proposed to improve planning efficiency and
path smoothness [5]. However, the above-mentioned path planning algorithm still has the
disadvantage of easily falling into the local optimal solution.

To improve the efficiency of the solution, some scholars have utilized intelligence
heuristic algorithms for task allocation, such as genetic algorithms [6], particle swarm
optimization [7], and simulated annealing (SA) algorithms [8]. Yu Jing et al. [9] designed
a double-layer mutually coupled task planning solution strategy that divides the task
planning model into upper-level task allocation and lower-level task sequence optimization,
with specific optimization methods and steps for each layer.

In order to break through the inherent scalability limitations of traditional centralized
control path planning algorithms, Guo et al. [10] designed a decentralized path planning
algorithm predicated on deep reinforcement learning to enhance the flexibility, robustness,
and scalability of automated guided vehicles (AGVs). Chen et al. [11] and Xiao et al. [12]
described the task planning problem as a mixed-integer linear programming (MILP) model
and solved it using a linear programming solver, which can yield stable and effective opti-
mization results. In the literature [13], the strike task is decomposed into a multi-objective
task allocation problem under time constraints and a trajectory planning problem, with
the two sub-problems being mutually coupled. Wang Bo et al. [14] decomposed the plan-
ning task into an upper-level planning for designing intermediate configurations and a
lower-level planning for solving the movement methods of achieving those intermediate
configurations. Each level of planning is solved independently, reducing the uncertainty
and complexity of the satellite reconstruction planning problem. Bai et al. [15] proposed
a novel two-layer algorithm SA-reCBS that cascades the simulated annealing algorithm
and conflict-based search to solvemulti-robot task assignment and path-finding problem-
swithout requiring a pre-bundle of tasks to groups with the same number of groups as the
number of robots. Yang Han and Yu et al. [16] proposed a heuristic called Space Utilization
Optimization (SUO) for path planning. This heuristic aims to significantly reduce conflicts
among robots while maintaining the optimality of the paths. Chen Zihao et al. [17] pro-
posed a cluster task planning method based on a double-layer optimization model. The
lower-level optimization focuses on trajectory planning, while the upper-level optimization
is task allocation, improving the optimality of the task planning results.

From top-level planning to layered and gradual implementation, this approach helps
to reduce the complexity of the problem. In terms of task planning solutions, heuristic algo-
rithms such as particle swarm optimization, differential evolution, wolf pack algorithm [18],
genetic algorithms [19,20], ant colony optimization [21], and firefly algorithm [22] have
received widespread attention from scholars in recent years due to their simplicity and
effectiveness. Zhu et al. [23] introduced a biologically inspired integrated self-organizing
map algorithm for task allocation and path planning of AUV systems in three-dimensional
underwater obstacle avoidance environments. Zhang et al. [24] used the sine cosine algo-
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rithm to improve the Harris Hawk algorithm for path planning, enhancing its robustness.
However, they were unable to estimate the convergence speed of the algorithm in complex
environments. Yu et al. [25] proposed a traversal multi-target path planning method for
multiple unmannedsurfacevehicles (USVs). The proposed algorithm consists of two parts:
First, the improved Hungary algorithm is proposed for multi-target task allocation. Second,
the virtual field sampling algorithm and the ocean current constraint function are intro-
duced in the RRT* algorithm for path planning. Through the improvement of the algorithm,
the efficiency of multi-target task allocation improves, and the time spent path planning
is reduced. However, the algorithm’slow convergence accuracy remains a problem. Han.
et al. [26] designed a full-dimensional ABC algorithm with an adaptive factor to enhance
the search capability of AUVs. Although the improved algorithm solves the problem of
planning global paths for AUVs to search for targets, it easily falls into the local optimum.
Zou et al. [27] proposed a novel population-based iterated greedy (PIG) algorithm for multi-
automated guided vehicles(multi-AGV)scheduling problemsinvolvingunloading safety
detection. In the PIG, a hyper-heuristic based on neighborhood operators and a population-
based initialization method are proposed to obtain multiple high-quality initial solutions.
In another study, Han et al. [28] propose a novel mixed integer linear programming (MILP)
model and a dual population collaborative genetic algorithm (DCGA). The integration
problems of the flexible job shop scheduling problem (FJSP) and minimizing the makespan
of AGVswere studied. Cui et al. [29] proposed a mixed-integer linear programming model
and adiscrete Jaya (DJaya) algorithm to the multi-AGVs scheduling problem with dynamic
unloading time. This algorithm consists of two parts: (1) A heuristic based on the ant
colony algorithm is used in the initial solution; (2) two DJaya operators are designed for
the best and worst solutions. The computational results show that the proposed DJaya
algorithm is superior to the existing algorithms in tackling the considered problem.

Although the above modifications have improved efficiency, they cannot predict the
convergence speed of algorithms in complex environments, and there is an imbalance
between global exploration and local development. The above algorithms have higher
optimization accuracy than traditional classical algorithms and show significant improve-
ment in path planning and task allocation in unmanned systems. However, this does
not necessarily mean that these algorithms have the best optimization accuracy and task
planning quality. Their optimization accuracy and path planning quality in different sce-
narios still need to be improved. Attempting to improve different algorithms through
different strategies for solving task planning problems in unmanned systems still has
research significance.

The task planning problem for AUVs to track dynamic targets can be decomposed
into two coupled sub-problems: the problem of being able to intercept the dynamic target
and the problem of minimizing the time to interception. The aim of this paper is to propose
an autonomous global task planning method for AUVs by combining two typical types of
initial observed target information.

This study proposes a hierarchical task planning method based on the snake algorithm,
which hierarchically designs the task allocation problem of AUVs. A multi-layer task
planning model is proposed for use in conjunction with the snake optimization algorithm
to achieve multi-layer nested optimization and address the task planning problem of AUVs
under typical target initial information conditions. Using MATLAB software, this study
develops algorithm validation programs, constructs complex underwater task scenarios,
sets initial scenarios for typical tasks, uses the designed algorithms for task planning, and
verifies its application effectiveness.

The main innovations of this study are as follows: (1) The adoption of a three-level
planning strategy to address the aforementioned problems, which makes it easier to obtain
global optimal solutions for dynamic targets; (2) the introduction of a snake optimiza-
tion algorithm into each level of task planning, enabling better objective function values;
(3) the development of two different three-level task planning methods tailored to the
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two maintypes of initial target detection information provided by the platform, effectively
addressing practical engineering problems.

This paper is organized as follows: Section 2 describes the snake optimization algo-
rithm and hierarchical task planning method. Section 3 gives the experimental design and
discusses the experimental results. Finally, Section 4 provides our conclusion.

2. Materials and Methods
2.1. Assumptions

For the purpose of this study, which focuses on AUV autonomous task planning, and in
consideration of the practical working characteristics of AUVs, the following simplifications
and assumptions are made:

1. The AUV is treated as a point mass within the vast underwater space.
2. Obstacles and threat areas are considered collision zones, and irregular collision zones

are uniformly “inflated” to cylindrical shapes for simplicity.
3. Factors such as tidal currents, sea currents, electronic interference, and other distur-

bances are not considered.
4. During simulations, both the AUV and the dynamic target move with constant speeds.

2.2. Environment Modeling

The underwater three-dimensional space is modeled using a grid-based approach.
This study considers a scenario where an underwater platform deploys an AUV to search
for and monitor a dynamic target. After the underwater platform acquires some initial
target information, it releases the AUV to conduct a close-range search and surveillance of
the dynamic target.

In Figure 1, we assume that each obstacle or threat is defined within a cylinder with a
projection that has a center coordinate Ck = [x, y, z] and a radius Rk. Rk is the maximum
distance between the surface and the center of an irregular sphere. Dk represents the
AUV safety margin distance and S is the critical distance from the AUV to the collision
zone, which depends on the specific application, operating environment, and positioning
accuracy. In this simulation, R is the radius of the cylinder, which is identified as an
obstacle or threat and is defined as R = Rk + Dk. Here, based on the size of the AUV, select
Dk = 20 m. x and y represent the center coordinates of the obstacle, while z represents its
height. In practical applications, the terrain height needs to be added to z for processing.
The obstacle data used in the simulation are presented in Table 1.
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Table 1. Obstacle parameters.

x y z R
(m) (m) (m) (m)

350 500 100 60
600 200 150 70
500 350 150 80
350 200 150 70
700 550 150 70
650 750 150 80
800 400 150 70
300 350 100 50
500 600 100 50

The environment design program was developed in MATLAB 2018b. We obtained
seabed elevation information by loading elevation image files in tif format, generating
seabed terrain grid coordinates using the meshgrid command, and establishingthe seabed
terrain. We set the obstacle position in Matlab, using the meshgird() command to generate
the surface coordinates of the obstacle, using the surf() command to smooth and generate
irregular obstacles, and taking the maximum distance from the center as the radius of the
obstacle. After displaying obstacles on the underwater terrain image, we completed the
environment modeling. The environment model is shown in Figure 2. Several obstacles of
different sizes and radiiwere added to the constructed seabed model to simulate the threat
areas that the AUV may encounter during navigation.
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2.3. Snake Optimization Algorithm

Inspired by the unique mating behavior of snakes, Fatma A. Hashim and Abdelazim
G. Hussien proposed the snake optimizer (SO) algorithm in 2022 [30]. The SO algorithm is a
new meta-heuristic optimization algorithm that simulates the different behavioral patterns
of snakes under different temperatures and food conditions to search for the optimal value.
The flow of the SO algorithm is shown in Figure 3. The definitions of the parameters
involved in the SO algorithm are shown in Table 2.

Table 2. SO Algorithm Parameter Definition.

Symbol Meaning

Am, Af Represent the ability of males and females to find things, respectively
rand Represents a random number within the range [0,1]

N, Nm, Nf Represent the snake population size, the number of males, and the
number of females, respectively
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Table 2. Cont.

Symbol Meaning

t, T Represent the current iteration number and the maxi-mum number of
iterations, respectively

c1, c2 and c3 Are all constants, respectively, 0.5, 0.05, and 2
Q Food quantity

Temp Temperature
FF, FM Represent the fighting ability of males and females, respectively

Xi,max, Xi,min Solve the upper and lower boundaries of the problem

Limits Solve the difference between the upper and lower boundaries of the
problem, that is, Xmax–Xmin

Xi,m, Xi,f , Xi
Represent the position of the ith individual in males, females, and the

entire population, respectively

fi,m, fi,f , fi
Represent the fitness of the ith individual in males, females, and the

entire population, respectively

Xbest,m, Xbest,f and Xf ood
Represent the position of the best individual in males, females, and

the entire population, respectively

f best,m, f best,f and f f ood
Represent the fitness of the best individual in males, females, and the

entire population, respectively
Xrand,m, Xrand,f Random positions of males and females
frand,m, frand,f Random positions of males and fitness of females

Xworst,m, Xworst,f
Represent the position of the worst individual in males and

females, respectively.
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First, the snake population is initialized:

Xi = Xi,min + rand × (Xi,max − Xi,min), (1)

where Xi represents the position of the ith individual, rand is a random number between 0
and 1, and Xi,min and Xi,max are the lower and upper bounds of the problem, respectively.

After the snake population is randomly initialized in the search space, the population
is evenly divided into two groups: male and female. The number of males and females is
represented by the following two formulas, respectively:

Nm ≈ N
2

N f = N − Nm
, (2)

where N represents the total population size, Nm is the number of male individuals, and
Nf is the number of female individuals. From each group, the best individual is identified
to obtain the positions of the best male, best female, and food, denoted as f best,m, f best,f , and
f food, respectively. The definition of temperature is as follows:

Temp = exp
(
−t
T

)
, (3)

where t represents the current iteration number and T represents the maximum iteration
number. The amount of food is defined as:

Q = c1 × exp
(

t − T
T

)
, (4)

where c1 is a constant, taken as 0.5.
The exploration phase describes the environmental factors of cold regions and food,

where snakes do not actively search for food in their immediate surroundings. If
Q < Threshold (where Threshold = 0.25), snake individuals search for food by randomly
selecting positions and updating their own positions accordingly. The exploration phase of
the snake population is simulated as follows:

Xi,m( f )(t + 1) = Xrand,m( f )(t)± c2 × Am( f ) × ((Xmax − Xmin

)
× rand)+Xmax, (5)

In the formula: Xi,m(f ) represents a male or female individual, rand is a random
number in the range [0,1]; c2 is taken as 0.05; and Am(f ) represents the ability of males or
females to search for food, which is given by the following formula:

Am( f ) = exp

(
− frand,m( f )

fi,m( f )

)
, (6)

where f rand,m(f ) is the fitness value of the randomly selected male or female individual
position Xrand,m(f ), and f i,m(f ) is the fitness value of the ith individual position Xi,m(f ) in the
male or female population.

During the exploitation phase, there is food available, i.e., Q > Threshold. If the
temperature is high, represented by temperature > Threshold (0.6), snakes will only search
for food, and the position update formula is as follows:

Xi,j(t + 1) = X f ood ± c3 × Temp × rand ×
(

X f ood − Xi,j(t)
)

, (7)

where Xi,j(t) represents the individual’s position and the best position for a snake individual
is Xf ood, with c3 taking the value of 2.
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If the temperature is below the threshold, i.e., temperature < Thresgold, indicating a
cold environment, individual snake will enter either combat or mating mode. The position
update formula in combat mode is as follows:

Xi,m( f )(t + 1) = Xi,m( f )(t)± c3 × FM(F)× rand ×
(

Q × Xbest, f (m) − Xi,m( f )(t)
)

(8)

In the formula, Xbest, f (m) represents the best position in the female (male) group, and
FM(F) represents the fighting ability of males or females. It is calculated as follows:

FM(F) = exp
(− fbest, f (m)

fi

)
, (9)

In the formula, f best,f (m) represents the fitness value of the best male or female individ-
ual, while the current f i is the fitness value of a snake individual.

In mating mode, simply replace Xbest,f (m) with Xi,f (m), which represents the position of
the ith female or male individual. Additionally, replace FM(F) with Mm(f ) to represent the
mating ability of males and females. It can be calculated as follows:

Mm( f ) = exp

(
− fi, f (m)

fi,m( f )

)
, (10)

If snake eggs hatch, the male and female with the worst fitness are selected to replace
their positions, which can be represented as:

Xworst,m( f ) = Xmin + rand × (Xmax − Xmin), (11)

The pseudocode of the SO algorithm is in Algorithm 1.

Algorithm 1. Snake Optimization Algorithm

Input:pop, Iteration, fobj, dim, X_min, X_max
Output:Xfood, fval, gbest_t
1. Initialize ThresholdQ ThresholdT, c1, c2, c3
2. X = initializtion(pop, dim, X_max, X_min)
3. Calculate fobj function fitness value for each X
4. [GYbest, gbest] = min(fitness), Xfood = X(gbest, :)
5. Nm = round(pop/2), Nf = pop − Nm
6. Xm = X(1:Nm, :), Xf = X(Nm + 1:pop, :)
7. fitness_m = fitness(1:Nm), bestX_m = bestX(1:Nm, :) %Male snake population
8. [fitnessBest_m, gbest1] = min(fitness_m), Xbest_m = Xm(gbest1, :)
9. fitness_f = fitness(Nm + 1:pop), bestX_f = bestX(Nm + 1:pop, :) %Female snake population
10. [fitnessBest_f, gbest2] = min(fitness_f), Xbest_f = Xm(gbest2, :)
11. for i = 1:Iteration
12. Temp = exp(−((t)/Iteration)), Q = c1 × exp(((t − Iteration)/Iteration))
13. if Q < Threshold
14. update Xnewm use Xm by Equation (5)
15. update Xnewf use Xf by Equation (5)
16. else
17. if Temp > Thresold2
18. update Xnewm use Xbest by Equation (7)
19. update Xnewf use Xbest by Equation (7)
20. else
21. if rand > 0.6
22. update Xnewm use Xm by Equation (8)
23. update Xnewf use Xf by Equation (8)
24. else
25. update Xnewm use Xm by Equation (8) replace Fm with Mm
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Algorithm 1. Cont.

26. update Xnewf use Xf by Equation (8) replace Fm with Mm
27. if rand > 0.5
28. update Xnewm wrost by Equation (11)
29. update Xnewf wrost by Equation (11)
30. end
31. end
32. end
33. end
34. Calculate the objective function fitness value by Xnewm and update Xm
35. Calculate the objective function fitness value by Xnewf and update Xf
36. Update the optimal objective function fitness value and optimal male snake vector
37. for the male snake population
38. Update the optimal objective function fitness value and optimal female snake vector
39. of the female snake population
40. Update the global optimal objective function fitness value gbest_t
41. and global optimal snake vector Xfood
42. end

2.4. Hierarchical Task Planning Method

Based on the level of completeness of the initial target information obtained by the
platform, the AUV task planning can be typically divided into two categories: one is task
planning under conditions of initially complete target information, and the other is task
planning under conditions of initially incomplete target information.

2.4.1. Task Planning Under Initial Complete Goal Information

The schematic diagram of AUV planning under the condition of initially complete
target information is shown in Figure 4. It indicates that the AUV has obtained relatively
complete motion information about the target during the planning phase.
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The overall design approach for task planning under complete information is shown
in Figure 5. In this paper, a three-level optimized task planning based on the snake
optimization algorithm is proposed. Given the target location, direction of motion, and
speed, the task planning for the AUV aims to minimize the time taken for the AUV to
encounter the target. The entire planning process is divided into three levels: external
planning, intermediate planning, and internal planning.
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target information).

External planning focuses on optimizing the difference between the actual movement
time of the AUV and the estimated time of encounter between the AUV and the target,
which involves optimizing the overall objective function. Intermediate planning optimizes
the actual movement time of the AUV. Internal planning optimizes the constraints associ-
ated with the AUV’s path planning. By iteratively optimizing the AUV’s actual movement
time, intermediate planning aims to achieve the shortest possible time. Meanwhile, it calcu-
lates the time difference between the actual movement time and the given estimated time
of encounter and feeds this information back to external planning for further optimization.
The entire process iterates until an optimal result is achieved.

The objective of the three-level task planning based on the snake optimization algo-
rithm is to minimize the time taken for the AUV to encounter the target, which means
the difference between the actual movement time of the AUV and the estimated time of
encounter should be as small as possible. Therefore, the objective optimization function of
external planning is defined as:

∆t =
∣∣tauv − ttarget

∣∣, (12)

where tauv represents the actual movement time of the AUV; target is the given estimated-
time for the encounter between the AUV and the target, which is also considered as the
target movement time; and the difference between the actual movement time of the AUV
and the estimated time of encounter is represented by ∆t.

The objective of intermediate planning is to minimize the actual movement time of
the AUV. The target optimization function is simply the practical movement time of the
AUV, denoted as practical time.

Internal planning aims to optimize a better path for the AUV, which involves a multi-
objective optimization process. The planning objectives include the optimal combination of
path length, smoothness, and safety for the AUV.

The evaluation function for path length is the sum of the distances between each
path node. The navigation path “Xi” is represented as a list of “n” waypoints that the
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AUV needs to follow. Each waypoint corresponds to a path node in the search map, with
coordinates Pij =

(
xij, yij, zij

)
. By representing the Euclidean distance between two nodes

as ∥
→

PijPi,j+1 ∥, the cost F1 associated with path length can be calculated as:

F1(Xi) = ∑n−1
j=1 ∥

→
PijPi,j+1 ∥, (13)

The evaluation function for path smoothness is a function of the path’s turning angles,
as shown in Figure 6.
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The turning angle φij is the angle between two consecutive path segments and the

projections of these segments onto the horizontal Oxy plane, represented as vectors. Let
→
k

be the unit vector in the z-axis direction. The projection vectors can be calculated as:

→
P′

ijP
′
i,j+1 =

→
k ×

( →
PijPi,j+1 ×

→
k
)

, (14)

Therefore, the turning angle is calculated as follows:

ϕij = arctan

∥
→

P′
ijP

′
i,j+1 ×

→
P′

i,j+1P′
i,j+2 ∥

→
P′

ijP
′
i,j+1 ·

→
P′

i,j+1P′
i,j+2

, (15)

The climbing angle ψij is the angle between the path segment
→

Pi,jPi,j+1 and its projection

onto the horizontal plane
→

P′
ijP

′
i,j+1. It is given by the following formula:

ψij = arctan

 zi,j+1 − zij

∥
→

P′
ijP

′
i,j+1 ∥

, (16)

The calculation of the smoothing cost is as follows:

F2(Xi) = a1 ∑n−2
j=1 ϕij + a2 ∑n−1

j=1

∣∣ψij − ψi,j−1
∣∣, (17)

where a1 and a2 are the penalty coefficients for the turning angle and climbing
angle, respectively.
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The planned path must meet safety conditions. Let K be the set of all collision zones, as-
suming that each collision zone has a center coordinate Ck and a radius Rk for its projection,
as shown in Figure 7. The cost of a threat increases as the distance from the threat center

decreases. For a given path segment ∥
→

PijPi,j+1 ∥, the associated threat cost is proportional
to its distance dk from Ck. By considering the safety margin distance D of the AUV and the
hazardous distance S to the collision zone, the threat cost F3 at waypoint Pij for the obstacle
set K is calculated as follows:

F3(Xi) = ∑n−1
j=1 ∑K

k=1 Tk

( →
PijPi,j+1

)
,

Tk

( →
PijPi,j+1

)
=


0, if dk > S + D + Rk

(S + D + Rk)− dk, if D + Rk < dk ≤ S + D + Rk
∞, if dk ≤ D + Rk.

, (18)
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By considering the optimality, safety, and feasibility constraints associated with the
path Xi, the overall cost function can be defined in the following form:

F(Xi) = ∑3
k=1 bkFk(Xi), (19)

where bk is the weighting coefficient, and F1(Xi) to F3(Xi) are the costs associated with
path length, path smoothness, and safety, respectively. The decision variable is Xi, which
includes a list of n waypoints Pij =

(
xij, yij, zij

)
.

The detailed process of the three-level optimization task planning based on the snake
optimization algorithm under initial complete information conditions is as follows:

1. Initialize parameters, providing the initial positions, movement speeds, etc. of the
AUV and the target;

2. Read map parameters, perform environmental modeling, and set obstacles;
3. Use an external optimization algorithm to estimate the predicted encounter time ttarget

between the AUV and the ttarget;
4. Derive the end position, which is the predicted encounter point, from ttarget, and

perform task planning for the AUV based on this position;
5. Internal optimization aims to minimize the constraint costs and returns the corre-

sponding actual movement time of the AUV to the intermediate optimizer;
6. The intermediate optimizer optimizes the actual movement time of the AUV to achieve

the shortest time tauv;
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7. Calculate the difference between the AUV movement time tauv provided by the
intermediate optimizer and the predicted encounter time ttarget. Return this time
difference to the external optimizer for further optimization to obtain the minimum
time difference and provide the optimal predicted encounter time for both.

The flowchart of the task planning method under complete target information is il-
lustrated in Figure 8. Under the condition of initial complete information, the parameter
initialization and environment modeling are performed first. Next, the estimated encounter
time is obtained through external optimization, and the end position is obtained accord-
ing to the estimated encounter time. Then the constraint cost is minimized by internal
optimization, and the shortest time of the actual motion is obtained by the intermediate
optimizer. Finally, the difference between the two times is calculated, and the difference is
returned to the external optimizer for optimization, where the optimal time for the meeting
is obtained.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 30 
 

 

encounter time is obtained through external optimization, and the end position is 
obtained according to the estimated encounter time. Then the constraint cost is minimized 
by internal optimization, and the shortest time of the actual motion is obtained by the 
intermediate optimizer. Finally, the difference between the two times is calculated, and 
the difference is returned to the external optimizer for optimization, where the optimal 
time for the meeting is obtained. 

 

Figure 8. Complete information for the overall task planning flowchart.

The implementation of the three-level optimization task is based on the snake algo-
rithm framework, and the main difference between the three loops lies in the objective
function. The pseudocode of the path planning of the internal loop is shown in Algorithm



Sensors 2024, 24, 7196 14 of 27

2. The path planning of the internal loop serves as the objective function of the external
loop, achieving a three-level nested optimization. The target endpoint of the path planning
of the internal loop is calculated based on the time design variables and target motion
information of the external loop. The objective function of the internal loop is the fitness
value calculated using Equation (19) based on the planned path. The objective function of
the external loop is to calculate the error between the navigation time corresponding to the
optimal path achieved through internal loop optimization under a given time optimization
variable and a certain time optimization variable in the external loop. The objective function
of the intermediate loop is to calculate the move time of the planning path. The pseudocode
of the external and internal loop objectiveness function is in Algorithm 3.

Algorithm 2. Internal Optimization Function

Internal optimizer funciton: So_path
Input:pop_path, Iteration_path, fobj_path, dim_path, Xmin_path, Xmax_path
Output:Xfood, fval, gbest_path, path_time
1. Initialize ThresholdQ ThresholdT, c1, c2, c3
2. X = initializtion(pop_path, dim_path, X max_path, Xmin _path)
3. Calculate fobj_path function fitness value for each X_path
4. [GYbest, gbest_path] = min(fitness), Xfood = X_path(gbest, :)
5. Nm = round(pop/2), Nf = pop − Nm
6. Xm = X_path(1:Nm, :), Xf = X_path(Nm + 1:pop, :)
7. fitness_m = fitness(1:Nm), bestX_path_m = bestX(1:Nm, :) %Male snake population
8. [fitnessBest_m, gbest1] = min(fitness_m), Xbest_m = Xm(gbest1, :)
9. fitness_f = fitness(Nm + 1:pop), bestX_path_f = bestX(Nm + 1:pop, :)%Female snake population
10. [fitnessBest_f, gbest2] = min(fitness_f), Xbest_f = Xm(gbest2, :)
11. for i = 1:Iteration
12. Temp = exp(−((t)/Iteration)), Q = c1 × exp(((t − Iteration)/Iteration))
13. if Q < Threshold
14. update Xnewm use Xm by Equation (5)
15. update Xnewf use Xf by Equation (5)
16. else
17. if Temp > Thresold2
18. update Xnewm use Xbest by Equation (7)
19. update Xnewf use Xbest by Equation (7)
20. else
21. if rand > 0.6
22. update Xnewm use Xm by Equation(8)
23. update Xnewf use Xf by Equation (8)
24. else
25. update Xnewm use Xm by Equation (8) replace Fm with Mm
26. update Xnewf use Xf by Equation (8) replace Fm with Mm
27. if rand > 0.5
28. update Xnewm wrost by Equation (11)
29. update Xnewf wrost by Equation (11)
30. end
31. end
32. end
33. end
34. Calculate the objective function fitness value by Xnewm and update Xm
35. Calculate the objective function fitness value by Xnewf and update Xf
36. Update the optimal objective function fitness value and optimal male snake vector
37. for the male snake population
38. Update the optimal objective function fitness value and optimal female snake vector
39. of the female snake population
40. Update the global optimal objective function fitness value gbest_t
41. and global optimal snake vector Xfood
42. end
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Algorithm 3. Objective Function of Intial Complete Target Information Conditions

Internal objective Function
Internal optimizer object funtion: MyCost_path
Input:X_path, UUV, UUV_v
Output: cos t, path_time
1. PTerminal= UUV + path_time × UUV_v
2. Path = [X_path; P Terminal

]
3. Calculate path length cos t F1 use Path by Equation (7)
4. Calculate smoothing cos t F2 use Path by Equation (17)
5. Calculate threat cos t F3 use Path by eq(Equation )
6. Calculate fitness value cos t by Equation (19)
7. Calculate path_time by Path

Intermediate objective Function
external optimizer object funtion: MyCost_time
Input:X_time, UUV
Output:best_time, bestX
1. fobj_path = @MyCost_path
2. [bestX_path, path_time] = So_path(pop_path, Iteration_path, fobj_path, dim_path,
3 . X_max, X_min, X_time, UUV)
4. best_time = path_time

external objective Function
external optimizer object funtion: MyCost_deltatime
Input:X_time, UUV
Output:delta_time, bestX, path_time
fobj_delta = @MyCost_delta
[bestX, path_time] = So_time(pop_time, Iteration_time, fobj_time, dim_time,
X_time_max, X_time_min, X_time, UUV)
delta_time = X_time − path_time

2.4.2. Task Planning Under Conditions of Initially Incomplete Target Information

The schematic diagram of AUV planning under the condition of initially incomplete
target information is shown in Figure 9.
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Figure 9. Schematic diagram of AUV planning under incomplete information conditions.

In this scenario, the AUV only knows the approximate initial location of the target,
while the specific direction of the target’s motion remains unknown. However, based on
practical engineering experience, an estimation of the maximum speed of the target can be
made. When the AUV is deployed from the platform, this moment is considered as time
zero. At any given time t, the target’s location will be somewhere within a circle centered at
the initial point with a radius equal to the maximum distance the target could have traveled
at its maximum speed since time zero.

The overall design approach for task planning under incomplete information is shown
in Figure 10. This paper proposes a three-level optimization task planning based on the
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snake optimization algorithm. Given the initial position information of the target and its
maximum speed, the task planning for the AUV is carried out. In this case, the target’s
movement range can be approximated as a circular area. Assuming the maximum speed of
the target is Vmax, the movement time is t1, and the azimuth angle is θ, this information
can determine the boundary of the circle. The ultimate goal is to make the AUV reach
this circle in the shortest time while minimizing the size of the encircled area. The entire
planning process is still divided into three levels: external planning, intermediate planning,
and internal planning.
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External planning mainly optimizes the difference between the actual time it takes for
the AUV to reach the boundary of the encircled area and the estimated time it is expected
to arrive, which involves optimizing the overall objective function. Intermediate planning
focuses on finding the minimum encircled area or the shortest actual movement time for
the AUV given different movement azimuth angles θ of the target. Internal planning
optimizes the constraints involved in AUV path planning. By continuously providing
different θ values, intermediate planning aims to find the θ that results in the shortest actual
movement time for the AUV or the smallest encircled area. The optimized shortest actual
movement time obtained from intermediate planning is subtracted from the estimated time
provided by external planning to calculate the time difference, which is then returned to
external planning for further optimization. The entire process iterates until an optimal
result is achieved.
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Task planning under incomplete information aims to achieve the goal of the AUV
reaching the smallest encircled area of the target in the shortest possible time. Therefore,
the objective optimization function ofexternal planningis taken as:

∆t =
∣∣tauv − tgive

∣∣, (20)

where tauv represents the actual movement time of the AUV; tgive represents the estimated
time for the AUV to reach the boundary of the encircled area; and ∆t represents the
difference between the actual movement time of the AUV and the estimated encounter
time. The objective of this optimization function is to minimize the time difference ∆t,
which means making the actual movement time of the AUV as close as possible to the
given estimated arrival time.

The purpose of intermediate planning is to find the direction angle at which the target
moves, resulting in the smallest encircled area, which corresponds to the minimum time
for the AUV to actually reach the encircled area.

Due to the unknown direction of the target’s motion, the maximum dispersion circle
of the target can be determined based on the given task time and maximum motion speed.
If the expected angle of the AUV on the dispersion circle is determined, the endpoint of the
path planning can be determined by Equations (21) and (22).

Xend = Xini,tar + tgive ∗ Vmax ∗ sinθ, (21)

Yend = Yini,tar + tgive ∗ Vmax ∗ cosθ, (22)

where Xini,tar, Yini,tar are the coordinates of the initial position of the target, Vmax is the
maximum velocity of the taret, tgive is the expected task completion time issued by the
outer loop, and θ is the design variable of the middle loop

The internal objective optimization function is the shortest actual movement time of
the AUV corresponding to the target dispersion circle angle θ. The optimal path and time to
reach the endpoint of the dispersion circle can be obtained through the inner planning loop.
The intermediate loop obtains the shortest navigation time and arrival angle for the AUV
to meet the target dispersion circle through angle planning. The external loop optimizes
the time to complete the task. The outer loop optimizes the expected task time to minimize
the error between the expected task time tgive and the actual completion time tauv.

The objective function of internal planning is the same as the internal optimization
objective function under the complete information scenario.

The detailed process of the three-level optimization task planning based on the snake
optimization algorithm under incomplete information conditions is as follows:

1. Initialize parameters: provide the initial positions, movement speeds, etc. of the AUV
andthe target.

2. Read map parameters: perform environmental modeling and set obstacles.
3. The external optimizer continuously provides the estimated encounter time (tgive),

between the AUV and the target.
4. The intermediate optimizer continuously provides the target dispersion circle angle, θ.
5. Based on the given tgive and θ, task planning can be performed for the AUV.
6. Internal optimization minimizes the constraint cost and returns the corresponding

actual movement time of the AUV to the intermediate optimizer.
7. By continuously adjusting the target movement azimuth angle, the intermediate

optimizer finds the shortest time, tauv, required for the AUV to actually move and
reach the target’s dispersion circle area.

8. The external optimizer calculates the difference between the actual movement time,
tauv, obtained from the intermediate optimization and the given time, tgive. Using
the snake optimization algorithm, iterations are performed to continuously adjust
the given time, aiming to minimize the absolute value of the difference between the
actual movement time required for the AUV to reach the target’s encircled area and
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the given time. This ensures that the AUV can reach the boundary of the smallest
encircled area of the target in the shortest possible time.

The detailed task planning process is shown in Figure 11. The mission planning
process under the condition of initial incomplete target information is generally similar to
that under complete target information, except that the estimated encounter time obtained
by the external optimization algorithm becomes the estimated time for the AUV to reach
the encirclement boundary.
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The program structure of each of the three layers is basically similar (Algorithm 2).
The main difference between the three layers lies in the objective function. The external
layer remains the same as the complete condition, with the optimization task completion
time error. The intermediate layer optimization objective function is to findthe shortest
navigation time path toreach the target dispersion circle andcorresponding angle design
variable θ, the path achieved through nested internal layer path optimization programs. The
objective function of the internal layer path planning remains unchanged when compared to
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the completeness condition. The pseudocode of the external and internal loop objectiveness
function is in Algorithm 4.

Algorithm 4. Objective Function of Incomplete Intial Target Information Conditions

Internal objective Function
Internal optimizer object funtion: MyCost_path
Input:X_path, UUV, UUV_v
Output: cos t, path_time
1. PTerminal= UUV + path_time × UUV_v
2. Path = [X_path; P Terminal

]
3. Calculate path length cos t F1 use Path by Equation (7)
4. Calculate smoothing cos t F2 use Path by Equation (17)
5. Calculate threat cos t F3 use Path by Equation (18)
6. Calculate fitness value cos t by Equation (19)
7. Calculate path_time of Path

Intermediate objective Function
external optimizer object funtion: MyCost_theta
Input:X_theta, UUV, Vmax, tgive
Output:bestX, path_time
1. Calculate Pend,tar use UUV, Vmax, tgive X_theta, by Equation (20), Equation (21)
2. fobj_theta = @MyCost_path
3. [bestX, path_time] = So_path(pop_path, Iteration_path, fobj_path, dim_path,
4. X_path_max, X_theta_min, Pend,tar )

External objective Function
external optimizer object funtion: MyCost_deltatime
Input:X_deltatime, UUV
Output:delta_deltatime, bestX, bestX_theta, path_time
1. fobj_theta = @MyCost_theta
2. [bestX_theta, bestX, path_time] = So_theta(pop_theta, Iteration_theta, fobj_theta, dim_theta,
3 . X_theta_max, X_theta_min, X_time, X_deltatime, UUV)
4. delta_time = X_time − path_time

3. Simulation Results and Analysis

To verify the effectiveness of the proposed mission planning method, simulation
experiments were conducted on an Intel i9-13900H with 32 GB of RAM (Intel, Santa Clara,
CA, USA) using MATLAB R2018b. We designed simulation experiments for both complete
and incomplete target information conditions separately.

3.1. Mission Planning Under Initial Complete Target Information Conditions

The input parameters for mission planning under complete information are shown in
Table 3.

The initialization position and speed of AUV and target are determined by map scene
size, AUV, and target motion capability. Initial Given Time can be estimated by the relative
distance between the initial AUV and the target, and the algorithm will automatically iterate
without affecting the final result. Path node count determines the speed and smoothness
of path planning. If it is too small, it will lead to obvious path mutations, which are not
conducive to obstacle avoidance and result in no solution. If it is too large, it will lead to a
significant increase in planning time. Due to nested planning, it will present a geometric
increase in planning time, generally ranging from 10 to 20.

The snake optimization algorithm population size and iteration count directly affect
the accuracy and speed of planning; increasing them can improve the accuracy of solving
the problem, facilitate escaping from local optimal solutions, reduce the speed of accel-
erating planning, and reduce planning time, but theywill affect the accuracy of solving.
When selecting, it is necessary to repeatedly try and match based on the actual situation. If
the solution accuracy meets the requirements, the numerical value can be minimized to
improve efficiency. If the solution accuracy does not meet the requirements or the optimal
solution cannot be found, the numerical value should be increased. The range of food
judgment value and temperature judgment value is [0, 1], which affects the frequency of
two behaviors;the typical value of food judgment value is 0.25, and the typical value of
temperature judgment value is 0.6.
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Table 3. Task planning input parameters under the complete information scenario.

Section Parameter Value

Initialization parameters

AUV initial position [200,100,150] m
Target initial position [900,700,100] m

AUV speed 10 m/s
Target speed 0.5 m/s

Initial given time 200 s
Path node count 15

Internal optimization
algorithm parameters

Internal snake optimization
algorithm population size 50

Internal snake optimization
algorithm iteration count 100

Food judgment value 0.25
Temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2

Intermediate optimization
algorithm parameters

Intermediate snake
optimization algorithm

population size
20

Intermediate snake
optimization algorithm

iteration count
5

Food judgment value 0.25
Temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2

External optimization
algorithm parameters

External snake optimization
algorithm population size 20

External snake optimization
algorithm iteration count 5

Food judgment value 0.25
Temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2

Listed in the Table 3, and the detailed parameters of initialization, internal optimization
algorithm, intermediate optimization algorithm, and external optimization algorithm are
given. The AUV mission under complete information conditions was planned, and the
software was run 10 times to obtain the simulation results shown in Table 4.

Table 4. Simulation results under complete information conditions.

Count
Best_Time Practical_Time Delat_Time Voyage

(s) (s) (s) (m)

1 102.3396 98.8857 3.4539 998.857
2 98.8897 98.1893 0.7004 981.893
3 102.4319 99.8661 2.5658 998.661
4 101.9350 101.3425 0.5942 1013.425
5 100.8928 100.9090 2.9838 1009.090
6 100.8224 100.7205 0.1018 1007.205
7 102.3045 101.3076 0.9969 1013.076
8 96.5964 95.4761 1.1204 954.761
9 101.6371 100.7935 0.8437 1007.935
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Table 4. Cont.

Count
Best_Time Practical_Time Delat_Time Voyage

(s) (s) (s) (m)

10 94.8353 94.0722 0.7631 940.722
MAX 102.4319 101.3425 3.4539 1013.425
MIN 94.8353 94.0722 0.1018 940.722

MEAN 100.26847 99.15625 1.4124 992.5625

Figures 12 and 13 show the simulation diagram of AUV mission planning. The red
curve represents the AUV path, and the yellow curve represents the target path. “Start” is
the initial position of the AUV, “Target” is the initial position of the target, and “End” is the
encounter point between the two, which is also the final destination of the target.
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As can be seen from Table 4, under complete information conditions, the hierarchical
mission planning algorithm can plan an AUV search mission path that satisfies the time
threshold requirement for the deviation between the actual mission completion time and
the expected mission completion time. The maximum mission planning time deviation
is 3.453 s, the minimum mission planning time deviation is 0.101 s, and the average time
deviation is 1.41 s. In terms of time deviation rate, the maximum time deviation rate is
3.37%, the minimum time deviation rate is 0.1%, and the average time deviation rate is
1.4%. Figures 12 and 13 show that under complete information conditions, the proposed
mission planning method can plan a path that meets multiple constraints, avoids threat
areas, and encounters the target as early as possible.

3.2. Mission Planning Under Initial Incomplete Target Information Conditions

The input parameters for mission planning under initial incomplete information are
shown in Table 5. The input parameters of task planning under the incomplete information
scenario are listed in the table, and the detailed parameters of initialization, internal
optimization algorithm, intermediate optimization algorithm, and external optimization
algorithm are given.

Table 5. Task planning input parameters under theincomplete information scenario.

Section Parameter Value

Initialization Parameters

AUV initial position [200,100,150] m
Target initial position [900,700,100] m

AUV speed 10 m/s
target speed 0.5 m/s

Initial given time 200 s
Path node count pi

Internal optimization
algorithm parameters

Internal snake optimization
algorithm population size 50

Internal snake optimization
algorithm iteration count 100

Food judgment value 0.25
Temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2

Intermediate optimization
algorithm parameters

Intermediate snake
optimization algorithm

population size
20

Intermediate snake
optimization algorithm

iteration count
5

Food judgment value 0.25
Temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2

External optimization
algorithm parameters

External snake optimization
algorithm population size 20

External snake optimization
algorithm iteration count 5

Food judgment value 0.25
temperature judgment value 0.6

C1 0.5
C2 0.05
C3 2
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Mission planning was conducted for AUVs under incomplete information conditions,
and the software was run 10 times to obtain the simulation results shown in Table 6.

Table 6. Simulation results under incomplete information conditions.

Count
Best_Time Practical_Time Delat_Time Voyage Best_Theta

(s) (s) (s) (m) (rad)

1 109.50 110.15 0.64 1101.46 3.69
2 112.96 111.91 1.052 1119.11 6.28
3 100.31 104.15 3.84 1041.45 4.16
4 106.98 107.53 0.55 1075.31 1.62
5 103.79 103.69 0.09 1036.94 1.33
6 99.45 99.73 0.29 997.31 2.34
7 101.17 100.78 0.38 1007.85 2.99
8 100.14 97.75 2.40 977.46 3.89
9 97.44 100.94 3.50 1009.46 4.28
10 97.84 97.04 0.8 970.37 3.62

MAX 112.96 111.91 3.84 1119.11 6.28
MIN 97.44 97.04 0.09 970.37 1.33

MEAN 103.87 104.14 1.58 1041.44 3.81

As can be seen from Table 6, under incomplete information conditions, the hierarchical
mission planning algorithm can plan an AUV search mission path that satisfies the time
threshold requirement for the deviation between the actual mission completion time and
the expected mission completion time, while also providing the corresponding direction
towards the target. The maximum mission planning time deviation is 3.84 s, the minimum
mission planning time deviation is 0.09 s, and the average time deviation is 1.58 s. In
terms of time deviation rate, the maximum time deviation rate is 3.6%, the minimum time
deviation rate is 0.09%, and the average time deviation rate is 1.52%.

The task planning results are shown in Figures 14 and 15. The red curve is the AUV
path, and the yellow curve is the target path. “Start” is the initial position of the AUV,
“Target” is the initial position of the target, and “End” is the meeting point of the two, that
is, the destination endpoint.
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As shown in Figures 14 and 15, under incomplete information conditions, the proposed
mission planning method can designa path that meets multiple constraints, avoids threat
areas, and encounters the target as early as possible while also providing the angle at
which the path enters the target dispersion area. When the AUV’s movement azimuth
is 3.62 radians, the resulting enclosing circle is the smallest, and the AUV can reach the
target’s minimum enclosing circle within 97.04 s, which is the shortest time obtained. The
difference between this time and the best given time is only 0.09 s, ensuring that the AUV
can encounter the dynamic target in a timely manner.

As can be seen from Table 7, due to the influence of the initial target information, the
planning accuracy under complete or incomplete information conditions is not significant.
In the complete information scenario, the maximum deviation rate of planning time de-
creases by approximately 6.9%, while in the incomplete information scenario, the average
deviation rate of planning time decreases by approximately 7.8%.

Table 7. Comparison of planning performance under different information conditions.

Initial Information
Conditions

Maximum
Deviation Rate

Minimum
Deviation Rate

Average
Deviation Rate

Complete
information 3.37% 0.1% 1.4%

Incomplete
information 3.6% 0.09% 1.52%

4. Conclusions

In general, the task planning problem for AUVs to pursue dynamic targets can be
divided into two parts: whether the AUV can encounter the dynamic target and whether
the encounter time is the shortest. The mutual coupling of these two problems makes
their resolution difficult. This paper proposes an AUV autonomous global task planning
method by combining two typical initial observation target information scenarios. By
integrating the idea of hierarchical planning with the snake optimization algorithm, the
global task planning of the AUV achieves the shortest encounter time with the dynamic
target. Through mathematical simulations, it is verified that the hierarchical mission
planning methods proposed in this article can effectively solve the AUV global mission
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planning problem, enabling the AUV to encounter dynamic targets in the shortest time
possible under multiple constraints.

This study innovatively adopts a three-layer planning strategy to address the two
mutually coupled problems of the AUV encountering the dynamic target and minimizing
the encounter time. This enables the algorithm to obtain a global optimal solution for
dynamic targets. Additionally, the novel snake optimization algorithm is introduced
into the task planning of each layer, and two different planning methods are proposed
based on two typical initial detection target information of the platform, allowing the
algorithm to address issues related to dynamic targets and effectively solve practical
engineering problems.

This study addresses the issue of underwater autonomous task planning for AUVs,
providing a method for autonomous unmanned underwater vehicle task planning. Focus-
ing on the research of methods, some simplifications are made to the environment in this
study. For example, the influence of the AUV’s own volume is ignored, and a fixed flight
speed is set. In subsequent research, we will consider the influence of the vehicle’s own
factors and explore the AUV’s autonomous task planning capabilities under non-uniform
speed conditions.

This article proposes a hierarchical task planning method based on the snake opti-
mization algorithm for AUV task allocation and path planning problems. Considering the
coupling relationship between task allocation and path planning, the AUV task planning
problem wasbroken downinto multiple nested optimization design problems through hier-
archical partitioning and solved using the snake optimization algorithm. This algorithm
can effectively solve the task planning problem of AUV under different initial information
conditions, providing new ideas and methods for the practical application of AUV. In
future work, research should focus on improving the algorithm, enhancing its ability to
adapt to complex dynamic environments, and expanding its application scenarios, such
as considering the collaboration and heterogeneity of multiple drones and introducing
parallel computing mechanisms to improve design efficiency.
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