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This study proposes a Model Reference Adaptive Control (MRAC) approach based on multilayer perceptron 

(MLP) neural networks to control the depth of a REMUS Autonomous Underwater Vehicle (AUV) during 

navigation in the presence of range challenges, including hydrodynamic forces and modelling uncertainties. 

Therefore, Model Reference Adaptive Control (MRAC) is the appropriate controller for this task. The primary 

objective of this paper was to ensure adaptive control by using the hyperstability concept and applied it to the 

linear vertical REMUS AUV model. Furthermore, a new approach was introduced: the neural network model 

reference adaptive control (NNMRAC), which is a combination of the classic MRAC control with a multilayer 

perceptron neural network (MLPNN), resulting in enhance the  performance and adaptability of the controller 

In addition, stability analysis of the new approach is achieved using a Lyapunov candidate function. 

The effectiveness and feasibility of both adaptive control strategies on vertical AUV motion were evaluated 

through a comparative analysis conducted using MATLAB/Simulink. This analysis provides valuable 

information regarding the advantages and limitations of each approach, which can help inform decisions 

regarding control techniques for regulating the depth of underwater vehicles.
 

 

1. Introduction 

Recently, Autonomous Underwater Vehicles (AUVs) 
played an important role in deployment in highly 
dangerous missions that have never been possible 
before for naval systems, such as petroleum industries 
for the detection of oil wells, and in the military field, 
particularly in intelligence gathering, surveillance, and 
reconnaissance. 

The oceanographic solutions are mostly the guidance 
and control of these AUVs in the oceanic environment 
in the presence of many challenges[1] ,such as 
variations in hydrodynamic parameters and 
disturbances like ocean waves and currents that occur 
during the maneuver of an autonomous underwater 
vehicle (AUV). Therefore, the development of control 
must be adaptive and robust to address these 
challenges. 

Many researchers concentrated their interests on the 
development of several proper control techniques for 
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controlling the motion of underwater robotic vehicles, 
such as linear law control. In this study [2], a trajectory 
control of an underwater glider is proposed using an 
LQR optimal control to improve the glider’s robustness 
to disturbances and uncertainties. This proposed 
controller is applied to the linearized glider model. 

For studies that use the nonlinear control approach, a 
high-order sliding mode control was developed in [3] to 
improve controller performance by limiting the 
chattering phenomena. With the implementation of this 
HOSMC in the AUV H160 nonlinear diving model, the 
simulation result illustrated the effectiveness of the 
HOSMC compared with the classic sliding mode 
control. 

A nonlinear state feedback H∞ control algorithm is 
suggested in [1] ,This controller has been developed by 
solving the HJI equation to control the depth and yaw 
angle in the diving and steering planes. In [4],a hybrid 
control using adaptive backstepping terminal sliding 
mode control for AUV trajectory tracking the stability 
was analyzed using Lyapunov theory. the feasibility and 
effectiveness of this control approach were verified 
using a simulation and an experimental test. 
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The study conducted in [5], offline pitch angle 
dynamics identification was done due to the 
limitations of the uncertainty based on the least 
squares algorithm. Besides that, an online cascade 
tracking control was applied for the depth and pitch 
angle of an AUV REMUS. In[6] ,a theoretical and 
experimental study was proposed and applied to the 
path following control of an AUV, in which in the first 
place, a model-free adaptive control MFAC was 
proposed and developed, and then an event-triggered 
mechanism was introduced to enhance the controller 
performance. The paper in [7] proposed a system 
control called PFM (Potential Field Methods) that 
guarantees obstacle avoidance and navigation to 
detect and track cables and pipelines. Besides that, a 
comparative study is conducted to compare the 
proposed algorithm with another approach to the same 
mission. An experimental study is carried out in [8] 
Bayesian visual tracking for inspection of undersea 
power and telecommunications via AUV for the 
inspection of cables is set for more than 10,000 frames 
to test the cable tracking solution proposed. Authors 
in [9]proposed a funnel control based on terminal 
sliding mode control for  depth and forward velocity 
tracking of the nonlinear AUV model ,the stability 
analysis of the proposed approach was achieved using 
Lyapunov candidate function beside that a nonlinear 
super twisting observer is designed to estimate the 
non-measurable parameters.  

For the control laws that use AI, Robust diving motion 
control of an AUV using the adaptive neuro-fuzzy 
sliding mode technique is developed in [10]. The 
sliding mode control give a fast response time with a 
minimum error, and the adaptive law is used for the 
determination of the sliding surface coefficient. The 
neural network is employed in this research to 
estimate the nonlinear system dynamics and 
disturbances, and fuzzy logic is used to reduce the 
chattering problem caused from the sliding mode. 
Simulation studies in [11]proposed Deep 
Reinforcement Learning based on deep policy 
gradient for low-level Vectored Thruster AUV 
Control The RL input data is collected by onboard 
sensors. In [12], a semi-globally stable neural network 
was designed to control the diving motion of an AUV. 
The adaptation laws of the unstructured uncertainties 
and the update laws of the network weight are 
achieved via the Lyapunov-based method. 

 Based on research and a literature review, it appears 
that a combination of control laws and AI provides 
efficient trajectory tracking and control of AUV, 
despite the previously mentioned challenges.  

The main objective of this paper is to control the 
diving plane of an AUV. To achieve this, an MRAC 
based on hyperstability is used, which is inspired by 
previous research on the lateral motion of aircraft[13]. 
To create a closed-loop controller whose parameters 

can be updated to modify the system's response, the 
control system was further enhanced through the 
combination of a neural network, specifically an MLP, 
to improve overall performance and efficiency against 
noise and uncertainties .Previous research has 
successfully employed an RBF neural network to 
enhance the tracking accuracy of a quadrotor UAV 
when parameters are modified [14]. However, in this 
study, we aim to use an MLP neural network for 
enhanced performance. 

This paper is organized as follows. Section 2 describes 
the mathematical modeling of the REMUS AUV in the 
vertical plane, which is described and linearized. In 
Section 3, an MRAC controller based on the 
hyperstability concept is proposed and developed to 
control the depth of the REMUS AUV. Furthermore, an 
MLP neural network is incorporated into the MRAC for 
enhancement using the neural network, and then the 
Lyapunov candidate function is used to analyze the 
stability of the new controller. The simulation results 
and a comparison of both approaches are presented in 
Section 4, and the conclusion is provided in Section 5. 

 

2. Mathematical Modelling 

The dynamics of AUV involves six-degrees-of-freedom 
equations of motion associated with coupled and 
nonlinear terms. The nonlinear terms are generally 
hydro- dynamic damping, added mass coefficients 
along with environmental disturbances. The AUV body 
frame with respect to NED (North-East-Down) frame is 
shown in Figure 1. 

Figure 1: General AUV Structure with Reference Frame. 

 

Source:[1] 

The nonlinear equation of the vehicle can denote as  

follow [15][16]: 

 

{
𝜂̇ = 𝐽(𝜂) 𝜈

𝑀𝜈̇ + 𝐶(𝜈) 𝜈 + 𝐷(𝜈) 𝜈 + 𝑔(𝜂) = 𝛤                  
(1) 

 

 Where: 𝜂 = [𝑥 𝑦 𝑧 Φ 𝜃 𝜓 ] 𝑇indicates the vector of the   

position and orientation in  

       The NED   frame 𝜈 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 ]  𝑇 represent the     

        translation and rotation velocity of the vehicle in the   



        Body frame. 

𝐽(𝜂) The transformation Matrix between the body 

frame and NED frame, 𝑀 the inertial and the added 

mass matrix, 𝐶(𝜈)the rigid body and the added mass 

Coriolis and centripetal matrix, 𝐷(𝜈) hydrodynamic 

drag matrix, 𝑔(𝜂) restoring forces and moment vector 

and for 𝛤 represent the control input vector. 

       The initial step to develop a pure linear depth plane         

       model is to assumed that the forward speed 𝑢  to be           

       constant and by setting the velocity𝑣 , 𝑝 , 𝑟. 

                   

      The nonlinear equations of motion in vertical plane    

     are[17]: 

(𝑚 − 𝑍𝑤̇)𝑤̇ − (𝑚𝑥𝑔 + 𝑍𝑞̇)𝑞̇ − 𝑍𝑤𝑤 − (𝑚𝑈 + 𝑍𝑞)𝑞 −

(𝑊 − 𝐵) 𝑐𝑜𝑠(𝜃) − 𝑚𝑍𝑔𝑞2 = 𝑍𝛿𝑠
𝛿𝑠

𝑚𝑍𝑔𝑢̇ − (𝑚𝑥𝑔 + 𝑀𝑤̇)𝑤̇ + (𝐼𝑦𝑦 − 𝑀𝑞̇)𝑞̇ −

𝑀𝑤𝑤 + (𝑚𝑥𝑔𝑈 − 𝑀𝑞)𝑞

(𝑥𝑔𝑊 − 𝑥𝐵𝐵) 𝑐𝑜𝑠(𝜃) − (𝑍𝑔𝑊 − 𝑍𝐵𝐵) 𝑠𝑖𝑛(𝜃) = 𝑀𝛿𝑠
𝛿𝑠

𝑧̇ = −𝑢 𝑠𝑖𝑛(𝜃) + 𝑤 𝑐𝑜𝑠(𝜃)                          

                               𝜃̇ = 𝑞

(2) 

   using the Maclaurin expansion of the trigonometric       

   terms: 𝑠𝑖𝑛 𝜃 = 𝜃 and 𝑐𝑜𝑠 𝜃 = 1 and 𝑍𝑔 is assumed to be    

   smaller than the other variables [18]. 

   the linearized equation in formed as follow: 

(𝑚 − 𝑍𝑤̇)𝑤̇ − (𝑚𝑥𝑔 + 𝑍𝑞̇)𝑞̇ − 𝑍𝑤𝑤

−(𝑚𝑈 + 𝑍𝑞)𝑞 = 𝑍𝛿𝑠
𝛿𝑠,

−(𝑚𝑥𝑔 + 𝑀𝑤̇)𝑤̇ + (𝐼𝑦𝑦 − 𝑀𝑞̇)𝑞̇ − 𝑀𝑤𝑤    

+(𝑚𝑥𝑔𝑈 − 𝑀𝑞)𝑞 − 𝑀𝜃𝜃 = 𝑀𝛿𝑠
𝛿𝑠

𝑧̇ = −𝑈𝜃 + 𝑤                      
                               𝜃̇ = 𝑞

(3) 

  Those equations can be expressed in state space model: 

[
 
 
 

𝑚 − 𝑍𝑤̇ −(𝑚𝑥𝑔 + 𝑍𝑞̇) 0        0

−(𝑚𝑥𝑔 + 𝑀𝑤̇) 𝐼𝑦𝑦 − 𝑀𝑞̇ 0        0

0 0 1         0
               0                              0               0           1  ]

 
 
 

[

𝑤̇
𝑞̇
𝑧̇
 𝜃̇

] 

=

[
 
 
 

𝑍𝑤 (𝑚𝑈 + 𝑍𝑞) 0        0

𝑀𝑤 −(𝑚𝑥𝑔𝑈 − 𝑀𝑞) 0        𝑀𝜃

1 0 0        − 𝑈
     0                    1                    0              0      ]

 
 
 

[

𝑊
𝑞
𝑧
𝜃 

] + [

𝑍𝛿𝑠

𝑀𝛿𝑠

0
0

] 𝛿𝑠    (4) 

 

          Where: w linear velocity and q angular velocity 𝑧      

   represent the depth and is  𝜃 pitch angle and 𝛿𝑠 the  

         rudder angles. 

 

3. Controller Design 

 

In this section the classic MRAC will be designed 

for the AUV vertical motion first, then it will be  

combined  with MLP neural network ,and then the 

stability analysis will be demonstrate for the new 

NNMRAC using Lyapunov candidate function  
 

3.1. Classic MRAC Controller  

 The linear plant vertical model presents by the 

following state space equation: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (5) 

𝑦 = 𝐶𝑥  

The reference model expressed by the following 

equation: 

𝑥̇𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚, (6)  
 𝑦𝑚 = 𝐶𝑚𝑥𝑚, 

  Where this system has the same state and input,  

  output as the vertical plant model of the AUV  

  (𝐴𝑚 , 𝐵𝑚 , 𝐶𝑚 have respectively the same dimension    

  as  𝐴, 𝐵, 𝐶) and 𝑢𝑚 is the reference vector [13]. 

   The structure of direct Model Reference Adaptive   

    Control is show in Figure 2. 

 
Figure 2: Structure of direct MRAC for an AUV 
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The error vector between the reference model and the    

 AUV model 

𝑥𝑒 = 𝑥𝑚 − 𝑥 (7) 

𝑥̇𝑒 = 𝑥̇𝑚 − 𝑥̇ 

Replacing (5) and (6) in (7), we obtain: 

𝑥̇𝑒 = 𝐴𝑚𝑥𝑒 + (𝐴𝑚 − 𝐴)𝑥+𝐵𝑚𝑢𝑚  − 𝐵𝑢 (8) 

Using Erzerberger conditions: 

      𝐴𝑚 − 𝐴 = 𝐵𝐵𝑜(𝐴𝑚 − 𝐴) (9) 

𝐵𝑚 = 𝐵𝐵𝑜𝐵𝑚 (10) 

Where: 𝐵𝑜 is the pseudo inverse left 𝐵𝑜 = (𝐵𝑇𝐵)−1𝐵𝑇 

  By substituting (9) and (10) in (8), the later will be     

 written: 

𝑥̇𝑒 = 𝐴𝑚𝑥𝑒 − 𝐵 ((−𝐵𝑜(𝐴𝑚 − 𝐴) )𝑥 − 𝐵𝑜𝐵𝑚 𝑢𝑚 + 𝑢) (11) 

        From (11) let: 

𝜙 = ((−𝐵𝑜(𝐴𝑚 − 𝐴) )𝑥 − 𝐵𝑜𝐵𝑚 𝑢𝑚  + 𝑢) (12) 

 

So that: 

 𝑥̇𝑒 = 𝐴𝑚𝑥𝑒 − 𝐵𝜙 (13) 



 𝑦𝑒 = 𝐶𝑒𝑥𝑒 

The corresponding non-linear closed-loop system 

presented in Figure.3 is used to apply the hyperstability 

theory and Popov's criterion (Popov 1973) to explore 

the absolute stability of (13). 

Figure 3: Closed-loop of hyper-stable system 
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𝜙 is generated by a necessarily non-linear function or        

 𝑦𝑒this constitutes the adaptive block. 

The system is hyper-stable if 𝐴𝑚, 𝐵, 𝐶𝑒  is a  

hyper stable block [19]: 

𝐶𝑒𝐴𝑚 + 𝐴𝑚
𝑇 𝐶𝑒 = −𝑄,       𝑄 > 0 (14) 

Moreover, Popov’s criterion is satisfied: 

∫  𝑦𝑒

𝑡1

𝑡0

(𝑡)𝜙(𝑡)𝑇𝑑𝑡 ≥ −𝛾2 (15) 

The adaptive controller is proposed as: 

𝑢 = 𝐾𝑥𝑥 + 𝐾𝑢𝑢𝑚 (16) 

Replacing the equation (16) and (12) in Popov’s   

inequality (15): 

∫ [((𝐾𝑥 − 𝐵𝑜(𝐴𝑚 − 𝐴) )𝑥 + (𝐾𝑢  − 𝐵𝑜𝐵𝑚 )𝑢𝑚 )]
𝑇𝑡1

𝑡0

 𝑦𝑒
(𝑡)𝑑𝑡 ≥ −𝛾2 (17)

 

The solution that met the hyperstability requirement  

for 𝐾𝑥 and 𝐾𝑢 is: 

(𝐾𝑥 − 𝐵𝑜(𝐴𝑚 − 𝐴))
𝑇

= 𝛼(𝑥𝑦𝑒
𝑇)2𝑁+1 (18) 

(𝐾𝑢 − 𝐵𝑜𝐵𝑚 )
𝑇

= 𝛽(𝑢𝑚 𝑦𝑒
𝑇)2𝑁+1 (19) 

Where: α and β are two strictly matrices, if 𝑁 = 0 then  

𝐾𝑥  and 𝐾𝑢 will be as follow: 

𝐾𝑥 = 𝐵𝑜(𝐴𝑚 − 𝐴) + 𝛼𝑇𝑥𝑇 𝑦𝑒 (20) 

𝐾𝑢 = 𝐵𝑜𝐵𝑚 +𝛽𝑇𝑢𝑚
𝑇  𝑦𝑒 (21) 

3.2. MLP Neural Network 

MLP NN is consists of an input layer, a hidden layer, 
and an output layer.  Each layer has numbers of 
neurons and each neuron in each layer is connected to 
every neuron of the subsequent layer. The structure of 
MLP is show in Figure4. 

 

 

 

Figure 4: MLP neural network structure 
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The network input vector 𝑥 The output of the 

output last  hidden (l)  neurons as follow[20]: 

𝑧𝑘
𝑙 = ℎ𝑙(𝑤𝑘

𝑙  𝑧𝑙−1(𝑥) + 𝑏𝑘
𝑙 ) (22)  

 Where l represent the number of network layers   

w is the weight matrix, b is bias vector ,and h is 

the activation function it can be a sigmoid 

function (logsig) , a hyperbolic tangent activation 

function (tanh),or linear function (purelin). 

The output of the controller is presented by the 

following equation: 

𝑢(𝑥, ℎ) = ∑ 𝑤𝑘
𝑙+1

𝑙+1

𝑘=1

𝑧𝑘
𝑙 + 𝑏𝑘

𝑙+1 (23) 

The neural network used in this paper has 3 input 

𝑥 = [𝑦, 𝑦𝑒, 𝑢𝑚]  the output of AUV, the error 

between the output of the reference model and 

the output of AUV, The reference signal. [21]for 

the output represent the control signal (rudder 

angle). 

Levenberg Marquardt algorithm was used for the 

training of the network, the preps of training is to 
minimize the sum of square error energy function is 

 𝐸 =
1

2
[𝑦𝑚 − 𝑦]2 [22]. 

The structure of the MRAC controller combined with  

MLP neural network show in Figure 6: 

 

Figure 6:  Block diagram of MRAC combined with MLP NN. 
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4.  
3.3 Stability Analysis of MLP Neural Network 

MRAC 
In this subsection, stability analysis will be done for 

the case with MLP neural network is employed to 

control the AUV depth, using Lyapunov function. 

 

     The MRAC MLP neural network can be write as  

     [23]: 

𝑢 = 𝑤𝑇ℎ(𝑥) + 𝜀(𝑥) (24) 

        Where: 𝜀(𝑥)  is the neural network learning error    

                             

       The error dynamic in the MLPMRAC is represent as  

       follow  

𝑥̇𝑒 = 𝐴𝑚𝑥𝑒 − 𝐵 𝑤𝑇ℎ(𝑥) − 𝐵𝜀(𝑥) (25) 

Where: 

w̃  Is the weight derivation w̃(t) = w − w∗ 

Theorem: 

Consider that the learning law is given as:  

𝑤̇(𝑡) = −𝛤 ℎ(𝑥)𝑥𝑒
𝑇𝑃𝐵 (26))  

Where: 

  𝛤  Diagonal positive definite matrices  𝛤 > 0 and 𝛤 =
𝑑𝑖𝑎𝑔(𝛤𝑖) 

  𝑃  Is the positive define solution excite to the 

Lyapunov equation  

𝑃𝐴𝑚 + 𝐴𝑚
𝑇 𝑃 = −𝑄  𝑄 > 0   

        Proof: 

      Let the Lyapunov candidate function [24] 

 

𝑉(𝑥𝑒, 𝑤̃) =
1

2
𝑥𝑒

𝑇𝑃𝑥𝑒 +
1

2
(𝑤̃𝑇𝛤−1𝑤̃) (27) 

     Where: the 𝛤  diagonal positive definite matrices  

    define above, to prof that the s stable it necessary to   

    satisfied the Lyapunov stability condition theorem by  

    the derivation of 𝑉 along the system solution. 

    The Lyapunov candidate function can be upper  

     bounded by [25] 

 
1

2
𝜆 (𝑃)‖𝑥𝑒‖

2 + 
1

2
 𝜆(𝛤−1)‖𝑤̃‖2 ≤ 𝑉(𝑥𝑒, 𝑤̃) ≤  

1

2
 𝜆̅(𝑃)‖𝑥𝑒‖

2 +
1

2
 𝜆̅(𝛤−1)‖𝑤̃‖2(28) 

 

     The  𝜆 and 𝜆̅ is the minimum and maximum Eigen  

     value operator  

     The time derivation of  𝑉  along the error dynamic   

𝑉̇(𝑥𝑒, 𝑤̃) =
1

2
𝑥𝑒

𝑇𝑃𝑥̇𝑒 +
1

2
(𝑤̃𝑇𝛤−1𝑤̃) (29) 

 
   Substituting (25) into (29) the derivation of Lyapunov  

   candidate function is: 

 

𝑉̇(𝑥𝑒 , 𝑤̃) = −𝑥𝑒
𝑇𝑃𝐴𝑚𝑥𝑒 − 𝑥𝑒

𝑇𝑃𝐵𝑤̃𝑇ℎ(𝑥) − 𝑥𝑒
𝑇𝑃𝐵𝜀(𝑥)

+ 𝑤̃𝑇𝛤−1𝑤̇̃ 
 

𝑉̇(𝑥𝑒 , 𝑤̃) = −
1

2
𝑥𝑒

𝑇𝑄𝑥𝑒 − 𝑡𝑟(𝑤̃𝑇ℎ(𝑥)𝑥𝑒
𝑇𝑃𝐵) −

𝑥𝑒
𝑇𝑃𝐵𝜀(𝑥)+ 𝑤̃𝑇𝛤−1𝑤̇̃             (30)

 

 

Using the weight learning law (26), the above equation    

will be as follows 

 

𝑉̇(𝑥𝑒 , 𝑤̃) = −
1

2
𝑥𝑒

𝑇𝑄𝑥𝑒 − 𝑡𝑟(𝑤̃𝑇 ℎ(𝑥)𝑥𝑒
𝑇𝑃𝐵) − 𝑥𝑒

𝑇𝑃𝐵𝜀(𝑥)

+ 𝑡𝑟(𝑤̃𝑇ℎ(𝑥)𝑥𝑒
𝑇𝑃𝐵) 

 

𝑉̇(𝑥𝑒 , 𝑤̃) = −
1

2
𝑥𝑒

𝑇𝑄𝑥𝑒 − 𝑥𝑒
𝑇𝑃𝐵𝜀(𝑥) (31) 

The derivation of the Lyapunov can be upper bounded    

       by: 

      

𝑉̇(𝑥𝑒 , 𝑤̃) ≤ −
1

2
𝜆𝑚𝑖𝑛(𝑄) ‖𝑥𝑒‖

2 − 𝑥𝑒
𝑇‖𝑃𝐵‖‖𝜀(𝑥)‖ (32) 

 
Let 𝑑1 = ‖𝑃𝐵‖, and The 𝑠𝑢𝑝‖𝜀(𝑥)‖ ≤ 𝜀.̅ 

Using the bound variable in above expression the   

Lyapunov derivation is write as follow: 

 𝑉̇(𝑥𝑒 , 𝑤̃) ≤ −
1

2
𝜆𝑚𝑖𝑛(𝑄)‖𝑥𝑒‖

2 − ‖𝑥𝑒‖𝑑1𝜀 ̅ (33) 

 

        The set 𝜉 outside in which 𝑉̇(𝑥𝑒 , 𝑤̃) ≤ 0 [25] 

𝜉 = {‖𝑥𝑒‖ ≥  
𝑑2

𝜆𝑚𝑖𝑛(𝑄)
} (34) 

             Let 𝑑2 = 2𝑑1𝜀 ̅
The outside  set 𝜉 defines the range which the Lyapunov   

condition assure  the stability ,it signifies that as long as 

the error ‖𝑥𝑒‖  is large enough then the term 
𝑑2

𝜆𝑚𝑖𝑛(𝑄)
, 

then the dynamics error  and the neural network weight  

𝑤̃ guaranteed  the stability. 

4. Simulation and Results 

The reference model of the AUV is choosing according 

to specific objectives were 2.46% overshoot and 1.68 

second rise time  

By using those parameters, the matrices of the reference 

model chowing by the following state space 

representation: 

𝑥̇𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚 

 

         Will equal to: 

 



𝐴𝑚 = [

−0.097  − 0.0059      0.16 − 0.98
−0.93    − 2.15    − 1.13       0.13
0                  1             0                  0

20.21 − 300.36 − 1.24 − 300.75 

]  𝐵𝑚

= [

0.001
2.06
0

0.9714

] 

The reference signal 𝑢𝑚  is as step signal whose 

amplitude is 2 

The REMUS AUV parameters are illustrated in Table 

1 [17]. 

 
Table 1: REMUS AUV parameters 

 

PARAMETER VALUE/UNITES 

𝑚 30 [Kg] 

𝑍𝑤̇ -0.93 [Kg/s] 

𝑥𝑔 0 [m] 

𝑍𝑞̇ -1.93 [Kg.m] 

𝑀𝑤̇ -1.93 [Kg.m] 

𝐼𝑦𝑦 3.45 [Kg.m2] 

𝑀𝑞̇ -4.88 [Kg.m2] 

𝑍𝑤 -66.6 [Kg/s] 

𝑍𝑞 -9.67 [Kg.m/s] 

𝑀𝑤 30.7 [Kg.m/s] 

𝑀𝑞 -6.87 [Kg.m2/s] 

𝑀𝜃 -5.77 [Kg.m2/s2] 

𝑍𝛿𝑠 -34.6 [Kg.m2/s2] 

𝑀𝛿𝑠 -50.6 [Kg.m2/s2] 

𝑈 1.54[m/s] 
Source :     [17]                                        

The following part shows and demonstrates the result 

of classic MRAC using hyperstability critic and 

MRAC enhanced with MLP neural network to control 

the depth of AUV REMUS.  

Figure 7 shows the simulation result for depth tracking 

the output of the reference model using classic MRAC 

and MRAC combined with MLP NN.  

From the signal, the depth stabilized in the required 

value in 6 s in both controllers but it appears that the 

classic MRAC has a small overflow compared with the 

MRACMLP controller that provided efficient tracking 

of the reference signal with high accuracy and speed. 

Indeed, the control surface of the MRAC controller is 

unsaturated until 6 s, which means that the depth is 

stabilized, according to the Figure 8. 

 

                 Figure 7 Depth control with classic MRAC and MRACMLP 

 

 

 

 

 

             Figure 8: control output with classic MRAC. 

 

The Figure 9 below shows control output of depth 

tracking using the reference model with MLP as the 

replacement for the adaptive control law and 

adaptive controller. 

Figure 9: control output with MRAC combined with MLP NN. 

 

This next part, a noise signal was added in the both 

classic MRAC and MRAC combined with MLP NN 

to evaluate them against the noise. 



The noise signal is given as sin function whose 

amplitude is 3.5 degree and frequency 0.4 rad/s. 

 

Figure 10: Depth control with classic MRAC and MRACMLP in 

noise presence. 

 

 

Figure 11: control output with classic MRAC in noise presence. 

 
Figure 12 control output with MRAC combined with   MLPNN in noise 

presence. 

 

The Figure 10 above illustrates the consequences of 

adding a noise signal to the MRAC controller based on 

hyperstability approach and MRAC enhanced with 

MLP NN. It can be observed that there is a divergence 

between the tracking of the actual depth and the 

reference in the classic MRAC compared with the 

controller without adding noise. It notices that the 

MRAC combined with  

MLP NN has favorable result compared to the classic 

MRAC controller against uncertainties. 

From Figure 11 and 12 the output controller, we may 

observe that the control surface is unsaturated in classic 

MRAC, contrary to the proposed MRAC approach 

control surface is roughly saturated which means that the 

depth is stabilized.      

As part of the effectiveness analysis for both MRAC and 

MRAC combined with MLPNN controllers against 

parameter uncertainties, it is suggested to increase the 

hydrodynamic parameters by 30% of their value. The 

Figure below illustrate the reaction of the classic MRAC 

and the MRAC combined with MLPNN.  

 

 

 

Figure 13: Depth control with classic MRAC and MRACMLP With 

uncertainties 

 
Figure 14 control output with classic MRAC with uncertainties. 

 



Figure 15 control output with MRAC combined with MLP NN with 

uncertainties. 

 

Figure 13 illustrates that the MRAC combined with 

MLPNN provide an efficient reference tracking 

compared with the classic MRAC in the presence of 

parameter uncertainties; beside that the classic MRAC 

provide an increase in overshot than MRAC without 

uncertainties. 

It’s observed from Figure.14 that the  control output  of 

the classic MRAC hasn’t change compared with 

Figure.8, that’s mean that the uncertainties hasn’t any 

reject on the control input.    

        Conclusions 

The general idea in this paper focuses on proposing a 
reference model controller for depth tracking of an 
AUV REMUS. Initially, the approach involved, use 
MRAC based on the hyperstability concept in a linear 
vertical AUV model. However, in order to improve 
the performance and address uncertainties and noise, 
the adaptive control law and the adaptive controller 
were substituted with an MLP neural network, Then 
the stability analysis for the new control approach   it 
been demonstrated using Lyapunov candidate 
function , the neural network training is performed 
using MATLAB. 

Through simulations, it has been demonstrated that 
this enhanced MRAC controller, incorporating an 
MLP NN, is more suitable for handling uncertainties 
and noise. This expansion highlights the significance 
of using an MLP NN in enhancing the control system 
for depth tracking of the AUV REMUS. 
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