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Abstract—The process of fish cage inspections, which is a
necessary maintenance task at any fish farm, be it small-
scale or industrial, is a task that has the potential to be fully
automated. Replacing trained divers who perform regular
inspections with autonomous marine vehicles would lower
the costs of manpower and remove the risks associated with
humans performing underwater inspections. Achieving such
a level of autonomy implies developing an image processing
algorithm that is capable of estimating the state of biofouling
buildup. The aim of this work is to propose a complete
solution for automating the said inspection process; from
developing an autonomous control algorithm for an ROV,
to automatically segmenting images of fish cages, and ac-
curately estimating the state of biofouling. The first part
is achieved by modifying a commercially available ROV
with an acoustic SBL positioning system and developing a
closed-loop control system. The second part is realized by
implementing a proposed biofouling estimation framework,
which relies on AI to perform image segmentation, and by
processing images using established computer vision methods
to obtain a rough estimate of the distance of the ROV from
the fish cage. This also involved developing a labeling tool in
order to create a dataset of images for the neural network
performing the semantic segmentation to be trained on. The
experimental results show the viability of using an ROV fitted
with an acoustic transponder for autonomous missions, and
demonstrate the biofouling estimation framework’s ability to
provide accurate assessments, alongside satisfactory distance
estimation capabilities. In conclusion, the achieved biofouling
estimation accuracy showcases clear potential for use in the
aquaculture industry.
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timation; underwater image segmentation; autonomous ROV
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I. INTRODUCTION

There has been a growing acknowledgment of the cru-
cial role played by small-scale fisheries and industrial
aquaculture in ensuring global food security and nutri-
tion in the 21st century. Global aquaculture production
has shown a rising trend over the last 30 years, with
around 80 million tonnes of seafood produced in 2020
[1]. Aquaculture is known to be highly labor-intensive,
requiring significant human involvement in various tasks
such as feeding, cleaning and processing as opposed to
the envisioned streamlined machine-supported industrial
agriculture. The emergence of autonomous robots presents
an opportunity to supplement and enhance these labor-
intensive operations. By integrating autonomous robots,
the aquaculture sector can achieve higher efficiency, reduce
operational costs, and ensure sustainable fishing practices
for the future.

Previous research in this field often deals with only one
specific aspect of aquaculture activities, like net damage
detection in [2], [3]. Other work such as that by Duda
et al. [4] uses computer vision techniques to achieve
ROV pose estimation and briefly touches on biological
buildup on the net, but only mentions it as a potential
problem for pose estimation. More work by Livanos et
al. [5] discusses enhancing ROV autonomy level through
intelligent navigation, but does not showcase a use for any
specific fishery maintenance task. Work by Qiu et al. [6]
examines the estimation of built-up biofouling using image
processing, but only briefly mentions using an ROV to
capture footage needed for research. To the best of the
authors’ knowledge, there is no literature on the devel-
opment of a complete autonomous fish cage inspection
system that includes not only visual biofouling estimation,
but also control and localization of an underwater vehicle.
A research project named HEKTOR (Heterogeneous au-
tonomous robotic system in viticulture and mariculture)
aimed to fill this knowledge gap and offer a solution
that enables efficient coordination among heterogeneous
autonomous robots, as can be seen in Figure 1. More
information about the project can be found in [7], [8].

One task that can, or better said should be automated,
is the inspection of fish cage nets in aquaculture. The net
gradually accumulates biofouling which has many negative
consequences. The main problem is the reduction in avail-
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Figure 1: A schematic of the proposed HEKTOR under-
water inspection solution.

able area for clean water to flow through which causes the
water inside the pen to become less oxygenated and more
fouled, ultimately resulting in increased fish sickness and
death rate. Accompanying problems include the addition
of extra mass to the pen structure, thus placing stress on
the mooring ropes, damaging the net and causing a need
for reknitting it. Periodic visual inspections by divers are
currently necessary to assess the condition of the pens
and determine the appropriate timing for cleaning. Using
an ROV or an AUV to perform said visual inspections
would reduce the need for divers, helping to create a
more streamlined, autonomous, and risk-averse inspection
process.

The proposed automated underwater fish cage inspection
process includes an autonomous surface vehicle (ASV)
working in cooperation with an ROV as shown in Figure 1.
The camera feed is streamed from the ROV, while biofoul-
ing estimation, control, and underwater algorithms are run
on the ASV’s onboard computer. The inspection process
is envisioned to be split into two tasks. The first task is
processing the footage obtained from a vehicle filming
underwater to estimate the amount of biofouling present
on the net. The second task is developing an autonomous
control algorithm to maneuver an ROV around the pens.

The main research goal was to develop an image pro-
cessing algorithm that could be combined with the control
algorithm in order to accurately assess the amount of
biofouling accumulated on the nets. This research con-
tributes in several key areas. Firstly, a neural network is
successfully utilized for accurately segmenting underwater
images of fish pens, enabling precise identification of pen
structures. The architecture used for AI segmentation is
the popularly employed UNet [9], explained in more detail
later. Secondly, the research explores and tests the feasibil-
ity of retrofitting an ROV with an underwater transponder
to achieve precise localization. This modification improves
upon its manual operation while also enabling autonomous
missions, enhancing both its operational ease and versatil-

ity. Thirdly, the paper proposes a technique for estimating
the extent of biofouling buildup on a given pen. By com-
bining image segmentation with localization, the technique
provides a valuable means of quantifying the level of
biofouling on fish pens. Lastly, the proposed biofouling
estimation technique is successfully tested in controlled
and repeatable experimental scenarios. Collectively, these
contributions improve fish pen biofouling analysis, and
highlight potential advancements in the field of underwater
robotics and mariculture practices.

II. EQUIPMENT

A. ASV Korkyra

A custom-made aluminum catamaran named Korkyra
was developed to function as a versatile remote-controlled
or autonomous surface vehicle as a part of HEKTOR,
as shown in Figure 2. This specially designed catamaran
boasts several key features, one of which is a landing
platform dedicated to accommodating a lightweight drone
for aerial operations [10]. Additionally, it incorporates a
docking and tether management system intended for seam-
less integration with an ROV, enabling underwater mission
capabilities, [11]. It also features a robust metal frame
that enables the mounting of diverse tools and sensors
such as cameras, sonar, lidar, etc. A powerful onboard
computer is used to support real-time control algorithms,
data processing, and other computational requirements.
With its purpose-built design and advanced functionalities,
Korkyra serves as a valuable asset for remote-controlled or
autonomous operations.

Figure 2: Autonomous surface vehicle Korkyra: left—TMS
mounted, right—LP mounted onto the ASV.

B. ROV and Acoustic Localization System

Autonomous systems must be able to precisely estimate
their own position relative to obstacles, structures, and
other objects in order to navigate and operate effectively
in cluttered environments such as fisheries. An underwater
acoustic positioning system is essential for autonomous un-
derwater missions due to the absence of GPS and standard
RF-based positioning systems in underwater environments.
This technology plays a vital role in enabling autonomous
underwater missions by providing reliable positioning in-
formation where traditional positioning systems cannot
operate effectively [12]. By using acoustic signals, the
positioning system enables accurate navigation, mapping,
and control of underwater vehicles in real-time.
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A commercially available ROV was acquired from Blu-
eye, a Norwegian company specializing in underwater
technology. The ROV was mounted with a transponder be-
longing to an SBL acoustic underwater positioning system,
as can be seen in Figure 3. The SBL acoustic localization
system is the Underwater GPS G2 acquired from Water-
Linked, also a Norwegian company specializing in acoustic
subsea communication and positioning systems. An L-
shaped fixed position configuration with 4 transceivers
placed at various depths, and 1 transponder mounted on
the ROV was precise enough for use in a controlled
test inspection scenario. A secondary, but perhaps more
realistic rectangular configuration with the 4 transceivers
mounted on an ASV was also tested and provided good
results in rough weather conditions. The depth reading was
taken directly from the ROV because the sensor readings
were far more precise than those received from the SBL
transponder.

Figure 3: The used Blueye Pro ROV and a closeup of the
retrofitted WaterLinked Underwater GPS G2 transponder.

III. METHODOLOGY

A. Dataset Collection and Labeling

The research involved collecting underwater video
footage of fish cages in the Adriatic Sea during the
summers of 2020 and 2021 to study biofouling buildup.
This footage, showcasing cages in various states of fouling,
was used to create a dataset of nearly 4,000 images. Addi-
tional footage was collected in a controlled seawater pool
in 2022, adding around 1,000 more images. To analyze
the buildup, the research focused on image segmentation,
requiring labeled images of the cages. A labeling tool was
developed to streamline this process by using the K-Means
clustering algorithm to group pixels of similar colors.
This approach effectively handled large image volumes,
simplifying images down to key colors without losing
structural detail. The tool allowed operators to label images
efficiently by selecting clusters and assigning them to
categories such as “sea”, “cage”, “fish”, and “blurry” as
shown in Figure 4.

B. Biofouling Estimation Framework

The modular biofouling estimation framework proposed
herein is depicted in Figure 5. The framework comprises

Figure 4: Screenshot of the labeling tool developed for
easier dataset creating. The image in the top left is the
original image with clusters of pixels turned on or off. The
image in the top right replaces pixels from the original
image with their respective centroids resulting from K-
Means clustering. It is possible to choose the color space
of the image, change the K hyperparameter, and turn the
pixels on and off using the toolbar above the images. The
legend pop-up window in the bottom left is used for turning
the grouped pixels “on or off” and assigning labels. The
color squares represent the resulting centroids of K-Means
clustering.

several interconnected nodes with each node serving a
specific purpose. The framework and the nodes came about
as a product of developing image processing algorithms
and the ROV control loop in the Robotic Operating System
(ROS). Node (1), shown in Figure 5, is responsible for
executing the image segmentation process, separating the
fish pen structure and its net from the background. Node (2)
combines the segmented data with the distance information
to reconstruct how a clean net would appear at that
specific filming distance. Node (3) compares the two binary
images, one of the ideal net state and one of the current
state, and the result quantifies the extent of biofouling
coverage on the net’s surface. Node (4) implements pose
(distance) estimation from a single camera if the distance
from the filmed net is not known from a 3D map of the
environment or some other source.

A particular implementation of the framework developed
during research calculates an estimated distance from the
net by determining the approximate distance between each
center of the small squares in the net, shown in more detail
in Figure 6. The selection of centers as good features
in the biofouling estimation process was based on their
inherent stability. The squares gradually reduce in size
as biofouling builds up on the net, however the position
of the center remains constant which makes the centers
robust features for detection. By having knowledge of the
distance in pixels for specific features on an object in an
image, as well as the corresponding real-life distances,
along with information about the camera sensor used for
capturing the picture such as the physical size of the
sensor and its focal length, it is possible to estimate the
distance from the observed object to the camera. This
allows for a reasonable estimation of the distance from the
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camera to the observed fish pen. This method of distance
estimation can be classified as a geometric approach to the
problem, as opposed to using a more time-consuming and
computationally heavier deep-learning approach.

Figure 5: Schematic of the used biofouling estimation
framework.

Figure 6: Ideal net visualizer part of the framework shown
in more detail as it is implemented.

1) Biofouling Buildup Quantification: The net is filmed
with as uniform a movement as possible at a fixed distance
from the net. The ROVs movement speed was such that
filming at 1Hz was frequent enough to capture the entire
net area. Uniform movement of the ROV ensures that each
segment of the net is filmed for roughly the same amount
of time. The entire footage can be fed into the framework,
and the amount of biofouling for the filmed area would be
the average of all of the estimations.

2) Image Segmentation Node: The labeled data from
the image labeling process was initially used to train a
logistic regression model, which aimed to classify pixels
as belonging to the fish cage structure or the background
(sea and fish) based on color. This model, trained on
an 80-20% train-test split, showed limitations in handling
variations like lighting conditions and image blurriness,
leading to its abandonment [13]. A more robust approach
using neural networks, specifically the UNet architecture,
was then adopted for image segmentation. UNet, known
for its U-shaped design, effectively captures both high-
level context and fine details, producing accurate pixel-
wise segmentation masks [9], [14]. The model was trained
on randomly selected images from the dataset, using the
same 80-20% split, with only basic sharpening applied to
images before segmentation. The goal was to accurately
distinguish between the fish pen net and the surrounding
background.

C. Closed-Loop ROV Control System

A lawnmower pattern trajectory controller was designed
to serve as a proof-of-concept to test the possibility of
complete autonomous control for the modified ROV. This

test aimed to assess functionalities such as precise position
estimation, efficient trajectory planning, and to validate the
responsiveness of the ROV’s control loop. Each state in the
control algorithm represents a specific action for the ROV,
such as moving to a starting position, swaying, descending,
or resurfacing to a predetermined end point. A general
schematic for the control system can be seen in Figure
7, and the different states of the controller can be seen in
a UML class diagram of the controller implementation in
Figure 8. The control system implemented for the ROV
managed surge and heave motions. Additionally, the ROV
features built-in automatic heading maintenance, that is,
it points to a constant direction during operation. The
position error is used as an input into a classic PID
controller that generates thruster commands, so that the
control system can be used for any 2-DOF ROV [15].

Figure 7: Schematic depicting the ROV control loop.

Figure 8: Schematic showing the implemented control loop
class diagram. The “Controller” class generates waypoints
by taking into account the leftmost and rightmost possible
values for the position, depth, and how many discrete
points to generate along the horizontal and vertical axes.
The outputs are values for thruster speed along two con-
trolled degrees of freedom (surge and sway).

IV. EXPERIMENTAL SETUP

Validation experiments for the biofouling estimation
framework were conducted in a controlled seawater pool
in Biograd, Croatia in late September and early October
of 2022. For the purpose of conducting these trials, a
pen net was acquired from an industrial fish farm and
deployed within the controlled environment of an Olympic-
sized pool. The dimension of the net is ∼14 m wide
and ∼3 m high, so ∼42 m2 of area in total. To simulate
biofouling buildup in this scenario, camouflage-pattern
colored square patches were strategically hand-placed onto
the fish cage net as can be seen in Figure 9. The patches
were 25cm x 25cm squares. They were designed to mimic
the visual appearance of underwater biological fouling
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using a brown–yellow color scheme. An increasing number
of patches were added to the net in each iteration of the
experiment. The net was filmed once with no patches,
once with patches covering 22%, 33%, and 44%, and three
times with patches covering 66% of the net with greater
distance to the net each time. The ROV was autonomously
controlled during the underwater missions. The implemen-
tation of autonomous control in the controlled ocean-floor
pool environment not only facilitated more consistent data
collection but also served to test the developed control
algorithm.

Figure 9: The Olympic sea water pool used for testing, with
the net dragged out in order to place patches for biofouling
simulation. The affixed patches on the net can be seen
close−up filmed during a mission in the red circle.

A screenshot of the UWGPS system GUI can be seen in
Figure 10, taken during one testing of the ASV+ROV com-
bination in open sea. The green line represents the ASV
trajectory which should always be available as it has the
UWGPS box mounted, while the blue line represents the
trajectory of the free-moving transponder that is attached
to the ROV in this case, and can travel out of the search
range. Due to limitations of working in a pool, a fixed
baseline of transponders was positioned around the pool’s
edge. Although this approach differed from the anticipated
ASV + ROV combination, it provided a needed practical
solution for achieving reliable positioning data during the
experimental setup in the pool environment.

Figure 10: Screenshot of the UWGPS GUI while the ROV
is tethered to the ASV which also acts as the carrier for
the short baseline transponder setup. Since the trajectory of
the ROV is visualized, this software was used to roughly
estimate the precision of the SBL setup.

V. RESULTS

A. Autonomous ROV Control Loop Results

Each ROV mission took around 15 min to cover the
aforementioned 42m2. The 3D plot in Figure 11 visualizes
the ROV’s movement during a mission, and its ideal
trajectory generated by the control algorithm. The Y-axis
in Figure 11 correlates to the distance from the ROV to
the net since the net was strung out straight. The controller
was implemented with this assumption, so it tried to keep a
constant Y-coordinate throughout the mission. The position
is plotted every second.

Figure 11: 3D plot of the ROV position. The blue line
represents a perfect trajectory, the colored dots represent
actual positions in time during one mission.

Having the ROV’s surge speed be between ∼0.1 m/s and
∼0.2 m/s has shown to be a good compromise between
the quality of footage regarding image sharpness, and the
duration of a mission.

B. Image Labeling Results

The images picked for the dataset were represented in
the LAB color space. The LAB color space separates the
luminance (L) channel from the color information. During
the image labeling process, only the central part of the
full HD image was considered due to concerns related to
camera distortion and overall poor image quality near the
edges. Images exhibiting labeling errors, low image quality,
or inconsistencies were identified and removed from the
training dataset. Table I shows the distribution of images
in the dataset.
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Table I: Table showing how many images per filming year
were labeled in total, and how many of the labeled images
ended up in the training/validation dataset for the neural
network.

Footage year Location Labeled imagess Images in dataset

2020 Ugljan 938 261

2021 Ugljan 405 197

2022 Biograd 919 694

C. UNet Architecture Segmentation Results

As mentioned earlier, in order to train the UNet model
the standard 80–20% train–test split was used, meaning
that the model was trained on 80% of available annotated
images in the dataset, and the results of the training steps
were validated on a randomly selected 20% of images in
the dataset that are unseen during training. The training
process was stopped once no more discernible improve-
ment was shown from one iteration to the next.

Dice score is a common metric used for scoring the
performance of image segmentation models, ranging from
0.0 to 1.0 (a higher value is better). It measures the
similarity or overlap between the predicted segmentation
mask and the ground truth segmentation mask [16]. The
highest Dice score achieved on the validation set of images
was 0.8434 during the 9th training epoch, and the weights
calculated to achieve this coefficient were saved to be used
later on. The Dice score can be seen changing during the
training process in Figure 12. A visualization of how the
trained UNet model successfully segments the images can
be seen in Figure 13.

Figure 12: Plot showing the popular Dice score used in
image segmentation analysis and its change during the
training.

D. Biofouling Estimation Results

As previously mentioned, an industrial fishery provided
a fish pen net for the experimental setup. Square patches
were affixed onto the net in a series of iterations to simulate
biofouling. The patches were incrementally added in four
stages, progressively covering larger areas of the net. All
of missions had the ROV at around 1 m away from the
net being filmed, except a repeated mission at 66% where
the distance was purposefully increased to around 1.5 m.

Figure 13: Result of predictions made by a trained UNet
neural network segmentation model for: left—an image
taken in the controlled conditions in Biograd, right—an
image taken at a real fishery near Ugljan.

To establish a benchmark result, the biofouling estimation
algorithm was initially applied without the implementation
of any filtering methods. All of the recorded footage in a
filming session was only cropped around the center of the
frame and fed into the estimation algorithm. Table II shows
the benchmark estimated percentages.

Table II: Table showing the actual simulated biofouling
percentage, and the estimated biofouling percentage gen-
erated by the estimation framework.

Actual Biofouling Estimated Biofouling

22.00% 16.00%

33.00% 32.19%

44.00% 41.02%

66.00% 65.48%

1) Framework Filters Results Using UNet for Semantic
Segmentation: The two filter methods implemented were
the exclusion of footage during non-uniform movement,
and the contour filtering based on size and shape of
detected contours. The difference to the estimated per-
centage that the filters made can be seen in Figure 14.
The apparently small change is due to the fact that the
autonomous filming worked well in a sense that the ROV’s
speed was consistent throughout the mission and the angle
of the filming was good. Each area of the net is filmed
for around the same amount of time, and the neural
network semantic segmentation model performed well, so
the benchmark result without filtering was close to correct
from the start. When the filming conditions are not perfect,
such as in the repeated 66% coverage scenario tested in
Biograd, then the filters help out. The filming conditions
were purposefully worsened by having a greater distance
from the ROV to the net during filming. The combination
of both filters reduced the estimation error by 1.75% in
total, as can be seen in Table III.

2) Effect of Filming Conditions: An issue arose during
a control test where the ROV’s heading angle was fixed,
and a clean net with no biofouling patches was filmed.
Despite the net being clean, the estimation incorrectly
reported 32.37% biofouling due to several factors: the

Accepted to the IEEE ICRA Workshop on Field Robotics 2024



Figure 14: Bar plot showing the error in the estimated
percentage of biofouling.

Table III: Table showing the actual simulated biofouling
percentage, and the estimated biofouling percentage gen-
erated by the estimation framework with the combinations
of the footage and computer vision filters turned on.

Value Biofouling Estim. Error
Actual biofouling 66.00% /

No filter estim. 48.04% 17.96%

Contour filter estim. 49.44% 16.56%

Movement filter estim. 48.98% 17.02%

Combined filter estim. 49.79% 16.21%

net’s slight convexity and waviness (as it was not tightly
strung), the ROV’s heading potentially drifting due to an
imperfectly calibrated compass, and filming from a tilted
angle. Furthermore, one of the factors during filming is
the time of day and the position of the Sun. The used
Blueye Pro ROV does not have an HDR camera, meaning
that an overexposure of one part of the camera sensor
to light ruins the rest of the image. This effect poses a
problem when filming near the surface. Filming missions
should be planned accordingly, holding them early in the
morning or late afternoon, or filming the cages with the
Sun behind the camera. In addition, it goes without saying
that the filming distance greatly impacts image quality and
the estimation process as a whole. Filming should be done
at a distance where the the net can be clearly separated
from the background, i.e., the edges should be sharp and
easily discernible. As mentioned earlier in Section V-B,
the sea floor could have a big impact on the computer
vision component of the framework. Having the sea floor
visible increases the already difficult challenge of accurate
semantic image segmentation. Luckily, the scenario is
unlikely because fish farms should be situated 3km away
from shore and have 50 meters of depth available to limit
the environmental impact, as mentioned in [17], [18].

3) Choosing the UNet Architecture Instead of Logistical
Regression: It is important to note that the results seen
so far were achieved using the trained UNet architecture
model for semantic image segmentation. While logistical
regression initially seemed promising for semantic seg-
mentation (previous research done in [13]), its limita-
tions became evident during testing in Biograd. It quickly
became apparent that the method is not robust enough.
Small changes in lighting conditions completely threw off
the segmentation which then produced unusable results.

Adding the footage captured in Biograd into the training
dataset does improve estimation results, but at the same
time it degrades the quality of segmentation from footage
captured in previous years. Still, the biofouling estimation
algorithm was run with both the old and new (added
footage from Biograd) logistical regression models, and
the results can be seen in Table IV. All of the estimated
percentages in the table are generated by the framework
without using any of the filters mentioned before. It is
apparent that using logistical regression not trained on
new footage produces much more inaccurate results than
the other two models in Figure 15. Training a logistical
regression model with new footage does improve perfor-
mance, but at the cost of overtraining which can be seen by
poor performance for the highest biofouling scenario. The
results for that particular test are worse because the filming
conditions are different in a sense that the previous three
filming missions were carriedo ut on Wednesday afternoon,
and the 66% biofouling coverage filming was done the next
day on Thursday morning.

Table IV: Table showing the average estimate of biofouling
percentage when using the footage filters, for each seman-
tic segmentation model.

Actual Biofouling Log. Reg. Estim.
(Old Footage)

Log. Reg. Estim.
(New Footage) UNet

22% 29.96% 20.99% 16.00%

33% 50.12% 34.63% 32.19%

44% 53.49% 41.73% 41.02%

66% 52.45% 50.05% 65.48%

Figure 15: Bar plot showing the average absolute error in
the estimated percentage of biofouling for logistical regres-
sion models trained on just old (blue bar) and combined
(orange bar) data, and UNet.

To sum up, using a robust UNet model for the image
segmentation node in the biofouling framework produced
an average absolute biofouling estimation error of just
2.54%, as can be seen in Figure 15. The image seg-
mentation is the most computationally heavy task of the
framework, and the time taken to segment an image using
a trained UNet model depends on the power of the onboard
computer in the ASV if the estimation is to be done in real-
time, or the workstation if the estimation is to be carried
out after filming is complete. Using a dedicated GPU to
run the UNet model is heavily recommended because it
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reduces the processing time of a 960 × 540 resolution
image from a few seconds using a CPU, to the millisecond
order of magnitude using a GPU. Furthermore, using
UNet for segmentation means that potentially obtaining
a diverse range of footage from various fisheries filmed
under different conditions could only enhance the model’s
robustness and performance, whereas opting for simpler
models like logistical regression would lead to overtraining
when faced with varying scenarios.

VI. CONCLUSION

In conclusion, the main contributions of this research
were: (1) development of a labeling tool in order to
create a curated dataset of labeled underwater HD images
of fish pens, (2) development and implementation of a
framework successfully used for estimating the amount
of biofouling on the nets of fish pens, that incorporates
a trained AI neural network model used for the task
of semantic segmentation of underwater images of fish
pens, and (3) development of an autonomous closed-loop
control system using the available SDK for the ROV and
the available localization data supplied by the retrofitted
underwater positioning system.

The control loop algorithm successfully controlled the
ROV in a pool setting using point-to-point navigation.
Although the scenario in which the experiment was con-
ducted is not an exact replica of the actual conditions in
a fish farm, it still demonstrates the possibility of using
the ROV as an autonomous vehicle to perform inspection
missions. To achieve localization in a complex environment
the control algorithm could be modified to include a
three-dimensional map of the farm and also fuse SONAR
measurements if such a sensor would be mounted onto the
ASV, together with UWGPS and live camera footage. The
labeling tool made it possible to accurately segment and
semantically label the images of fish pens at around 30
s or less per image, thus allowing us to create a dataset
of more than a thousand images within a satisfactory
time frame. Perhaps most important, the implementation of
the proposed framework which was tested in a controlled
environment proved to be a success with the absolute value
of the estimation error roughly being 2.5%. It is also worth
noting that carrying out the inspection mission in one take
while keeping the velocity of the ROV almost constant
throughout, without much backtracking or spending too
much time filming one area in relation to the rest of the
net, produces an accurate estimation. Precisely determining
filming positions to keep the overlap of footage fed to
the estimation framework at a minimum might not be
cost-effective to develop. Due to the nature of the current
inspection process which involves divers estimating the
state of the net, a “good enough” estimation is satisfactory.

For future endeavors, the developed framework should
be tested at an industrial fishery using the original idea of
pairing the ASV Korkyra with an ROV. This field testing
would aim to validate the framework’s effectiveness in
a challenging environment like an industrial fish farming

operation. Furthermore, the previously developed propri-
etary tether management system [11] that also relies on
localization of the ROV should be integrated physically
onto the ASV. Lastly, the project also envisions an air
surveillance aspect using a light autonomous drone that
could take off and land from the ASV [10]. The combined
heterogeneous system of robots should be tested in a real-
world scenario in the future.
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