4356

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 5, MAY 2025

Multi-Agent Generative Adversarial Interactive
Self-Imitation Learning for AUV Formation
Control and Obstacle Avoidance

Zheng Fang

Abstract—Multiple autonomous underwater vehicles (multi-
AUVs) can cooperatively accomplish tasks that a single AUV cannot
complete. Recently, multi-agent reinforcement learning has been
introduced to control of multi-AUV. However, designing efficient
reward functions for various tasks of multi-AUYV control is difficult
or even impractical. Multi-agent generative adversarial imitation
learning (MAGAIL) allows multi-AUYV to learn from expert demon-
stration instead of pre-defined reward functions, but suffers from
the deficiency of requiring optimal demonstrations and not surpass-
ing provided expert demonstrations. This letter builds upon the
MAGAIL algorithm by proposing multi-agent generative adver-
sarial interactive self-imitation learning (MAGAISIL), which can
facilitate AUVs tolearn policies by gradually replacing the provided
sub-optimal demonstrations with self-generated good trajectories
selected by a human trainer. Our experimental results in three
multi-AUV formation control and obstacle avoidance tasks on the
Gazebo platform with AUV simulator of our lab show that AUVs
trained via MAGAISIL can surpass the provided sub-optimal
expert demonstrations and reach a performance close to or even
better than MAGAIL with optimal demonstrations. Further results
indicate that AUVs’ policies trained via MAGAISIL can adapt to
complex and different tasks as well as MAGAIL learning from
optimal demonstrations.

Index Terms—Multi-agent reinforcement learning, imitation
learning, AUV, formation control.

I. INTRODUCTION

UTONOMOUS underwater vehicle (AUV) plays an im-

portant role in underwater tasks of exploring marine re-
sources and scientific research due to its flexibility [1], [2].
It can replace humans to perform dangerous underwater tasks
such as survey of ocean topography and landforms, inspection,
maintenance and repair of submarine oil pipelines. Reinforce-
ment learning (RL) was introduced and applied to improve the
autonomy and intelligence of AUV control [3], [4], [5], [6], [7],
[8]. Through interactions with underwater environment, AUV
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with RL can learn a control policy adapting to the changes and
uncertainty [9]. However, as the limited detection range and
energy storage of asingle AUV, itis necessary to use multi-AUV
to cooperatively complete underwater tasks that single AUV
cannot perform with the increasing complexity of underwater
missions. Multiple AUVs can accomplish underwater detection,
target search, object recognition etc., in a collaborative way,
which can improve the efficiency of task execution and reduce
the time and energy cost. There are many existing methods
proposed for multi-agent path planning and obstacle avoidance,
such as geometric optimization [10], game theory [11] etc.
Combining RL and game theory has been shown to be able
to create more intelligent agents capable of playing the game of
GO at a higher level than human beings [12]. Multi-agent rein-
forcement learning (MARL) that is an interdisciplinary domain
that includes game theory, machine learning, stochastic control,
psychology, and optimisation, has been introduced to improve
multi-AUV control in uncertain marine environments [13], [14],
[15]. However, it is difficult to design efficient reward func-
tions for various tasks, especially those complex and high-
dimensional ones where most robots like AUVs will be operated
in. Moreover, the difficulty of designing reward functions for
MARL increases with the number of agents and complexity of
their relationships [16], [17].

Imitation learning was proposed and successfully applied to
robot control [18], [19] since it is much easier to provide demon-
strations on performing a task than to design a reward function.
There are mainly two kinds of imitation learning: one is behavior
cloning (BC) and the other is inverse reinforcement learning
(inverse RL). BC learns a mapping from an agent’s states to
optimal actions via supervised learning [20], but requires a large
amount of data and cannot generalize to unseen situations and
adapt to different tasks effectively. Inverse reinforcement learn-
ing agents learn control policies with extracted cost functions
from expert demonstrations via reinforcement learning [21] and
can effectively generalize to unseen states [22]. However, many
inverse RL algorithms need a model to solve a sequence of
planning or reinforcement learning problem in an inner loop and
the performance might decrease if the planning or RL problem
is not optimally solved [23], which prevents applying inverse
RL for robot control to large and complex tasks. Ho et al.
solved this problem by proposing a general model-free imitation
learning method — generative adversarial imitation learning
(GAIL) [23], which allows robots to directly learn policies
from expert demonstrations in large and complex environments.
Higaki et al. applied GAIL to realize ship’s automatic collision
avoidance by mimicking human expert performance [24]. Jiang
et al. [25] implemented GAIL in AUV path following tasks and
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further proposed a generative adversarial interactive imitation
learning (GA2IL) method combining GAIL with interactive
RL [26], [27] to improve AUV’s performance and stability in
path following.

GAIL was extended to a multi-agent setting by proposing
multi-agent generative adversarial imitation learning (MAG-
AIL) [28]. Fang et al. [13] successfully applied MAGAIL to
a multi-AUV formation control task with a decentralized train-
ing and execution framework. However, MAGAIL shares the
limitation with GAIL and other imitation learning methods
that they assume the optimality of expert demonstrations and
can seldom surpass the performance of demonstrations if the
provided demonstrations are not optimal. On the other hand,
Guo et al. assumed that optimal demonstrations are not avail-
able and agents should imitate “relatively better trajectories”
generated by the agent. They proposed generative adversarial
self-imitation learning (GASIL) [29] by imitating agent’s past
good trajectories measured via pre-defined reward functions,
which violates the initial idea of the GAIL framework learning
from solely demonstrations and avoiding pre-defined reward
functions.

In this letter, we proposed multi-agent generative adversarial
interactive self-imitation learning (MAGAISIL) by improving
MAGALIL viareplacing the provided expert sub-optimal demon-
strations with agent generated good trajectories. However, dif-
ferent from GASIL, MAGAISIL allows a human trainer to
evaluate whether the agent generated trajectories are better than
the provided expert demonstrations instead of using pre-defined
reward functions. Our results in three multi-AUV formation
control and obstacle avoidance tasks on the Gazebo platform
have shown that our MAGAISIL method with sub-optimal ex-
pert demonstrations can learn to reach a performance close to
or even better than and generalize as well as those trained via
MAGALIL with optimal demonstrations, and learned faster than
traditional game-theoretic MARL approach — IPPO.

II. BACKGROUND

A. Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning (MARL), there are
multiple agents interacting with the environment [30], [31]. Each
agent ¢ has its own policy 7; that can be used to select an action
a;, based on its observed state s; at current time step ¢. Then
the agent transitions to a next state and will receive a reward
;¢ Similar to single-agent reinforcement learning, the goal
for each agent is to learn a policy maximizing its discounted
accumulated return. However, different from single-agent rein-
forcement learning, in MARL, the policy 7; of agent ¢ is affected
by other agents’ policies. The most common concept to solve this
problem is Nash Equilibrium (NE). In NE, agent ¢ will not try to
change its policy ; if other agents do not change their policies,
because its discounted accumulated return cannot continue to
increase. That is to say, if all agents reach the equilibrium state,
each learns a steady optimal policy.

In MARL, the relationship between agents can be divided into
three settings based on the relationship between reward functions
of agents: cooperative, competitive and a mixed setting [32]. In
a fully cooperative setting, all agents perform the same task and
share a same reward function. The relationship between reward
functions of agents is zero-sum in a competitive setting. In other
words, agents maximize their cumulative rewards by preventing
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each other from completing its task. In a mixed setting, each
agent has its own task and reward function, which can be
cooperative or competitive to other agents. In our experiments,
the relationship between leader and follower AU Vs is in a mixed
setting since they perform different tasks.

B. Generative Adversarial Imitation Learning

Generative adversarial imitation learning (GAIL) [23] allows
an agent to learn directly from expert demonstrations consisting
of state-action pairs, avoiding to pre-define reward functions
for various tasks. A GAIL agent trained a discriminator D :
S x A — (0,1) to distinguish expert state-action pairs (s, a) ~
T from agent state-action pairs (s, a) ~ Tagent» and a gener-
ator (i.e., policy m) to “fool” the discriminator by generating
state-action pairs (s, a) ~ Tagent as close as possible to expert
state-action pairs (s, a) ~ 7 by maximizing E [log(D(s, a))].
The agent generates its trajectory 7,4en¢ by interacting with the
environment with its current policy 7. That is to say, a GAIL
agent learns a policy directly by generating a distribution of
the agent’s state-action pairs as close as possible to the distri-
bution of state-action pairs from the expert demonstrations. In
summary, the GAIL algorithm can be summarized as finding a
saddle point (7, D):

—AH (7) + Ex[log(D(s,a))] + Ex[log(1 — D(s,a))], (1)

where H(m) £ E.[—logm(a | s)], is the y-discounted causal
entropy [33] of the policy 7, A is the weight of entropy H (7).

[II. METHODOLOGY

The MAGAIL method extends GAIL to multi-agent learn-
ing and allows multiple agents to learn from provided expert
demonstrations [28]. However, MAGAIL shares the limitation
with GAIL and other imitation learning methods that they
can seldom surpass the performance of demonstrations. On
the other hand, generative adversarial self-imitation learning
(GASIL) [29] aims to imitate agent’s past good trajectories
by measuring them via pre-defined reward functions, but vio-
lates the initial idea of the GAIL framework to allow learning
from demonstrations and avoid pre-defining reward functions.
In this letter, we proposed multi-agent generative adversarial
interactive self-imitation learning (MAGAISIL) by improving
MAGAIL via replacing the expert sub-optimal demonstrations
with agent generated good trajectories. However, different from
GASIL, MAGAISIL allows a human trainer to evaluate whether
the agent generated trajectories are better than the provided
expert demonstrations instead of using pre-defined reward func-
tions. Therefore, we expect and hypothesize that our MAGAISIL
method allows agents to learn solely from and obtain much better
performance than sub-optimal expert demonstrations, resolving
the limitation of MAGALIL that it can seldom surpass the per-
formance of demonstrations. Fig. 1 illustrates the mechanism of
our proposed MAGAISIL method.

As shown in Fig. 1, MAGAISIL will take provided sub-
optimal expert demonstrations as input. Then, each agent will
learn an Actor (i.e. control policy) and a Critic (i.e. value func-
tion) via independent proximal policy optimization (IPPO) [34].
In addition, a discriminator will be trained to distinguish the
state-action pairs of agent’s generated trajectories from provided
expert demonstrations. Specifically, during training, at time step
t, Agent 7 will obtain local observation o; ;, and select an action
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Fig. 1. Illustration of the mechanism for our multi-agent generative adversarial
interactive self-imitation learning (MAGAISIL) method.

a;, with its current policy mp,: @i, ~ g, (a; | 0;¢). Then, it
will transition to a new state upon performing the selected
action. The Agent ¢ will repeat the cycle of selecting action and
obtaining observation until the end of an episode. The received
state-action pairs during one episode by interacting with the
environment compose the trajectory 7; of Agent . [V state-action
pairs (0;, a;) from the agent’s trajectory 7; will be selected and N
state-action pairs (0;, a;) from the provided expert trajectory
7; Will be selected and used to train the discriminator D,,; via
ADAM [35] with the loss function as:

Er, [log (Do, (0, a))] + Er,j; [log (1 = Dy, (0,a))]. (2)

The updated discriminator D,,, will be used to provide rewards
r;, p for updating the Actor and Critic of Agent i:

rip = —log (1 = Dy, (0,a)) . S

In addition, at the end of an episode, the trajectory 7; of Agent ¢
will be visualized in a window and shown to a human trainer, who
can compare with the provided expert demonstrations according
to her knowledge and experience. If the human trainer thinks the
agent’s generated trajectory is better than the expert demonstra-
tions, the trajectory 7; of Agent ¢ will be stored in the temporary
trajectory pool 7;,.. Otherwise, the trajectory 7; of Agent ¢ will
be disregarded. We set a limit to the number of trajectories in
the pool 7;,, and when it is full, all stored trajectories in 7;,, are
used to replace the current expert demonstrations 7;,,. At the
same time, 7;,, will be cleared to store new trajectories in the
following training process.

IV. SIMULATION SETUP

We evaluated our method by conducting experiments in three
formation control and obstacle avoidance of multi-AUYV tasks on
the Gazebo simulation platform. The simulator is extended from
Unmanned Underwater Vehicle Simulator [36] with the model
of Sailfish 210 developed in our lab.in the simulated underwater
environment.

A. Simulation Tasks

We set up three formation control and obstacle avoidance tasks
in our experiments. Fig. 2 shows the observed state information
of a leader AUV and two follower AUVs in the tasks. In Task
I, the objective of the task is to allow the leader AUV to go
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Fig. 2.  State representation of the leader AUV and two follower AUVs in the
tasks. (zr,, yr) is the coordinate of the leader AUV’s current position, (zp, yr)
and (z pr, ypr) are the coordinates of the follower AUVs.

through a square pipe, with two follower AUVs following the
leader AUV in a line at a distance of 18 meters, while keeping
a safe distance from the walls on both sides of the pipe. The
distance between walls of two sides in the pipe is 30 meters.
The leader AUV, follower AUV 1 and follower AUV?2 will start
from the position (18, 15), (9, 15) and (1, 15), respectively, and
the ending position is at (240, 15). The task is terminated and a
new episode will start in the following situations:

1) Leader AUV or follower AUV is too close to obstacles,

ie,ldr] <2orl|dp| <2or|dp| <2

2) The distance between two AUVSs is too close or far,

ie.,|gr| < 3or|gr| > 33or|gr| < 3or|gr| >33

3) The heading deviation of follower AUVs is too large,

ie.lap| > Zorlap| > 3.

To test the adaptability of our method in complex tasks, we
added dense spherical obstacles with a radius of 5 meters in
various places (e.g. in the middle, close to the corner and the
walls) of the pipe in Task II, and changed angles of walls and
extended the pipe to be 300 meters long in Task III.

B. State Representation and Action Space

In the tasks, the leader-follower method was adopted and
a leader AUV with two follower AUVs were considered for
simplification, which can be easily extended to complex tasks
with more AUVs. A decentralized training and execution frame-
work was used as in [13]. Fig. 2 shows the state representation
of AUVs in the task. As shown in Fig. 2, the black squares
represent the walls of pipe or obstacles, d,, denotes the distance
between walls of the pipe, which is set to be 30 meters. All
AUVs need to detect and avoid collision with the wall and/or
obstacles with sonar sensor and go through the pipe as soon
as possible. The detection angle range of the sonar sensor is
set to be [—%, 2] which will be divided into 6 sectors, as
shown by the shaded areas in Fig. 2. The sonar sensor has
600 beams which are equally distributed in the 6 sectors. The
detection distance is 33 meters at most. AUV will take the
shortest distance detected by all the sectors as the distance
to the obstacle. The detected shortest distances by the leader
AUV, follower AUV1 and follower AUV2 are denoted as dy,
dp and dpv, respectively. The leader AUV’s state is represented
as oy, = {dp1,dr2,dr3,dra,drs,dre}, and the two follower
AUVs’ states are represented in a similar format as op(y =
{9rey, ary, dpeyrs dreyes dpeys, dpeya, dpeys, dpeye }- Here,
dr; and dp(; are the detected distance by each sector of the
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TABLE I
ACTION SETUP FOR AUVS TO PERFORM BY SETTING THE ANGLES OF FOUR
RUDDERS (UPPER, RIGHT, LOWER AND LEFT)

Action Upper Right Lower Left
turn left 1 —14° 0 14° 0
turn left 2 —20° 0 20° 0
go straight 0 0 0 0
turn right 1 14° 0 —14° 0
turn right 2 20° 0 —20° 0

sonar sensor on leader AUV and follower AUVs, respectively,
t=1,2,...,6. gp(y is the directrix distance between AUVs,
e.g., gr is the distance between the leader AUV and follower
AUV1 and is computed as gr = \/(yr — yr)2 + (xF — x1)%
ap(y is the heading deviation of follower AUVs, e.g., the
heading deviation ar of follower AUV1 is computed as ap =
app — atan 2( yif“ ), where a g denotes the current heading
of the follower AUVI.

We set five discrete actions for all AUVs, which can be per-
formed by setting the thruster speed and angles of four rudders,
including two actions for turning left, two for turning right and
one for going straight, as shown in Table I. The upper and lower
rudders are set to control the horizontal direction of AUV. The
left and right rudders are used to control AUV to float and dive
in the underwater environment, which are set to 0 as the tasks
are in a 2D space. The thruster speed of AUV is set to 300 r/s.

C. Evaluation Metrics

Due to the subjectivity of the rewards of the learned discrim-
inator with expert demonstrations, we defined reward functions
for all AUVs to evaluate our proposed method. The defined
reward functions for all AUVs are never used for learning, but
only used for testing the learned policies from demonstrated
trajectories with MAGAIL and our method MGAISIL. The
reward function for the leader AUV is defined as:

“

where 17.3 meters is a safe distance for AUV derived based on
the detection angle range of the sonar sensor and the distance
between walls of the pipe, which can keep AUV in the middle
of the pipe. The reward functions for the follower AUVs are
defined as:

TR(y = 0.5 * T%(/) + 0.5 * Tap(/), (5)

where 1%, represents the rewards for tracking the leader
AUV or previous follower AUV, and is defined as r%(,) =

+1-— M| based on the distance g () between
AUVs and the headlng deviation ap(y. Similar to the leader

AUV, 7%, =1 Mde1rdl
from the wall of pipe dp( to keep the follower AUVs in the
middle of the pipe. Even we could consider all these aspects to
set an appropriate reward function in the leader-follower task, it
is very time-consuming and requires much more expertise than
providing sub-optimal demonstrations.

In our experiments, we trained both leader and follower
AUVs with our MAGAISIL method with sub-optimal expert
demonstrations. In addition, MAGAIL trained with both op-
timal and sub-optimal expert demonstrations and traditional
game-theoretic MARL method IPPO learning from the above
defined reward functions were also used as comparisons. Each

\aF( y[+3

are defined based on the distance
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method has a policy network and a critic network, which were
represented with fully connected neural networks (FCNs). The
structure of FCN is: FCN (actor) = [64,128,64,5,5] and FCN
(critic) = [64,128,64,1], the activate functions of the hidden
and last layer are Tanh and Softmax respectively. No activate
function for the last layer of the critic network. We set N = 256,
i.e., each time 256 state-action pairs are randomly selected from
trajectory generated by each AUV and provided expert demon-
strations respectively to update the discriminator. During one
episode, the discriminator is updated 3 times and the generator
is updated 9 times for each AUV to reduce the variation of
the policy caused by the discriminator’s changes. The discount
factor is set to be v = 0.99, A = 1.0 and the clipping factor
e = 0.09 in the IPPO algorithm. The maximum number of
trajectories in the temporary trajectory pool is set to be 10.

During training, at the end of each episode, the AUV’s current
trajectory and its four indices including average distance to the
wall from both leader AUV and follower AUV, distance between
leader AUV and follower AUV, angle between leader AUV and
follower AUV, are shown in a pop-up window for evaluation by
the human trainer. The human trainer needs to be aware of the
following metrics (i.e. the task requirements) to evaluate whether
the AUV’s current trajectory is good or not:

1) The average distance from leader AUV and follower AUV

to the wall is close to 17.3 meters, respectively.

2) The heading deviation between leader AUV and follower

AUV is close to 0.

3) The distance between two AUVs is around 18 meters.

4) The smoothness of the trajectory.

The closer are the four indices of an AUV’s trajectory to
these metrics and the more natural is the AUV’s trajectory,
the more likely is it to be selected by the human trainer and
added to the temporary trajectory pool. That is to say, the human
trainer makes decisions not only based on these four objective
metrics but also her subjective judgments such as the naturalness
and smoothness of the trajectory, since two AUV trajectories
might have the same or similar performance in terms of the
four objective metrics but one might be smoother than the other.
Since the human trainer only needs to evaluate at the end of one
episode during training, it generally took only a few seconds for
each evaluation as long as the human trainer is familiar with the
task requirements.

V. RESULTS AND DISCUSSION

This section presents and analyzes our experimental results
by comparing the policy performance trained with our MA-
GAISIL learning from sub-optimal expert demonstrations to
MAGALIL learning from both optimal and sub-optimal expert
demonstrations and IPPO from defined reward functions in Task
I as described in Section IV-A. In addition, to evaluate the
adaptability of our MAGAISIL method, we tested the trained
policies of three AUVs in Task II and III. Note that the results
of follower AUV2 are similar to those of follower AUV since
they both taking the same role by tracking the follower AUV 1
and leader AUV respectively, and not shown in the letter due to
limited space.

A. Learning Curves

Fig. 3(a) and (b) shows the cumulative rewards received by
the leader AUV and follower AUV 1 during training via IPPO,
MAGAISIL with sub-optimal demonstrations, MAGAIL with
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Learning curve for the leader AUV per trajectory replacement
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Cumulative rewards received by the leader AUV (a) and follower AUV1 (b) trained via MAGAISIL with suboptimal demonstrations (MAGAISIL

Suboptimal), MAGAIL with sub-optimal (MAGAIL Suboptimal) and optimal (MAGAIL Optimal) demonstrations, and IPPO learning from predefined reward
functions in Task I. (c) shows the leader AUV’s learning curve along the number of trajectories being replaced. The shaded area is the 0.95 confidence interval and
the bold line is the mean performance over three experimental trials. Two red lines show the performance of expert optimal and sub-optimal demonstrations.

sub-optimal and optimal demonstrations in Task I, measured by
the predefined reward functions for leader and follower AUVs
in Section IV-C, respectively. From Fig. 3 we can see that,
for both leader and follower AUVs, at the beginning process,
the speed of our MAGAISIL agent learning from sub-optimal
demonstrations is similar to the MAGAIL agent learning from
sub-optimal demonstrations, which is slower than the MAGAIL
agent learning from optimal demonstrations but faster than the
IPPO agent. This might be because the good agent-generated
trajectories selected by the human trainer in our MAGAISIL
method did not fully replace the sub-optimal expert demon-
strations yet. However, after about 400 episodes’ training, our
MAGAISIL agent learning from sub-optimal demonstrations
reached a performance close to optimal expert demonstra-
tions together with the MAGAIL agent learning from optimal
demonstrations and stabilized afterwards. In contrary, the per-
formance of the MAGAIL agent learning from sub-optimal
demonstrations and ITPPO agent still fluctuated around/above
the sub-optimal demonstrations throughout the training
process.

We also studied the impact of replacing original trajectories
with self-generated ones on the performance of AUVs, as shown
in Fig. 3(c). From Fig. 3(c) we can see that the performance of
the leader AUV gradually improves as self-generated trajecto-
ries replace the original sub-optimal demonstrations, and after
replacing 70 trajectories, the performance of the leader AUV
tends to converge to optimal.

In summary, while the performance of MAGAIL agent
learning from sub-optimal demonstrations is limited by sub-
optimal expert demonstrations, our MAGAISIL agent can
learn to reach a performance close to optimal demonstra-
tions faster than traditional game-theoretic MARL IPPO
method via gradually replacing the sub-optimal demonstra-
tions with self-generated good trajectories selected by a human
trainer.

B. Performance

We also tested and compared the final control policies of
the leader AUV and follower AUVs trained in Task I via our
MAGAISIL with sub-optimal expert demonstrations and MA-
GAIL with optimal expert demonstrations for 10 times from
the perspectives of trajectory, distance to the walls of pipe or
obstacles, distance between leader AUV and follower AUV,

heading deviation of follower AUV, as shown in Table II,
Figs. 4(a), 5(a), 6(a), 7(a), and 8(a). From Fig. 4(a) we can
see that, the leader AUV and follower AUV1 trained via our
MAGAISIL with sub-optimal demonstrations and MAGAIL
with optimal demonstrations can successfully complete Task I
by generally following the middle of the pipe. The leader AUV
and follower AUV1 trained via our MAGAISIL method even
performed a bit better than the one via MAGAIL at the turnings
in the pipe. While further examining the observations of both
leader AUV and follower AUV 1 in the testing process, we found
that although the leader AUV in the provided sub-optimal expert
demonstrations fluctuated dramatically around the middle of the
pipe after turning, the leader AUV trained with our MAGAISIL
method can get a performance close to MAGAIL learning from
optimal demonstrations, which can immediately get back to the
safe distance around 17.3 meters (derived based on the detection
angle range of the sonar sensor and the distance between walls
of the pipe, refer to Section I'V-C), and keep itself in the middle
of the pipe (Fig. 5(a)).

For the follower AUV in the provided sub-optimal expert
demonstrations, its distance to the leader AUV fluctuated dra-
matically between 12 and 25 meters and heading deviation also
fluctuated dramatically (Figs. 6(a) and 7(a)). After training with
our MAGAISIL method, the follower AUV 1 can obtain a perfor-
mance close to MAGAIL learning from optimal demonstrations,
and keep a distance to the leader AUV at around 18 meters with
a heading deviation significantly lower than that of MAGAIL
(Table II, p < 0.01 via student t-test). Moreover, the follower
AUV trained with our MAGAISIL method can keep a safe
distance to the walls of pipe even though it fluctuated largely
during and after turnings in the provided sub-optimal expert
demonstrations, and even performed better than the MAGAIL
agent learning from optimal demonstrations (Fig. 8(a)).

In summary, our results show the leader AUV, follower AUV 1
and follower AUV?2 trained with our MAGAISIL method can
surpass the provided sub-optimal expert demonstrations and get
a performance close to or even better than those trained via
MAGAIL with optimal demonstrations.

C. Adaptability to Complex and Different Tasks

We also tested and compared the adaptability of our MA-
GAISIL method to complex and different tasks by running
the saved final control policies of leader AUV, follower
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TABLE II
TESTED MEAN PERFORMANCE OF THE LEADER AND FOLLOWER AUV1 OVER 10 TRIALS IN THE THREE TASKS.
Metrics Task I Task II Task IIT
MAGAISIL MAGAIL MAGAISIL MAGAIL MAGAISIL MAGAIL

Leader AUV-Distance to Obstacle 18.07 £0.13 17.94 £0.12 14.81 £0.11 14.95 + 0.08 16.29 + 0.10 16.21 £0.11
Follower AUV 1-Distance to Obstacle 14.5540.24 | 13.8940.12 | 13.42+0.17 | 13.26+0.16 | 12.97+0.24 | 13.76+0.13
Follower AUV 1-Distance to Leader AUV 17.73 £0.27 18.38 £0.20 14.23 +£0.54 16.84 £+ 0.42 21.08 +0.30 18.95 £+ 0.19
Follower AUV 1-Heading Deviation 0.010 +0.004 | 0.026 £ 0.006 | 0.008 & 0.006 | 0.018 4 0.007 | 0.016 +0.004 | 0.028 +0.007

leader AUV (MAGAISIL)
follower AUV1 (MAGAISIL)
follower AUV2 (MAGAISIL)

= leader AUV (MAGAISIL)
follower AUV1 (MAGAISIL)
follower AUV2 (MAGAISIL)

= leader AUV (MAGAISIL)
== follower AUV1 (MAGAISIL)
follower AUV2 (MAGAISIL)

75 leader AUV (MAGAIL) 75 leader AUV (MAGAIL) 1 — leader AUV (MAGAIL)
follower AUV1 (MAGAIL) follower AUV1 (MAGAIL) follower AUV1 (MAGAIL)

E 60 follower AUV2 (MAGAIL) E 60 follower AUV2 (MAGAIL) E L follower AUV2 (MAGAIL)
S > s { ) I

30 30

- 15{ 8~
15 15
0 0 —_—l o
o 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240 o 30 60 90 120 150 180 210 240 270 300
X/m X/m X/m
(a) Task | (b) Task II (c) Task Il
Fig. 4. Tested trajectories of the leader AUV, follower AUV 1 and follower AUV2 in Task I, IT and IIT using final control policies trained in Task I via MAGAISIL

with sub-optimal expert demonstrations and MAGAIL with optimal expert demonstrations.
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Fig.5. Distance to the wall of pipe or obstacles from the leader AUV in Task I, IT and III tested using final control policies trained in Task I via MAGAISIL with

sub-optimal expert demonstrations and MAGAIL with optimal expert demonstrations. The red line in (a) shows the distance to the wall of pipe from the leader

AUV in the sub-optimal expert demonstration.
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Fig. 6. Distance between the leader AUV and follower AUV in Task I, II, and III tested using final control policies trained in Task I via MAGAISIL with

sub-optimal expert demonstrations and MAGAIL with optimal expert demonstrations. The red line in (a) shows distance between the leader AUV and follower

AUV1 in the sub-optimal expert demonstration.
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Fig. 7. The heading deviation of the follower AUV1 in Task I, II, and III tested using final control policies trained in Task I via MAGAISIL with sub-optimal

expert demonstrations and MAGAIL with optimal expert demonstrations. The red line in (a) shows heading deviation of the follower AUV in the sub-optimal

expert demonstration.
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Fig. 8.

The distance to the wall of pipe or obstacles from the follower AUV 1 in Task L, II, and III tested using final control policies trained in Task I via MAGAISIL

with sub-optimal expert demonstrations and MAGAIL with optimal expert demonstrations. The red line in (a) shows the distance to the wall of pipe from the

follower AUV2 in the sub-optimal expert demonstration.

AUV1 and AUV2 trained in Task I via MAGAISIL with
sub-optimal demonstrations and via MAGAIL with optimal
demonstrations for 10 times in Task II with extra obstacles
and in Task III with changed angles of the walls and ex-
tended length of the pipe. Other settings are the same as
Task I.

Table II shows the mean performance and Figs. 4(b), (c),
5(b), (c), 6(b), (c), 7(b), (c), and 8(b), (c) show the exam-
ple performances of the leader AUV and the follower AUV1
trained via MAGAISIL and MAGAIL in terms of trajectory,
distance to the walls of pipe or obstacles, distance between
leader AUV and follower AUV, heading deviation of follower
AUV, respectively. From these results in Task II and III we
can see that, the control policies of leader AUV and follower
AUVs trained via MAGAISIL and MAGAIL can adapt well
to complex and different tasks even with added obstacles or
changed angles of wall. Moreover, the leader and follower AUVs
trained via MAGAISIL with sub-optimal demonstrations can
obtain a similar performance to those trained via MAGAIL
with optimal demonstrations. The leader AUV and follower
AUV1 trained via MAGAISIL even performed a bit better than
those via MAGAIL at the turnings in the pipe (Fig. 4(b) and
(c)). However, the distance between leader AUV and follower
AUV trained via MAGAISIL decreased largely after 100 steps
compared to those via MAGAIL, but gradually increased after
that and is similar to those trained via MAGAIL after about 300

steps (Fig. 6(b)). This might be because of the effect of added
obstacles, which were first met after the first turning at about 100
steps. This is consistent with the a bit larger fluctuation of the
heading deviation of the follower AUV 1 trained via MAGAISIL
compared to MAGAIL, which also starts from about 100 steps
(Fig. 7(b)).

VI. CONCLUSION

In this letter, we builds upon the MAGAIL algorithm by
proposing multi-agent generative adversarial interactive self-
imitation learning (MAGAISIL), which can facilitate agents to
learn policies by gradually replacing the provided sub-optimal
demonstrations with self-generated good trajectories selected by
a human trainer. Results in three multi-AUV formation control
and obstacle avoidance tasks on the Gazebo platform show that
AUVs trained via MAGAISIL can surpass the provided sub-
optimal expert demonstrations and learn to reach a performance
close to or even better than those trained via MAGAIL with
optimal demonstration. Further analysis indicates MAGAISIL
adapts to complex and different tasks as well as MAGAIL
learning from optimal demonstrations.

Our method can easily generalize to other multi-agent do-
mains beyond AUVs, such as unmanned aerial vehicles (UAVs),
robotic swarms for search and rescue operations, and au-
tonomous ground vehicles for logistics and transportation etc.
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However, the workload and time needed for the human trainer to
train all agents will increase dramatically as the number of agents
increases in the task. Future work will focus on studying methods
using large language models to evaluate the agent’s trajectory,
which has proven to be able to provide evaluative feedback to
train RL agents [37]. In addition, safe reinforcement learning
from human feedback [38] with formal interpretability [39],
stability [40] to guarantee low-bound performance, and Respon-
sibility Sensitive Safety (RSS) model [41] could be considered
to integrate with our method together to monitor and safeguard
the risk of AUVs or other robots during operation using learned
model with our method.
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