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Abstract
Due to the complexity of the underwater environment and the difficulty of the underwater energy recharging, utilizingmultiple
autonomous underwater vehicles (AUVs) to pursue the invading vehicle is a challenging project. This paper focuses on devising
the rational and energy-efficient pursuitmotion for amulti-AUVsystem in an unknown three-dimensional environment. Firstly,
the pursuit system model is constructed on the two-player zero-sum stochastic game (ZSSG) framework. This framework
enables the fictitious play on the behaviors of the invading AUV. Fictitious play involves players updating their strategies by
observing and inferring the actions of others under incomplete information. Under this framework, a relay-pursuit mechanism
is adopted by the pursuit system to form the action set in an energy-efficient way. Then, to reflect the pursuit goals of capturing
the invading vehicle as soon as possible and avoid it from reaching its point of attack, two corresponding pursuit factors are
considered in the designed reward function. To enable the pursuit AUVs to navigate in an unknown environment, WoLF-PHC
algorithm is introduced and applied to the proposed ZSSG-based model. Finally, simulations demonstrate the effectiveness,
the advantages, and the robustness of the proposed approach.

Keywords Autonomous underwater vehicles · Zero-sum stochastic game · Fictitious play · Relay-pursuit · WoLF-PHC

Introduction

Autonomous underwater vehicles (AUVs) have undergone
significant advancements, making them highly autonomous
[1]. This leads to an inevitable trend of utilizing multiple
AUVs to conduct the underwater protection and defense [2].
To facilitate the target pursuit for the multi-AUV system,
there is an urgent need for (1) developing a pursuit system
model capable of analyzing the behaviors of all vehicles in the
underwater three-dimensional environment, and (2) propos-
ing a specific methodology to determine the effective and
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efficient action for the pursuit system in the unknown envi-
ronment.

In the field of multi-robot target pursuit, game theory is
highly compatible with the goal opposition, non-cooperation
relationship, and action dependence [3]. Traditional target
pursuit games are differential games, fail to capture the
dynamic, uncertain, and competitive nature of real-world
underwater environments. Considering the real-world per-
turbations and parameter switching, the mainstream game
model has gradually shifted towards the stochastic game
(SG). It is because that for complex and uncertain systems,
dynamic decision-making and control are crucial [4–6]. In
this regard, the state transition process of the SG, as aMarkov
dynamic process, provides valuable insights for determining
dynamic strategies. It involves a class of dynamic gameswith
state transfer probabilities and a series of stages.

Compared with the other SG models, the two-player
zero-sum stochastic game (ZSSG) is well-suited to the tar-
get pursuit problem. It naturally captures the competitive
and adversarial interactions between the vehicles and the
target. Traditional differential games, while effective in cer-
tain deterministic environments, lack the ability to handle
the stochastic and dynamic nature of real-world underwater
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environments [7]. In contrast, the ZSSG framework has the
probabilistic transitions and the inherent uncertainty in the
environment, enabling a more robust and realistic modeling
of the pursuit-evasion dynamics [8, 9]. Moreover, the ZSSG
model accounts for the zero-sum nature of the target pur-
suit problem, where the gain of one player is the loss of the
other. It also ensures the existence of a Nash equilibrium,
which guarantees stable and effective strategy optimization
[10]. At last, by leveraging multi-agent reinforcement learn-
ing (MARL) techniques within this framework, vehicles can
continuously adapt and refine their pursuit strategies against
the target. They learn from their interactions through ficti-
tious play and the experience of adjusting to the uncertain
environment [11]. Integrating MARL into the ZSSG model
allows vehicles to respond to the uncertain environment. It
also allows the vehicles to improve their strategies over time,
making this approach applicable for real-world applications.

Despite significant advances inMARLalgorithms, several
theoretical and technical challenges remain when applying
them to underwater target pursuit within the ZSSG frame-
work. First, many MARL algorithms require substantial
computational resources. This challenge limits their prac-
tical applicability in real-world scenarios, particularly in
resource-constrained environments. Among these MARL
algorithms, the WoLF-PHC algorithm stands out due to its
lower computational complexity. This characteristic makes it
more practical for deployment in environments with limited
computational power [12]. Second, human-like rationality is
crucial for decision-making in underwater target pursuit. The
involved pursuit system needs to make reasonable decisions
under incomplete information and uncertain conditions. This
paper addresses this challenge by using theWoLF-PHC algo-
rithm. The WoLF-PHC approach is helpful for agents to
make sound decisions in uncertain and complex environ-
ments [13, 14]. For example, in cloud computing resource
allocation, multiple virtual machines engage in a strate-
gic interaction similar to a game. Virtual machines adjust
their resource allocation strategies by adapting their learning
rates based on past experiences [15]. This process reflects
human-like rationality by dynamically balancing exploration
and exploitation—learning faster when underperforming and
slowing down when nearing optimal performance, similar to
how humans adjust their decisions in uncertain and complex
environments. Finally, it is important that the pursuit system
model and simulations reflect real-world conditions when
deploying multi-AUV systems. This is particularly crucial
in MARL-assisted algorithms, as agents learn from interac-
tions in dynamic and uncertain environments. If the model
does not account for these complexities, the agents may not
perform well in real-world scenarios. In this paper, we incor-
porate real-world AUVs into the simulation. This ensures
that the MARL-assisted system model captures underwater

Table 1 Terminology

Abbreviation Full name

AUV Autonomous underwater vehicle

SG Stochastic game

ZSSG Zero-sum stochastic game

MARL Multi-agent reinforcement learning

WoLF Win or learn fast

PHC Policy-hill climbing

HMI Human–machine interface

USV Unmanned surface vehicle

RL Reinforcement learning

A2C Advantage actor critic

PPO Proximal policy optimization

REMUS Remote environmental monitoring units

conditions and operational constraints. As a result, the pro-
posed underwater pursuit model could be more accurate and
better suited for real-world applications.

In light of the above discussion, the main contributions of
this paper are as follows:

1. Design of a three-dimensional ZSSG-based multi-AUV
pursuit model with specific action-sets and reward func-
tion: in the established ZSSG-based system model, a
multi-AUV pursuitsystem could fictitiously play the eva-
sion actions of the invading AUV, thereby enhancing its
decision-making ability.

2. Application of a rational and convergent MARL algo-
rithm: WoLF-PHC algorithm is employed to assist the
optimal action determination in the proposed ZSSG-
based model. This integration enables the pursuit system
to navigate in an uncertain environment while also
improving computational efficiency.

3. Simulating a multi-AUV pursuitsystem as closely to the
reality as possible: a real-world AUV, known for its
exceptional capabilities, is used to inform the parame-
ter setting and deployment in the pursuit system. This
helps improve the realism of the simulation environment
by ensuring more accurate underwater pursuit scenarios.

The remainder of the paper is organized as follows:
"Related work" reviews related work. "Systemmodel" intro-
duces the ZSSG-based system model developed for multi-
AUV target pursuit. "Methodology" details the proposed
methodology, with a focus on the WoLF-PHC algorithm
within the ZSSG framework. "Simulations" presents the sim-
ulation results, and “Conclusions” concludes the findings.
To facilitate understanding of key concepts, Table 1 lists the
main terminology along with their definitions.
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Related work

In this section, we review relevant literature on game-
based methods for the multi-agent target pursuit, the specific
MARL methods designed for the ZSSGs, and the adopted
MARL techniques in the marine pursuit.

Games for multi-agent target pursuit

Three popular games for modeling the multi-agent system to
pursue a target are the differential games [16], matrix games
[17], and the SGs [18]. Since the key to solving the differ-
ential target pursuit games is to solve the nonlinear partial
differential Hamilton–Jacobi–Isaacs equation, which lacks
an analytical solution inmost cases [19].Matrix games,while
extensively discussed, they still depend on the known setting
of the matrix payoff formulation [20]. In this context, SGs, a
class of dynamic gameswith state transfer probabilities, have
gradually become the mainstream of target pursuit games
[21]. As the state transfer process in SGs follows a Markov
process, SGs are also suitable for applying reinforcement
learning (RL) to improve its adaptability and robustness in an
uncertain environment [22]. In addition, for both finite-stage
and finite-state SGs, there exist Nash equilibrium solutions
for them [10].

Among the range of SG models, the two-player ZSSG
is particularly effective for target pursuit. It captures the
competitive and adversarial interactions between the pur-
suit agent and the invading target. In a ZSSG, the gain of
one agent corresponds directly to the loss of the other, accu-
rately reflecting the zero-sum nature of the target pursuit,
where the success of the pursuer comes at the expense of
the evader. Moreover, the existence of a Nash equilibrium in
ZSSG ensures that both players can develop optimal strate-
gies, providing a stable solution where neither player has an
incentive to change their strategy. This enables the pursuit
agent to fictitiously play the actions of the target, increasing
the chances of success even in the uncertain environments
[23]. Given these advantages, ZSSG proves to be a power-
ful model for capturing both the competitive and uncertain
aspects of multi-agent target pursuit. Compared with other
game models and pursuit methods, it offers a more realistic
and adaptable approach for the target pursuit.

MARLmethods for ZSSGs

Since ZSSG establishes an adversarial, zero-sum structure
for the target pursuit, MARL algorithms are helpful for opti-
mizing strategies within the uncertain environments of the
ZSSG-based framework. Specifically, MARL is effective for
handling complex multi-agent interactions. In multi-agent
target pursuit scenarios, the MARL algorithm usually con-
trols all agents in a centralized way [18, 24]. The goal is to

achieve an equilibrium point using a limited number of inter-
action samples. Since the process of seeking the worst-case
optimality for each player in the ZSSG-based model can be
treated as solving a Markov dynamic process [20], dynamic
programming methods such as least-squares policy iteration
and neural fitted Q iteration can be adopted to solve ZSSGs
[25, 26]. Under these basis, policy-based MARL approaches
can also be applied. To be specific, a practical solution named
minimax-Q is proposed to replace the max operator with the
minimax operator in the ZSSG-based frameworks [27, 28].
Besides, the asymptotic convergence results of the minimax-
Q approach are developed in both tabular cases and value
function approximations [29]. To avoid the overly pessimism
property by playing the minimax value, WoLF was proposed
to take steps to exploit the sub-optimal policy of the opponent
for a higher reward on a variety of SGs [30]. Then, WoLF is
further generalized in multi-player zero-sum repeated games
[31].

On the other hand, in the target pursuit, the most impor-
tant factor is the real-time implementation for providing
the optimal decisions. Therefore, while the state-of-the-art
MARL algorithm behaves well in multi-agent system under
the large-model, they are often not suitable for real-time
decision-making due to their high computational complex-
ity and long training times [32]. In contrast, lightweight
MARL methods, such as the minimax Q-learning, or WoLF,
are better suited for real-time decision-making as they are
more efficient and can adapt quickly to dynamic environ-
ments. Furthermore, to enhance decision-making rationality,
we combineWoLFwithPHC to support theZSSG-based pur-
suit system. Like Q-learning, the PHCmethod is rational and
converges to an optimal policy. In this combined approach,
WoLF-PHC retains its rationality, with only the learning rate
being adjusted [15].

MARLmethods in themarine pursuit

The initial phase of marine pursuit explores the use of mul-
tiple unmanned surface vehicles (USVs) to carry out target
pursuit tasks. Specifically, it focuses on enabling multiple
USVs to engage in self-organizing cooperative pursuit move-
ments. This takes place in a two-dimensional open water
environment, with the goal of capturing an intelligent evader
[33]. Then, to improve the robustness of USVs in a multi-
obstacle environment, a target pursuit approach is introduced.
This approach incorporates a deep RL method to train the
pursuit model of the pursuer. It is also combined with the
imitation learning to develop the escape model for the evader
[34]. Furthermore, to reflect the competition between the
pursuit system and the invading USV, a multi-USV pur-
suit system model is constructed on a zero-sum game-based
framework [35]. In this framework, the min–max Q-learning
is adopted to approximate the payoff function during the
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pursuit [28]. The above approaches show promises for multi-
robot system in marine pursuit field. However, developing
effective target pursuit methods for multiple AUVs in the
uncertain three-dimensional underwater environments is still
an unresolved challenge. The challenge remains open for fur-
ther exploration.

Systemmodel

Preliminaries for ZSSG

SG, known as Markov game, has been widely used as a
canonical model for dynamic multi-agent interactions [36,
37]. At each time step, k � 0, 1, · · ·, players play a stage
game that corresponds to a particular state in a multi-state
environment. The state of the SG evolves stochastically.
This evolution is determined by the transition probabil-
ities, which depend on the joint actions of all players.
Specifically, a two-player ZSSG is characterized by a tuple
SG :� 〈S, A :� A1 × A2, r , p, γ 〉. S denotes the finite set
of states. A1 and A2 represent the finite action sets that the
player 1 and the player 2 can take at any state, respectively.
Then, the joint action set could be defined by A � A1 ×A2.

As the ZSSG contains zero-sum game, the reward func-
tions for the two players are opponent. When the two players
at a state s ∈ S and play the joint action vector a ∈ A, the
player 1 will get the reward r(s, a), while the player 2 will
get the opponent reward−r(s, a). The transition probability
from state s to s′ in the next time step is p(s′|s, a). Besides,
the two players also discount the impact of future payoff in
their rewards with the discount factor γ ∈ [0,1). Therefore,
the objective of player 1 is to maximize the expected sum
of discounted stage-payoffs collected over infinite horizon,
given by:

E

{ ∞∑
k�0

γ kr(sk , ak)

}
, (1)

where ak ∈ A denotes the action vector played by the two
players at the time step k. The objective for the player 2 is
the opponent of the Eq. (1).

The two players can choose an infinite sequence of mixed
actions. If players have full knowledge of all their previous
actions and observations, they can mix their actions indepen-
dently based on their behavioral strategy.

Definition 1 (Behavioral Strategy) A behavioral strategy
of the player 1 is π1 : S → �(A1). For all s ∈ S, π1(s) is
a probability distribution on A1.

Definition 2 (Value Function) According to the definition
1 and the objective of player 1, the behavioral strategy profile
of the two-player ZSSG is defined by π :� {π1, π2}. There-
fore, a value function of player 1 under the strategy profile π

is formed as follows:

V π
1 (s) � E

{ ∞∑
k�0

γ kr(sk , ak)

}
, (2)

where {s0, s1, · · ·} is the Markov chain such that the transi-
tion matrix is pπ, pπ

(
s′|s) � p

(
s′|s, a) for all k � 0,1, · · ·.

Therefore, the value function can be further formulated as
follows via the Bellman policy equation:

V π
1 (s) � Ea∼π(s)

[
r(s, a) + γ

∑
s′∈S

p
(
s′|s, a)

V π
1

(
s′)

]
. (3)

To calculate the equilibrium in the ZSSG is to calculate
the sequential stationary Nash equilibrium in the Markov
chain. The definition and the existence of it in the ZSSG are
illustrated as follows.

Definition 3 (Stationary Nash equilibrium) If the follow-
ing equations hold with ε � 0, a stationary strategy profile
π is defined as a stationary mixed-strategy Nash equilibrium
at state s.

V π1,π2
1 (s) ≥ V π̃1,π2

1 (s) − ε f orallπ̃1, (4)

V π1,π2
2 (s) ≥ V π1, π̃2

2 (s) − ε f orallπ̃2. (5)

Theorem 1 (Existence of the stationary Nash equilibrium
in SGs [38]) As for the SGs with finite players, states and
actions, and discount factor γ ∈ [0,1), a stationary mixed-
strategy equilibrium always exists.

ZSSG-based systemmodel

In this paper, the proposedZSSG-based systemmodel SG :�
〈S, A :� A𝓅 × Aℯ, r , p, γ 〉 contains two players: the pur-
suer, which contains a pursuit team of n AUVs, and the
evader, i.e., the invading AUV. The corresponding frame-
work is shown in Fig. 1. The pursuit system has two goals
of capturing the invading AUV within its survival time and
avoid the invading vehicle from reaching its point of attack.

As presented in Fig. 1, the decision-making process is
as follows: firstly, the two players obtain the state s from the
environment, i.e., the location-profile of all vehicles, denoted
by s :� {

x p, xe
}
. x p and xe is the three-dimensional

location-profile of all the pursuit AUVs and the invading
AUV, respectively. Then, once the state s :� {

x p, xe
}
is

determined as the position information of all vehicles, the
next step for both players is to select their actions. The two
players would choose the actions ap and ae from their action-
setsA𝓅 andAℯ, respectively. Based on the taken actions, the
two players would receive the corresponding rewards, i.e.,
r(s, a) and −r(s, a), where a ∈ A : A :� A𝓅 × Aℯ. At
last, the multi-AUV pursuit system repeats the above three
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Fig. 1 ZSSG-based framework in
the target pursuit for the
multi-AUV system

steps to get the sequential stationary Nash equilibrium for
the continuous decision-making.

To ensure practical implementation and computational
feasibility, the continuous decision-making process is dis-
cretized. This discretization allows the decision-making
model to represent continuous movements while maintain-
ing computational efficiency. To be specific, in the proposed
model, the location space is discretized by dividing the three-
dimensional environment into a grid of finite-sized cells. Let
x(tk) represent the continuous position of the vehicle at time
tk . The three-dimensional space is then discretized into uni-
form grid cells, each with a fixed size �x , �y, and �z along
the respective dimensions. The discretized position xd (tk) of
the vehicle at time tk can be approximated as:

xd(tk) �
(⌊

x(tk )
�x

⌋
�x ,

⌊
y(tk )
�y

⌋
�y,

⌊
z(tk )
�z

⌋
�z

)
, (6)

where �·� denotes the floor function, which rounds the value
inside the brackets down to the nearest integer. Based on
the spatial resolution �x , �y, and �z, this operation maps
the continuous location values x(tk), y(tk), and z(tk) to their
corresponding discrete grid points.

For simpler discretization of movement, the time inter-
vals between location updates can be used. The total time
is divided into discrete time steps, �t . The location of the
vehicle is then updated at each time step as follows:

x(k + 1) � x(k) + f (�t) , (7)

where f (�t) represents a function of the discrete time step.
This function updates the location based on the kinematic

model of the vehicle. Equation (7) defines the movement
rules. It ensures that the discretized location updates comply
with the physical constraints of vehicle movement.

Based on the above discretization process, the discretiza-
tion scale has impact on vehicle movement. A larger
discretization scale improves computational efficiency but
reduces decision-making accuracy and increases response
time indynamic tasks.On theother hand, a smaller discretiza-
tion scale enhances accuracy but increases the computational
burden. The high computational burden makes it unsuitable
for real-time tasks. Therefore, in the simulation experiments,
we selected a moderate discretization scale �t . This choice
balances accuracy and computational efficiency, meeting the
needs of practical applications. All in all, the state s has been
determined to be the location information of all the vehi-
cles at the corresponding discretized time step. Therefore,
the next step is to design the other two components for the
proposed model: the action-sets for the two players, and the
reward function for the pursuit system.

Action-set

To design a feasible action-set, the kinematic model for the
vehicle in the three-dimensional environment needs to be
constructed. First, several symbols are introduced. xi �
[xi , yi , zi ]T and xe � [xe, ye, ze]T denote the positions of
the ith pursuit AUVand the invadingAUV, respectively. vi (k)
and ve(k) represent the velocities at the kth time step. These
velocities can vary at each time step to account for differ-
ent types of motion, such as uniform motion, acceleration,
and deceleration. To simplify the experimental process, the
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Table 2 Notations

Parameter Full name

i Index of the pursuit AUV

n Total number of the pursuit AUV

e Invading AUV

k Current time step

Ap Action-set for the pursuit system

Ae Action-set for the invading AUV

ap Unit action-profile for the pursuit system

ae Unit action for the invading AUV

x(m) Position in the x-coordinate

y(m) Position in the y-coordinate

z(m) Position in the z-coordinate

x Three-dimensional position

�t(s) Discrete time period

v(m/s) Scalar velocity

ux (m/s) Unit velocity in the x-coordinate

uy(m/s) Unit velocity in the y-coordinate

uz(m/s) Unit velocity in the x-coordinate

u Three-dimensional unit velocity (motion)

l(m) Length of the AUV

motion of the vehicles is assumed to be uniform in the sim-
ulation. �t is the time period between the two time steps.
ui � [

uxi , uyi , uzi
]T and ue � [

uxe , uye , uze
]T are the unit

vectors of the velocity for the corresponding vehicles. These
vectors control the actions of the vehicles in the proposed
model. Therefore, at each time step, ‖ui‖� ‖ue‖� 1. As a
result, the unit actions for the two players are designed as:
ap :� {u1, . . . , un} and ae :� {ue}. The notations for the
above symbols are also presented in Table 2.

Based on these introduced parameters, it is assumed that
all the AUVs are in the uniform motion. Thus, based on
Eqs. (6) and (7), at the kth time step, the kinematic model for
the two types of vehicles can be expressed as follows:

xi (k + 1) � xi (k) + vi (k)ui (k)�t , (8)

xe(k + 1) � xe(k) + ve(k)ue(k)�t , (9)

where the controlled vectors ui and ue are assumed to haveM
and N selections, respectively. Then, the calculation dimen-
sion for obtaining the equilibrium at each time step is MnN .
This calculation dimension is so large that a huge amount of
resources would be cost to achieve the equilibrium. There-
fore, a relay-pursuit mechanism is adopted for the pursuit
team to design a simpler action-set A𝓅. As a result, the cal-
culation dimension could be reduced to MN . The definition
for this relay-pursuit mechanism is shown as follows:

Definition 4 (Relay-PursuitMechanism) Only one pursuit
AUV is active, while the others are stationary. The determi-
nation for the active pursuit AUV changes over time, which
depends on the outcome of each game. At a certain time step,
if the active vehicle has been determined by the index i∗, the
unit velocity ui for the i th pursuit AUV could be obtained as
follows:

ui �

⎧⎪⎨
⎪⎩

xe−xi‖xe−xi ‖ , i f i � i∗

0, others
. (10)

Under the relay-pursuit mechanism, the pursuit team has
total n actions. When i ∈ {1,2, · · · , n}, the ith action for the
pursuit team denotes that the i th AUV is active. Similarly, the
invading AUV’s restricted action-set is designed to include
n + 1 choices. When j ∈ {1, · · · , n}, the jth action for the
invading vehicle is evading the jth pursuit AUV. The n + 1
action is the target-seeking behavior of the invading vehicle,
which means that it moves toward its point of attack xa.

Reward function

Since the reward functions for the two players are oppo-
site in the ZSSG-based model, only the reward function for
the multi-AUV pursuit system needs to be formulated. The
reward function for the proposed pursuit model should reflect
two objectives: (i) capturing the invading vehicle as soon as
possible within the survival time ts , and (ii) preventing the
invading vehicle from reaching its point of attack xa. In this
regard, the entries for the above two goals are assumed by
the minimum time that the team would take to capture the
invading vehicle, and the extent to which invading vehicle’s
heading is towards the target from the view of its current
location, respectively.

To quantify the first goal, several time metrics are intro-
duced here [17]. They are all linked to the minimum positive
solution for t in the following equation:

(
v2e − v2i

)
t2 + 2

(
veueT r i − lvi

)
t + ‖r i‖2 − l2 � 0, (11)

where r i � xe−xi . l is the length of the pursuit vehicle.Once
ue is determined, the corresponding time t(xe, xi , ue) canbe
obtained, representing the minimum time for the i th AUV to
capture the invading vehicle. Therefore, the first component
of the reward function is formulated by:

r1(s, a) � −t(xe, xi , ue). (12)

In terms of the second component of the reward function,
it is defined by the extent to which invading vehicle’s heading
is towards from its current location. Therefore, it is assumed
to be the cosine of θ , where θ is the angle between the vectors
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ue and xa − xe. When the invading vehicle chooses the j th

action and the pursuit system activate the i th AUV, the second
component of the reward could be given by:

r2(s, a) � −cos( � (ue − (xa − xe))), (13)

where � (ue − (xa − xe)) denotes the angle between the ue
and the vector xa − xe.

Finally, under the state s :� {
x p, xe

}
and the joint action

a :� {
api , ae j

}
, the overall reward function for the pursuit

system is formulated as follows:

r(s, a) � r1
max

a
r1

+ r2, (14)

where r1 is normalizedwith itsmaximumvalue. This ensures
that all values of r1

max
a

r1
are uniformed between zero and one

so that they could be similar to the values in r2.

Methodology

To enable the AUVs to navigate effectively and efficiently
in an uncertain environment, WoLF-PHC is selected. This
choice helps the constructed system model by reducing its
dependency on the parameter setting and the formulation of
the goal function [14, 39].

Learning in the ZSSG

Learning in theZSSG-basedmodel canbeviewed as amodel-
free version of the value iteration in the Markov decision
process. The corresponding update rule is given by:

q̂k+1(s, a) � q̂k(s, a) + γ

(
rk + βmax

ã∈A
q̂k (̃s, ã) − q̂k (̃s, ã)

)
, (15)

where the triple < s, a, s̃ > denotes respectively the current
state s, current actions a, and the next state s̃. The payoff
rk corresponds to the payoff received, i.e., rk � r(s, a).
γ ∈ [0,1) is the discount factor specific to the state-action
pair (s, a). β is the learning rate set for the update rule.
Besides, the Q-values for the same state-action pairs do not
get updated, i.e., q̂k+1(s′, a′) � q̂k(s′, a′). The Q-learning
process in the ZSSG-based model guarantees almost certain
convergence, as established by a rigorous proof [40].

WoLF-PHC-assisted algorithm

Based on the introduced learning process, Fig. 2 illus-
trates the application of the WoLF-PHC algorithm in the
constructed system model. During the learning process, to
maximize the expected reward, the two players continually
learn and adapt their behavioral strategies, πp and πe. To
update πp and πe, the WoLF-PHC adopts two learning rates
δw and δl , where δw < δl . This means that the behavioral
strategy would be updated slowly while winning, and be
updated quickly while losing [41]. To determine the winning
or loss, a baseline is designed. The baseline is the expected
reward under the average probability of the behavioral strate-
gies, denoted by π p and πe.

According to the definition of the Nash equilibrium for
the ZSSG-based model in Definition 3, the process for using
WoLF-PHC to obtain the optimal action ap(k) and ae(k) is
outlined. The detailed steps are presented in Algorithm 1.
api∗ denotes that the i*th AUV is chosen to be active. ae j∗
represents that the invading AUV adopts thej*th action.
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Algorithm 1WoLF-PHC for the proposed model

Simulations

The remote environmental monitoring units (REMUS)
AUVs have been developed for almost 30 years, which hold
the lead in theAUV researches [42]. Among variousREMUS
AUVs, the REMUS 600 AUV stands out. It is a reliable and
cost-effective platform. For example, the REMUS 600 AUV
can travel to the ranges from150 to 200 kmat a speed of about
2.0 m/s. It can also move at a maximum depth of 600 m.
Therefore, the REMUS 600 AUV is utilized to define the
parameters for the pursuit AUVs and the invading AUV in
the proposed model. The relevant parameters assumed for
these vehicles, along with the key algorithmic parameters,
are presented in Table 3.

Proper deployment ensures that the AUVs can perform
their task. Hydroid Company and WHOI have developed
a slideway deployment and retrieval device that incorpo-
rates low-cost lightweight composite rope technology. This
device effectively addresses the autonomous deployment
challenges of REMUS-600 AUVs, and creates a towed rope
biting AUV autonomous deployment system [43]. Based on
this deployment method, Fig. 3 illustrates the deployment
for the pursuit AUVs in the proposed model. As shown

in Table 4, three loosely-distributed systems are assumed
accordingly. The protected area is assumed to have dimen-
sions of 40m × 40m × 40m.

Simulations under different RL algorithms

Convergence ability is crucial for enabling real-time
decision-making. To evaluate this, the WoLF-PHC algo-
rithm is compared with three other relevant RL algorithms:
Minimax-Q,Advantage actor critic (A2C), andProximal pol-
icy optimization (PPO).

First of all, analyzing the computational complexity of
each algorithm helps us understanding how efficiently they
can converge. This is helpful for evaluating their suitabil-
ity for real-time decision-making. The time complexity per
update forWoLF-PHC is O(S× A), where S and A represent
the number of states and actions, respectively. This is similar
to the complexity of Minimax-Q algorithm. However, while
the WoLF mechanism causes minor computational overhead
by tracking separate learning rates for updates, it enhances the
responsiveness of theWoLF-PHC in dynamic environments.
This results in slightly longer convergence times compared
to Minimax-Q, but the trade-off improves decision-making
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Fig. 2 Learning process of the
WoLF-PHC in the proposed
ZSSG-based model

accuracy.AsA2CandPPO rely on neural networks for policy
and value function estimation, their time complexity depends
on the size of the neural network. This leads to a time com-
plexity of O(S × A × N ), where N denotes the number of
network layers and parameters. Consequently, in environ-
ments with large state spaces, the computational overhead of
A2C and PPO is significantly higher than that ofWoLF-PHC
and Minimax-Q.

In terms of space complexity, both WoLF-PHC and
Minimax-Q share a space complexity of O(S×A). However,
WoLF-PHC incurs a slight increase in memory requirements
due to the tracking of dual learning rates, which leads to
more nuanced policy updates. A2C and PPO require addi-
tional storage for neural network parameters. This results in
a space complexity of O(N ), which ismuch larger, especially
in complex tasks. Overall, WoLF-PHC strikes a balance
between computational efficiency and enhanced decision-
making capabilities.

With the above understanding of the computational
requirements for the four algorithms, we now turn to the

Table 3 Parameter settings for vehicles and algorithm

Parameter Definition Value

vp Scalar velocity of the pursuit AUV 2.0 m/s

ve Scalar velocity for the invading AUV 1.6 m/s

l Length of the pursuit AUV 4.3 m

ds Safe distance between the two AUVs 10.32 m

dc Captured distance for the pursuit AUV 12 m

da Attacked distance for the invading AUV 6 m

β Learning rate 0.01

γ Discount factor 0.9

δw Learning rate (win) 0.0025

δl Learning rate (lose) 0.01

simulation setup for the convergence analysis. The initial
position of the invading AUV is set as xe(0) :� (5, 40, 40),
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Fig. 3 Deployment of pursuit
AUVs within the protected area

and its point of attack is defined as xa :� (35, 35, 35). There-
fore, at k � 0, in the introduced loosely distributed systems,
the reward values are shown in Fig. 4.

Form Fig. 4, it is evident that the WoLF-PHC algorithm
demonstrates the best convergence performance, which can
be attributed to its WoLF scheme. Besides, with calculation
being more complex in the A2C and PPO algorithms, more
steps would be cost to reach the equilibrium point. It can be
concluded that simpler RL approaches may be more efficient
for the simple tasks and closer to the real-time implemen-
tation. Therefore, compared with other state-of-the-art RL
algorithms, the WoLF-PHC algorithm takes the advantage
in the studied target pursuit model for the multi-AUV sys-
tem. To enhance the computational efficiency ofWoLF-PHC
in complex scenarios, optimizations like parallelizing policy
updates and applying state-space reduction techniques can
be explored.

To further highlight the advantages ofWoLF-PHC, a com-
parative analysis was conducted with two other commonly
used algorithms: Minimax Q-learning and the classical lin-
ear programming solution. The comparison included both
qualitative and quantitative evaluations. From a qualitative
perspective,WoLF-PHC stands out due to its ability to adjust
its strategy dynamically. It achieves the dynamic adjust-
ment by using a learning rate that evolves over time. In

contrast, while minimax Q-learning can learn from expe-
rience, it is unable to inherently adjust the learning rate in
response to dynamic environments. This drawback can limit
its performance in uncertain settings. The classical linear
programming solution, though optimal in static or prede-
fined scenarios, lacks the ability to adapt to environmental
changes. As a result, WoLF-PHC offers greater flexibility
and robustness. This makes it better suited for dynamic tasks
that require continuous learning and adaptation.

On the quantitative side, the comparison focused on two
key indicators: computational efficiency and success rate of
capture. Computational efficiency,measured by average time
per simulation, is critical for multi-agent systems, especially
in real-time decision-making. Higher efficiency means tasks
are completed faster. Success rate of capture measures task
success. Capturing the target is the main goal for multi-agent
target pursuit system. Under conditions where xe(0) and xa
are randomly chosen within the protected area, 1000-time
simulations are conducted under the three methods, respec-
tively. Simulation results about the computational efficiency
and the success rate of capture are presented in Fig. 5.

As shown in Fig. 5, it is obvious that as the number of
pursuit AUVs increases, the average time per simulation
under theWoLF-PHC remains the lowest. Comparedwith the
linear programming algorithm and the minimax Q-learning
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Fig. 4 Convergence analysis for the target pursuit reward under the four different RL algorithm: a WoLF-PHC, bMinimax-Q, c A2C, and d PPO

method, the WoLF-PHC significantly improves calculation
efficiency, achieving a reduction of approximate 50% and
70%, respectively. Besides, according to the results shown in
Fig. 5b, there is no obvious difference between the WoLF-
PHC algorithm and the minimax Q-learning in terms of the
success rate of capture, while the classic solution lags behind.
In summary, the results highlight that WoLF-PHC not only
excels in computational efficiency but also maintains strong
performance in terms of capture success rate.

Simulations under two distribution types

As the deployment for the pursuit AUVs is not the focus of
this paper, only two distribution type, the loosely-distributed

type and tightly-distributed type, are evaluated. The positions
have been provided in Table 4 for the loosely-distributed sys-
tem. Positions in Table 5 are set for the tightly-distributed
system. 1000 times simulations are conducted for each dis-
tribution type under the proposed approach.

As shown in Table 6, two valuable findings could be
obtained. First, the tightly-distributed system outperforms
the loosely-distributed system in both the success rate of cap-
ture and the computational efficiency. This observation aligns
with the real-world scenario, as a tightly-distributed sys-
tem implies that data or elements are clustered more closely
together. The clustered data/elements result in smaller varia-
tions or deviations from the average. Second, the success rate
of capture does not show significant improvement with an
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Fig. 5 Pursuit performance under
the three algorithms in the
loosely distributed system in
terms of the a computational
efficiency, and b success rate of
capture

Table 4 Deployment in the
loosely distributed system Loosely-distributed system Initial positions for the pursuit AUVs

x1(0) x2(0) x3(0) x4(0)

n � 2 (0,0,0) (40,40,40) N/A N/A

n � 3 (0,0,0) (20,20,20) (40,40,40) N/A

n � 4 (0,0,0) (20,20,20) (30,30,30) (40,40,40)
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Table 5 Initial positions for the
pursuit AUVs in the tightly
distributed system

Tightly-distributed system Initial positions for the pursuit AUVs

x1(0) x2(0) x3(0) x4(0)

n � 2 (20,20,20) (25,25,25) N/A N/A

n � 3 (15,15,15) (20,20,20) (25,25,25) N/A

n � 4 (15,15,15) (20,20,20) (25,25,25) (30,30,30)

Table 6 Comparison of the two
types distributed pursuit system Distribution type n � 2 n � 3 n � 4

rs (%)* ta(s)** rs (%) ta(s) rs (%) ta(s)

Loosely-distributed 64.7 0.48 87.3 0.37 87.1 0.56

Tightly-distributed 93.1 0.18 92.5 0.25 90.7 0.47

*rs : success rate of capture
**ta : average time per simulation

increasing number of AUVs. This indicates that the method
performs well in scenarios with fewer AUVs. The reduced
scalability in larger system is likely due to current limita-
tions in coordination mechanism. To address this limitation,
improvements in communication protocols are expected.

Robustness under different evasion action-sets

To test the robustness of the proposed approach under the dif-
ferent action-sets of the invadingAUV, two newly action-sets
are designed for the invading AUV in the tightly-distributed
systemwith n � 3. These two new actions-sets are named by
the fixed evasion action-set and the enriched evasion action-
set. In the fixed action-set, the invading vehicle would move
to its target all the time. The enriched action-set is more com-
plex than the original set. The enriched motions are designed
as follows and shown in Fig. 6.

ue1 : the invading AUV evades from the nearest pursuit
AUV.

ue2 : the invading AUV adopts the collective evasion-
motion, which is explained in Definition 5.

ue3 : the invading AUV heads directly toward its target.
ue4 : the direction of the invadingAUV is the angle bisector

formed by ue1 and ue3 .
Definition 5 (Collective Evasion-Motion) From the view

of the invading vehicle, all angles formed between the two
adjacent pursuitAUVs are taken into account in the collective
evasion-motion. Besides, the moving direction of the invad-
ing vehicle is related to the parallelogram of the maximum
angle formed by the two adjacent pursuit AUVs. The pur-
pose of this motion is to enable the invading vehicle to move
immediately away from the entire pursuit team, rather than
just from one pursuit AUV. The calculation for this kind of

Fig. 6 Enriched evasion-motions for the invading AUV

evasion-motion is as follows: φi :� � (xe, xi ) is set to repre-
sent the angle of the vector (xe−xi ). θi :� φi+1−φi denotes
the angle between two adjacent pursuit AUVs. If i � n, φi+1

is equal to phi1. Therefore, the angle for the ue2 could be
obtained by Eq. (16).

� ue2 � θimh + θim , (16)

where im is the index when θi is taken to its maximum value.
θimh is the half of the θim.

Based on the above introduction, under the varying pur-
suit velocities, simulations are conducted under the three
designed evasion action-sets. The results are shown in Fig. 7,
wherewe can find that there is no obvious difference between
the original action-setAℯ and thefixedAℯ.However, the suc-
cess rate in the enriched Aℯ is the highest among the three
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Fig. 7 Success rate of capture
under three evasion action-sets:
original Aℯ, fixed Aℯ, and
enriched Aℯ

sets. Besides, the change in the pursuit velocity has little
impact on the success rate under the enrichedAℯ. These con-
clusions validate the robustness of the proposed approach.
They demonstrate that the proposed pursuit model can adapt
to different evasion actions.

Simultaneous analysis and potential
implementations

To achieve simultaneous coordination among the pursuit
AUVs, two pursuit mechanisms are introduced, named by
the leader–follower pursuit and the attack-protect pursuit.

Definition 6 (Leader–Follower Pursuit) The active AUV
chosen by the ZSSG-based system model would be treated
as the leader during the pursuit. The other AUVs would fol-
low its motion. If the leader-AUV has been determined by
the index i∗, the motion ui for the ith pursuit AUV in the
leader–follower framework could be obtained as follows.

ui �

⎧⎪⎨
⎪⎩

xe−xi‖xe−xi ‖ , i f i � i∗

ui∗ , others
(17)

Definition 6 (Attack-Protect Pursuit) The same as the
relay-pursuit, only one AUV would be selected to pursuit
the invading AUV. However, to protect the point of attack
within the protected area, the other AUVs would move to the
target. Therefore, the motion ui for the ith pursuit AUV in
the attack-protect mechanism could be obtained as follows:

ui �

⎧⎪⎨
⎪⎩

xe−xi‖xe−xi ‖ , i f i � i∗

xa−xi‖xa−xi ‖ , others
. (18)

According to the above statement and definitions, perfor-
mance under the three pursuit modes is shown in Table 7.
Parameter setting is the same as that in the simulations about

the robustness under the different evasion action-sets. In con-
trast to the performance evaluation in previous experiments,
we introduce the indicator ra . This indicator denotes rate of
the invading AUV’s attack-point being attacked. It evaluates
the ability of the pursuit system to safeguard unknown points
from being attacked by an invading AUV. This new evalu-
ation indicator provides a detailed and in-depth analysis of
the pursuit performance in different pursuit modes.

From the simulation results shown in Table 7, it is obvi-
ous that the simultaneous coordination-based pursuit modes
perform better than the pure relay-pursuit. Although the lead-
er–follower pursuit has the biggest success rate of capture,
the attack-protect pursuit possesses the smallest rate of target
being attacked and achieves a relatively good success rate of
capture. Therefore, under different scenarios and different
aims, the most suitable simultaneous coordination methods
would be different. Besides, these conclusions also clarify
that the proposed pursuit model could adapt to different
simultaneous pursuit modes and achieve a good pursuit per-
formance.

The above results demonstrate that our proposed method
achieves a high success rate of capture. This validates
its effectiveness in multi-AUV target pursuit scenarios.
Additionally, the method consistently delivers strong perfor-
mance across diverse evasion action-sets anddifferent pursuit
modes. The high success rate shows that the system effec-
tively pursues and captures targets. This capability is also
crucial for underwater tasks like marine surveillance, and
search-and-rescue missions.Moreover, the proposedmethod
also exhibits high computational efficiency. This makes the
method feasible for implementation and suitable for deploy-
ment in resource-constrained environments, especially for
the AUVs with limited processing power and battery life.

In summary, the results confirm that our proposed method
is both effective and efficient. It achieves a high success rate
of capture, and also demonstrates strong computational effi-
ciency. These factors make it highly feasible for practical use
in multi-AUV target pursuit.
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Table 7 Performance under three
pursuit modes Ap n � 2 n � 3 n � 4

rs (%) ra(%)* rs (%) ra(%) rs (%) ra(%)

Relay-pursuit 93.1 5.9 92.5 5.5 90.7 9.9

Leader–follower 94.4 4.4 95.8 3.5 92.7 6.3

Attack-protect 95.0 3.6 93.8 3.2 93.3 3.5

*ra : rate of the invading AUV’s attack-point being attacked

Conclusions

This paper has introduced a novel approach to determine
the optimal pursuit motions for the multi-AUV system. At
first, a two-player ZSSG-based framework is employed to
construct the pursuit system model for a multi-AUV system.
Then, to relax the dependency of the model on the parameter
setting, the WoLF-PHC algorithm is introduced and applied
to the ZSSG-based pursuit model. Simulation results validate
the efficacy of the proposed method in providing the optimal
pursuit motions. Comparedwith the other RL algorithms, the
WoLF-PHC algorithm possesses the quickest convergence
speed in obtaining the optimal reward value. Furthermore, the
WoLF-PHC approach outperforms the two commonly used
algorithms in terms of the computational efficiency without
the cost of the success rate of capture. At last, the impact of
multi-AUV distribution on the proposed method is assessed.
The robustness and the simultaneity of the proposed pursuit
system model are also validated and explored.

In conclusion, a promising approach has been proposed
for optimizing decision-making for multi-AUV to conduct
target pursuit in an uncertain 3D environment. The proposed
approach has potential applications in diverse domains, such
as underwater surveillance, search and rescue operations,
and environmental monitoring. Nonetheless, the simulation
results reveal that as the number of AUVs increases, the
capture success rate does not necessarily improve, which
contradicts real-world expectations. To ensure better scal-
ability and improved performance in larger-scale systems,
future efforts will focus on optimizing coordination mech-
anisms and enhancing communication protocols among
AUVs. Additionally, since this work is based on simulations,
future research would also include validating the method in
the real-world settings.
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