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Abstract: As an emerging direction of multi-agent collaborative control technology, multiple auton-
omous underwater vehicle (multi-AUV) cooperative area search technology has played an im-
portant role in civilian fields such as marine resource exploration and development, marine rescue,
and marine scientific expeditions, as well as in military fields such as mine countermeasures and
military underwater reconnaissance. At present, as we continue to explore the ocean, the environ-
ment in which AUVs perform search tasks is mostly unknown, with many uncertainties such as
obstacles, which places high demands on the autonomous decision-making capabilities of AUVs.
Moreover, considering the limited detection capability of a single AUV in underwater environ-
ments, while the area searched by the AUV is constantly expanding, a single AUV cannot obtain
global state information in real time and can only make behavioral decisions based on local obser-
vation information, which adversely affects the coordination between AUVs and the search effi-
ciency of multi-AUV systems. Therefore, in order to face increasingly challenging search tasks, we
adopt multi-agent reinforcement learning (MARL) to study the problem of multi-AUV cooperative
area search from the perspective of improving autonomous decision-making capabilities and col-
laboration between AUVs. First, we modeled the search task as a decentralized partial observation
Markov decision process (Dec-POMDP) and established a search information map. Each AUV up-
dates the information map based on sonar detection information and information fusion between
AUVs, and makes real-time decisions based on this to better address the problem of insufficient
observation information caused by the weak perception ability of AUVs in underwater environ-
ments. Secondly, we established a multi-AUV cooperative area search system (MACASS), which
employs a search strategy based on multi-agent reinforcement learning. The system combines var-
ious AUVs into a unified entity using a distributed control approach. During the execution of search
tasks, each AUV can make action decisions based on sonar detection information and information
exchange among AUVs in the system, utilizing the MARL-based search strategy. As a result, AUVs
possess enhanced autonomy in decision-making, enabling them to better handle challenges such as
limited detection capabilities and insufficient observational information.

Keywords: cooperative area search; multi-agent reinforcement learning; multi-AUVs

1. Introduction

In areas such as maritime search and rescue, intelligence reconnaissance, submarine
resource exploration, and marine observation, AUVs [1] have demonstrated significant
advantages with their autonomy and excellent endurance. However, as we continue to
explore and develop the ocean, the area where AUVs perform search missions is also ex-
panding, and the environment they face is becoming increasingly complex. A single AUV
with limited endurance and detection capabilities is unable to cope. Therefore, when fac-
ing complex tasks, we generally consider multiple AUVs to collaboratively work [2]. The
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basic idea of multi-AUV cooperative control is to have multiple AUVs with relatively sim-
ple structures and functionalities work together as a team. This enhances the overall op-
erational range and detection capabilities of the multi-AUV system. Within the multi-
AUV system, each AUV can make behavioral decisions based on its own capabilities and
sensor data, collaborating with other AUVs to accomplish the final mission. Additionally,
AUVs operate in a marine environment with many unknowns and uncertainties. Moreo-
ver, underwater AUVs have limited sensing and communication capabilities, and these
challenging conditions during operations place high demands on the AUVs” autonomous
decision-making abilities. Therefore, researching methods for multi-AUV cooperative
control to enhance the intelligence, autonomy [3], and coordination among AUVs is es-
sential. This enables AUVs to have improved decision-making capabilities and work col-
laboratively with other AUVs to accomplish complex tasks. This technological direction is
becoming an inevitable trend in the development of multi-AUV cooperative underwater
search [4].

For regional search tasks, traditional methods often employ a comb-like scanning ap-
proach [5-7]. In this method, AUVs follow pre-planned trajectories for step-by-step scan-
ning. However, under this approach, AUVs lack autonomous decision-making capabili-
ties. In complex and unknown marine environments, AUVs relying solely on pre-planned
trajectories may struggle to handle unexpected situations such as encountering obstacles,
making it challenging to effectively complete search tasks. Furthermore, for military area
search and reconnaissance missions, traditional methods involve AUV search trajectories
that exhibit strong regularity. This lack of randomness can make it easier for enemy forces
to detect and potentially target our AUVs, which is not ideal for ensuring the stealth and
security of our operations. When dealing with large-scale regional search tasks, the tradi-
tional approach involves dividing the area into several subregions [8-10] and then assign-
ing these subregions to individual AUVs for scanning using a comb-like pattern. There-
fore, before initiating AUV searches, it is necessary to pre-plan the search area, which in-
cludes area partitioning, subregion allocation, and setting AUV comb-like scanning tra-
jectories. For different search areas, planning often needs to be adjusted, and irregular
search areas can pose challenges in terms of area division and AUV comb-like scanning.
Additionally, due to the difficulties associated with underwater communication [11], it is
challenging for AUVs to engage in frequent and high-bandwidth information exchange.
Traditional approaches often require access to information such as the positions of each
AUV and the completion status of subregion searches to facilitate real-time subregion al-
location. This places high demands on communication between AUVs. If AUV communi-
cation is not smooth, it can have adverse effects on the collaborative regional search tasks
of the AUV cluster [12,13]. Indeed, addressing challenges posed by weak communication
environments and limited local observability is crucial for improving the performance of
multi-AUV systems in cooperative regional search and exploring unknown marine envi-
ronments. Research in the field of multi-AUV cooperative search technology is currently
focused on several key areas:

1. Intelligent algorithms: Developing intelligent algorithms that enable AUVs to make
autonomous decisions in complex and uncertain underwater environments. These
algorithms should allow AUVs to adapt their search strategies dynamically based on
their own sensor data and available information;

2. Adaptive search strategies: Designing cooperative search strategies that can adapt to
different types of search areas. AUVs should be able to perform effective searches in
irregular or unpredictable environments without the need for extensive pre-plan-
ning;

3. Robustness: Enhancing the robustness of multi-AUV systems to ensure they can con-
tinue operating effectively even in the presence of individual AUV failures or com-
munication disruptions. Redundancy and fault-tolerant control mechanisms are im-
portant in this context;
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4. Collaboration of multi-AUVs in the weak communication environments: Developing
communication-efficient strategies that allow AUVs to collaborate effectively with
minimal information exchange. Decentralized decision-making and coordination
mechanisms can be beneficial in scenarios with limited bandwidth;

5. Exploration of unknown environments: Investigating methods for AUVs to explore
and map unknown or uncharted marine environments. This involves combining ex-
ploration and mapping capabilities with cooperative search strategies;

6. Optimization and planning: Researching optimization techniques and path planning
algorithms that help AUVs make informed decisions about their search trajectories,
considering factors such as energy efficiency, time constraints, and mission objec-
tives.

Overall, these research areas aim to advance the capabilities of multi-AUV systems
and enable them to perform efficient and adaptive cooperative search missions in chal-
lenging underwater environments. We focus on researching methods for multi-AUV co-
operative area search, starting from the perspectives of adaptive search strategies and col-
laboration under weak communication environments. Firstly, this paper establishes a
first-order kinematic and a sonar detection model for AUVs. Using Dec-POMDP, we
model the cooperative area search task. Secondly, we apply the multi-agent reinforcement
learning QMIX method [14] to solve the Dec-POMDP mentioned above. Building upon
prior work [15], we specifically design the QMIX method based on the maximum entropy
mechanism and conduct comparative analysis of the training results. Finally, we perform
simulation tests and conduct a preliminary exploration of reward function settings.

2. Background

Multi-AUYV cooperative regional search enables efficient coverage and detection tasks
in various areas, making it a hot topic of research in both academia and industry. Some
multi-AUV cooperative search systems have already found practical applications in engi-
neering projects. One such example is the research project called Generic Ocean Array
Technology System (GOATS) conducted by the Massachusetts Institute of Technology
(MIT). The GOATS project utilizes multiple AUVs equipped with underwater acoustic de-
vices to form a mobile underwater detection network for searching for underwater mines
in coastal waters [16-18]. Building on the GOATS project, a research team composed of
the National Underwater Research Center (NURC) and MIT initiated a project in 2008
known as the Generic Littoral Interoperable Networked Technology (GLINT). In the
GLINT project, a multi-AUV system is equipped with various sensors to autonomously
detect, locate, and track specific targets [19]. In Europe, from 2012 to 2015, various research
institutions from Italy, Estonia, the United Kingdom, Spain, and Turkey collaborated on a
research project called Autonomous Robotic Systems for Oceanographic and Water-Ar-
chaeological Surveys (ARROWS) [20]. The project aimed to enhance underwater scanning
efficiency using multi-AUV systems and conducted research on task allocation strategies
[21] and underwater communication [22].

In the academic field, there have been many successful research efforts related to
multi-AUYV collaborative area search. Li et al. [23] proposed a distributed dynamic predic-
tive control (DDPC) algorithm based on predictive control principles. This algorithm pre-
dicts the states of a multi-AUV system to obtain information about the task environment
and updates the AUV states as inputs for online task optimization decisions, allowing
them to determine the next moment’s search area. Wang et al. [24] presented research on
a multi-agent target search method for AUVs. This algorithm is based on multi-agent deep
deterministic policy gradient (MADDPG) and incorporates temporal and spatial infor-
mation into the reinforcement learning process. It also introduces specific rewards tailored
for maritime target search scenarios. However, it does not consider the impact of sonar
detection effectiveness, leading to a lack of target guidance information during the search
process and subsequently affecting the efficiency of target search by AUVs. Liu et al. [25]
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defined the target search problem as a well-known Traveling Salesman Problem (TSP)
with defined start and end points. They considered two competitive and non-communi-
cable optimization objectives for underwater vehicles: total navigation distance and turn-
ing angles. The study also introduced mobility constraints for AUVs and utilized an im-
proved ant colony algorithm for solving the problem. However, this research treated the
search area as a known region and did not account for scenarios involving unknown
search areas. Cai et al. [26] focused on the maritime search and rescue mission of multi-
AUV systems and studied the multi-robot coverage path planning (MCPP) problem. They
introduced a new MCPP approach, which involved transforming the MCPP problem into
two sub-problems: area partition and single AUV coverage path planning, solving each
individually. Although this approach considered the guidance role of prior target infor-
mation, it simply divided the search area and planned coverage paths for individual
AUVs. It did not account for the collaboration between AUVs. Hu et al. [27] addressed the
obstacle avoidance issue encountered by underwater vehicle formations during collabo-
rative search and target capture. They introduced an energy-optimal formation obstacle
avoidance strategy and an improved self-organizing map (SOM) path planning algorithm.
However, this approach relied on forming a fleet of AUVs for search, which required fre-
quent communication between the AUVs and placed relatively high demands on under-
water communication capabilities. Bai et al. [28] introduced a biologically-inspired two-
layer self-organizing map algorithm for dynamic task planning involving multiple auton-
omous underwater vehicles. This algorithm is developed for searching multiple targets in
a 3D underwater environment affected by random ocean currents and dynamic uncertain
obstacles. It focuses on addressing the decoupling of task assignment and path planning
in initial task planning while considering energy consumption constraints. Li et al. [29]
proposed a combined approach for autonomous underwater vehicles and unmanned sur-
face vehicles (USVs) in target search tasks in unknown marine environments with no prior
information. This approach involves a local dynamic predictive control framework com-
bined with the Lévy flight (LDPC-Lévy). The LDPC-Lévy method involves assigning sub-
regions for AUVs to search and planning suitable positions for USVs, ensuring reasonable
communication distances while exploring the environment and searching for targets.

3. Method Review

Currently, multi-AUV cooperative area search technology is still in the development
stage. Many of the methods in this field draw inspiration from the more mature field of
unmanned aerial vehicle (UAV) swarm search [30-32]. These methods can be categorized
based on their search approach into formation-based search [5-7], partition allocation-
based search [8-10], and swarm intelligence-based autonomous search [33-35].

Formation-based search involves coordinating multiple AUVs to form a configura-
tion that maximizes the search area, and then conducting a step-by-step search in this
formation [36-38]. This approach draws inspiration from the single AUV comb-like search
method but considers multiple AUVs as a unified formation [39] to plan the search cover-
age path for the entire formation. Formation-based search is simple and practical, allow-
ing for comprehensive coverage without blind spots. However, it can face challenges in
complex marine environments with factors like weak communication. Maintaining for-
mation in such conditions can be difficult. Additionally, due to the constraints of the for-
mation, AUVs may struggle to handle unexpected situations such as obstacle avoidance.
As a result, the overall autonomy of AUV formations may be limited, and the level of
coordination between individual AUVs may not be very strong. Hu et al. [27] address the
energy consumption challenges encountered by AUV formations during collaborative
search processes. They propose an energy cost-optimal formation search strategy and an
improved self-organizing map path planning algorithm. Furthermore, they introduce a
Formation Comprehensive Cost (FCC) model, which considers convergence time, trans-
formation distance, and sensor network power consumption, to facilitate obstacle avoid-
ance within the formation. Healey et al. [7] designed a multi-underwater robots system to
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address shallow water mine clearance issues. In this system, a supervisor robot located
outside the minefield centrally controls all swimmer robots, ensuring a high mine clear-
ance rate. However, the most significant drawback of this system is that if the supervising
robot is damaged or disabled, all other robots will be left in an uncontrolled state, which
can be a critical limitation in terms of system reliability and robustness.

Partition allocation-based search methods involve dividing the search area into sev-
eral subregions initially and then dynamically allocating these subregions to individual
AUVs using allocation algorithms. Once an AUV receives information about its allocated
subregion, it proceeds to that subregion to perform coverage and search tasks. This ap-
proach allows for a more organized and efficient distribution of search efforts among mul-
tiple AUVs. Partition allocation-based search methods offer several advantages. They di-
vide a large, irregularly shaped search area into multiple smaller, relatively regular sub-
regions, simplifying the complexity of the search task. Additionally, AUVs can dynami-
cally allocate subregions through information exchange, which enhances both the auton-
omy of individual AUVs and the overall coordination of the multi-AUV system. However,
it is important to note that this approach also increases the computational load on the
AUV system and places higher demands on communication between AUVs due to the
need for real-time dynamic allocation of subregions. Welling et al. [8] utilized a multi-
AUV system for collaborative search and target clearance tasks. They discussed task allo-
cation problems and compared two allocation strategies based on the nearest distance and
fuzzy logic in terms of time efficiency. Hoai An Le et al. [10] researched a hierarchical
search planning model that divides the search area into multiple subspaces and then per-
forms a second-level search planning within these subspaces. This two-stage search plan-
ning approach enhances the overall efficiency and precision of the search process.

Swarm intelligence-based autonomous search methods draw inspiration from the
foraging behavior of biological groups like ants [40], wolf packs [41], etc. In these methods,
each AUV makes its current best decision based on observable spatial information.
Through iterative steps, the AUVs work collectively to ultimately achieve complete area
search coverage. This approach leverages the power of decentralized decision-making and
cooperation, similar to how natural swarms of animals collaborate to achieve complex
tasks. Indeed, in recent years, the rise of artificial intelligence (Al) algorithms based on
machine learning has opened up new research directions for multi-agent cooperative re-
gional search methods. These Al algorithms can enhance the decision-making, adaptabil-
ity, and coordination of multi-agent systems, making them more effective in complex and
dynamic environments. Researchers are increasingly exploring the integration of machine
learning techniques into multi-agent systems to improve their performance and auton-
omy in tasks such as regional search. The multi-agent cooperative search strategies de-
rived through swarm intelligence and machine learning methods offer several ad-
vantages. They not only enhance the autonomous decision-making capabilities of AUVs
in complex marine environments but also improve the coordination between AUVs. These
strategies exhibit good adaptability to different environments, making them versatile and
effective tools for a wide range of scenarios. The combination of swarm intelligence and
machine learning contributes to more efficient and adaptive multi-agent systems for tasks
like cooperative search and exploration. Cao et al.’s work [34] focuses on target search and
tracking in unknown underwater environments. They propose an integrated algorithm
for a multi-autonomous underwater vehicle collaborative team. This algorithm combines
Glasius bio-inspired neural network (GBNN) and bio-inspired cascaded tracking control
methods. The aim is to enhance search efficiency and reduce tracking errors. GBNN plays
a central role in controlling the multi-AUV team’s search for each target in this context.
Liu et al.’s work [35] involves the establishment of a distributed multi-AUV cooperative
search system (DMACSS) and introduces the autonomous cooperative search learning al-
gorithm (ACSLA) integrated into DMACSS. It incorporates information fusion mecha-
nisms and timestamp mechanisms, enabling each AUV in the system to exchange and fuse



J. Mar. Sci. Eng. 2024, 12, 1194 6 of 30

information during tasks. ACSLA is a customized learning algorithm trained using rein-
forcement learning methods.

In summary, the advantages and disadvantages of various search forms are shown
in Table 1.

Table 1. Advantages and disadvantages of different search forms.

Collaborative Search Form Advantages Disadvantages

During th h he au-
1.  Low method complexity, simple, uring the search process, the au

and feasible tonomy is low

2. Collaboration among AUVs is not

Formation-based search 2. High area coverage rate
3 Suitable for large-scale, no-blind- strong
) 8 ’ 3. Challenging to deal with complex
zone searches .
environments
1.  Simplifying the search difficulty 1.  Strong dependence on communi-
. . in complex areas cation
Part 1 h
artitioned allocation searc 2. Good autonomy and inter-group 2.  There may be delays if the com-
coordination of AUVs putational load is high
1.  High autonomy in AUV decision-
making
Swarm intelligent autonomous search 2. . Strong adaptability to different 1.. Prone to getting stuck in local op-
environments tima
3. Weak dependence on communi-
cation

To address the challenges of limited detection capability and insufficient observa-
tional information of AUVs during area search tasks, we have developed a multi-AUV
cooperative area search system (MACASS). From the perspective of enhancing AUVs’ au-
tonomous decision-making capabilities, we integrated well-trained search strategies
based on MARL into the action decision modules of each AUV within the system. The
main contributions of this article are as follows:

1. Dec-POMDP environmental modeling for search tasks: In this paper, the search task
is modeled as a Dec-POMDP, and relevant global states, state transition functions,
and reward functions are designed. Additionally, in underwater environments
where AUVs have limited sensing capabilities and cannot access global environmen-
tal state information, the paper uses sonar-based detection information as the obser-
vations available to AUVs. Furthermore, considering the challenges of underwater
communication, the multi-AUV system employs a distributed control approach to
minimize communication requirements;

2. Cooperative area search algorithm based on MARL: We adopt the QMIX [14] algo-
rithm to train the search strategy for the aforementioned Dec-POMDDP and then based
on the design approach using the maximum entropy mechanism for QMIX proposed
by Guo et al. [15], we specifically design the QMIX algorithm for the conditions of
multi-AUV cooperative area search tasks. Since the multi-agent reinforcement learn-
ing algorithm based on the maximum entropy mechanism draws inspiration from
the soft actor-critic (SAC) algorithm [42], this approach is referred to as SAC-QMIX;

3. Multi-AUV cooperative area search system: After modeling the multi-AUV coopera-
tive area search task as a Dec-POMDP and training search strategy, the well-trained
search strategies are integrated into the decision-making models of each AUV. Sub-
sequently, using a distributed control approach, these AUVs form the multi-AUV co-
operative area search system. During the execution of the search task, each AUV
within MACASS updates the search information map in real time based on sonar
detection information and information exchange among AUVs in the system. They
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make action decisions by the search strategies integrated into the AUVs, ultimately
cooperating with each other to complete the search task.

4. Dec-POMDP Modeling

This section begins by establishing the AUV kinematic and sonar detection model.
Subsequently, it models the search task as a Dec-POMDP. It specifies AUV observations
based on sonar detection information and the search information map. Additionally, it
takes into account the AUV’s kinematic characteristics to design corresponding actions
and reward functions. This modeling approach helps create a framework for decision-
making and coordination in multi-AUV cooperative search missions, considering both
sensory data and the environmental context. The significance and explanations of the
symbols and abbreviations used in modeling the cooperative area search task are summa-
rized in the Appendix.

4.1. AUV Kinematic Model

In order to provide a detailed description of the AUV’s motion, this paper establishes
an inertial coordinate system E-£nC and a body-fixed coordinate system G-XYZ, as shown
in Figure 1a. The origin of the inertial coordinate system E is located at a certain point on
the water surface. The E¢ axis points north, the En axis points east, and the EC axis points
downward. Due to the relatively low cruising speed of the AUVs performing the search
tasks in this paper, the effects of the Earth’s rotation can be ignored. Therefore, the coor-
dinate system E-&nC is considered an inertial coordinate system. The body-fixed coordi-
nate system, denoted as G-XYZ, is rigidly attached to the AUV itself. In this coordinate
system, the origin G is located at the center of gravity of the AUV, the GX axis points along
the AUV’s longitudinal axis (forward), the GY axis is perpendicular to the GX axis and
points starboard (to the right), and the GZ axis is perpendicular to both the GX and GY
axes and points downward.

E *0 ¢ R
r\‘ R L
plroll) Y 7 Ra\ /
[ L (5/ |
yyg |~ |
RN A
_?%\/ T |
)¢ I I~ [T
AN L Zah
r(heave) i |
T ] T |
i ! \Rd
g z P 4
C:—v y
(a) (b)

Figure 1. (a) AUV coordination. (b) AUV projection on the horizontal plane.

When multiple AUVs are conducting a search in a region of size L xL xL_, the

search area is divided along the EC axis into multiple subregions S,,ie {1, 2,1 } where

I=L /5, and §, represents the maximum sonar vertical detection distance. Multiple

AUVs search the various subregions sequentially. When each AUV completes the search

of a subregion s, they immediately descend and move on to the next subregion Si 1
for further search. This process continues until the entire region has been completely
searched. When multiple AUVs are searching subregion s, the variation in depth dur-
ing AUV navigation is relatively small, and the AUVs can be considered to be operating
at a fixed depth. Therefore, the problem of multiple AUVs searching subregion s . can
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be transformed into a two-dimensional search problem on a plane s of size L xL,, as

shown in Figure 1b. Additionally, it is assumed that the depth at which the target is lo-
cated is the same as the depth of the AUVs performing the search task. In a two-dimen-
sional plane, the motion of AUVs can be simplified to three degrees of freedom: heave,
sway, and yaw. The kinematic equations for their motion are provided in the equation
below, with further details available in reference [43].

X cos¢p —sing Of|lu
y |=|sing cos¢p Offv D)
v 0 0 1|

4.2. Sonar Detection Model

When AUVs are performing search tasks, their primary detection equipment is sonar.
The detection probability of the sonar depends on the detection distance and the acoustic
conditions of the operating environment. In this paper, only the detection distance be-
tween the sonar and the target is considered as the primary factor affecting sonar detection
probability; the simplified sonar detection probability model [44] is represented by the
following Equation (2):

P, =

d

P, -exp(—Di],O <d< D,

S

@)
P

E7

d>D,

In the equation, P: represents the sonar detection probability, Po stands for the so-
nar’s detection precision, Pr represents the sonar’s false alarm probability, d represents the
detection distance, and D:s is the maximum detection distance of the sonar.

4.3. Search Information Map Model

From the previous information, it is evident that the problem of multiple AUVs
searching subregion §. canbe transformed into a two-dimensional search problem in a

plane s . Therefore, we discretize the two-dimensional plane s which has dimensions

L,xL, into an N xN, grid map. Each grid region is denoted as grid(m, n), where
€ {1,2,---,Nx},n € {1,2,--- ,Ny} . When AUVs are performing search tasks, they update

the gridded search information map using sonar detection information and information
exchanged among AUVs. The search information map established in this paper consists
of three main components:

1. Coverage map: This map indicates which areas have been covered or searched by the
AUVs. Initially, at the start of the search task, all grid regions have a value of 0;

2. Uncertainty map: The uncertainty map represents the level of uncertainty associated
with each grid region. Initial values are typically set to the max value;

3. Target presence probability map: This map estimates the probability of the presence
of targets in each grid region. It provides information about how confident or uncer-
tain the AUVs are about the presence of targets in each region. Initially, the probabil-
ity of target existence in the grid region follows a uniform distribution, indicating no
prior knowledge of target presence.

As the AUVs continue their search and gather more information through sonar de-
tections and interactions with each other, these maps are updated in real time. The values
in these maps evolve to reflect the changing understanding of the search environment,
and AUVs use this information to make new decisions during the search process.

4.3.1. Coverage Map
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At the beginning of the search task, the presence probability of targets within the
sonar detection range of each AUV is generally low. Moreover, due to a lack of prior in-
formation about targets, the efficiency of AUV search efforts is often low. In order to en-
courage AUVs to explore unknown areas and accelerate the convergence speed of strategy
learning, a coverage map is established. The coverage map is used to distinguish between
grid regions that AUVs have explored and those that have never been explored. When an
AUV proceeds to search a previously unexplored grid region grid(m, n), the coverage
value ¢ = changes from 0 to 1, and it remains unchanged afterward. The update method

for the coverage map is described by the following Equation (3):

®)

mn

{l,ifgrid(m,n)e FOV

0,else

4.3.2. Uncertainty Map

The uncertainty map is used to represent the uncertainty level within the search area.
As the AUVs continue their search, the uncertainty about the environment gradually de-
creases. This map provides a measure of how much time AUVs have not detected those
areas that have already been explored. Unlike the coverage map, the uncertainty map op-
erates differently. When an AUV proceeds to search a grid region grid(m, n), the uncer-
tainty value k= for that grid region is set to its minimum value 0. As the AUV leaves that

grid region, the uncertainty value i, slowly increases over time. The specific update for-

mula is described as shown in Equation (4). The uncertainty map primarily serves the
purpose of encouraging AUVs to re-search areas that have not been searched for a long
time. It does so by gradually reducing the uncertainty values in regions that have been
previously explored, thereby prioritizing unexplored or less recently explored areas for
further investigation by the AUVs. This strategy helps ensure comprehensive coverage
and exploration of the search area. The coverage map and the uncertainty map together
assist AUVs in addressing the issue of low search efficiency during the early stages of the
search when there is a lack of target information. These maps help AUVs identify areas
that have already been explored (coverage map) and areas where uncertainty remains
high (uncertainty map). This information guides AUVs to focus their efforts on unex-
plored or uncertain regions, improving their search efficiency and increasing the likeli-
hood of finding targets.

0, grid(m,n)e FOV(t)

k, (t+1)= k ()+ }/T ,grid(m,n)e FOV(t)

(4)

In the equation, k represents the uncertainty value of the grid region grid(m, n),

mn

and FOV(t) represents the effective sonar detection range of each AUV at time .

4.3.3. Target Presence Probability Map

The target presence probability map is used to represent the probability of the pres-
ence of a target at different locations within the search area. It helps AUVs navigate toward
potential targets more efficiently. Initially, when there is no prior information about the
target’s location, the probability of the target’s presence is typically assumed to be equally
distributed across the entire search area. As AUVs gather information and make detec-
tions, this map is updated to reflect changes in the likelihood of a target being present in
various parts of the search area. This enables AUVs to focus their search efforts on regions
with a higher probability of finding a target. The target presence probability is derived
using the sonar detection model and the Bayesian formula. Each AUV initially calculates
the target presence probability for grid regions within its sonar detection range based on
the sonar detection results, as described by the formula. Subsequently, AUVs update their
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target presence probabilities through information exchange between them. Then, the tar-
get presence probabilities for grid regions across the entire search area are normalized to
create the final target presence probability map. The target presence probability at the
detection location is described by the following equation, with detailed derivations avail-
able in reference [45]:

(1-P, B P (t)

> eror =Py PR+ Y, A=PE(D)’

(1-B")P(t)
reron 1=y BORO+ X0, A= BRG]
(P, -P"")P(t)

> cron Bo BEPB+ Yo, (BR(D
(P")P,(t)

> oy Py BEORB+Y, o, (BB

ifie FOV,,0(t)=1

ifjg FOV,,0O(t)=1
P(t+1)=

©)

ifje FOV,,0(t) =0

ifje FOV,,0(t)=0

In this formula, Pj(f + 1) represents the target presence probability in grid region j at
time t + 1, Pj(f) and Px(t) represent the target presence probabilities in grid regions j and k
at time ¢, Ppi represents the sonar detection probability for AUV, Pri represents the false
alarm probability for AUV/s sonar, M: represents the number of grid regions within
AUV/s field of view, FOVi represents the effective sonar detection range of AUV;, O(t) is
a binary variable where O(t) = 1 represents AUV discovering a target, and O(t) = 0 repre-
sents AUVinot discovering a target at time ¢.

4.4. Global State and Observation Space

In this section, based on the previously established search information map, we will
define the global state (S) and the observations (O) for the AUV. The global state repre-
sents the complete description of the environment and the AUV’s internal state. It includes
information about the positions and states of all AUVs, the current state of the search in-
formation map (including coverage information, target presence information, and uncer-
tainty information), the positions of any detected or suspected targets, and any other rel-
evant variables that characterize the system at a given time. The global state S plays a
significant role during the training phase of multi-agent reinforcement learning. It guides
the AUVs to learn effective search strategies in situations where only local environmental
information is observable. However, due to the large number of grid regions resulting
from the discretization of search area S;, the dimensionality of the global state S can be-
come excessively high, leading to the “curse of dimensionality”. To address this issue, the
approach is to merge the grid regions of search area Si into subregions, where multiple
grid regions g are merged into a single subregion G. We refer to the grid region g as the
secondary subregion and the region G as the primary subregion This merging process is
illustrated in Figure 2a.

Based on the merged grid regions in the search information map, we design the
global state S as a four-tuple:

S=(CKP]I) ©6)

In this formula, C= (cl, CyronesCy, ) represents the coverage information of each sub-
region G, K= (kl,kz,. ky ) represents the uncertainty information of each subregion G,

p =(p1,p2,. Py, ) represents the target existence probability information of each subre-

gion G, M represents the total number of subregions G, ¢, k,,p,e R represents the cov-

erage, uncertainty, and target existence probability information of subregion Gi, which
includes the average values of coverage, uncertainty, and target existence probability.
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I= (111,112,. o ’IN) represents the position and orientation of AUVs, N represents the total
number of AUVs. 1), =(xi,y,.,l//i),xi,y,- €R represents position coordinates of the i-th

AUV along the £ and 7 axes in the inertial coordinate system E-&£nC. l//,EI:—ff,ﬂ'] repre-
sents the heading angle of the i-th AUV.

E I | s
84 | & < G
Gl (J"_) 03 (14 G; e
& | & "\{s
E )
G &7 Gy G0 | | \@ V
| .
|
G G (G (G G
T V4 T3 T 915

16 Gr7 GG G

Goy Gy Gy |Gy Gas HEERER [ }

(a) (b)

Figure 2. (a) Grid region division. (b) Sonar detection range.

The AUV’s sonar detection range is assumed to be the grid regions within a maxi-
mum sonar detection distance of Ds, and the number of grid regions within this range is
assumed tobe N,  .The AUV'ssonar detection range is illustrated in Figure 2b. We com-

bine the detection information obtained by AUV through sonar and the communication
information among AUVs to form the AUV’s observation (O). The observation for the i-th

AUV, denoted as O, = (Cl-,K,-,Pi,ﬂ,-,H,- ) , includes the coverage value, uncertainty value,

and target existence probability within the maximum sonar detection range of AUV.. The
variables relating to the relative positions and orientations of AUVs are also included in

the observation, H, = ()/1-,1,)/1-,2,. . -,)/,-,N,l) represents the relative spatial relationships be-

tween AUVi and the other AUVs, y, . = (l//i'j,di,],) represents the relative spatial relation-

ship between AUV: and AUV;, ¥, € [—ﬂ', ﬂ'] represents the relative orientation angle be-
tween AUViand AUV, and d, R represents the distance between AUViand AUV;.

The calculation formula for l/{] is as follows:

v, —ﬁ—arctan[yj yi], X <X.,Y; 2V,
X, =X
_ Y=Y
Y., = ¥ t7-arctan T | X, <X,y <Yy, 7)
j i
Y~V
Y, —arctan , X > X,
X~ X,

The calculation formula for d,] is as follows:
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d, =l +(u -y ®

4.5. Action Space Design

In the search process of multiple AUVs in the 2D plane s, we do not consider factors
such as ocean currents. We assume that the AUVs travel at a constant speed, meaning that
the AUV’s longitudinal velocity u remains constant and is not affected by any lateral in-
terference. In other words, the AUV’s lateral velocity v is set to 0. Therefore, the action set

a for AUVs executing the search task in this paper can be defined as {Al//t} . It represents

the change in the heading angle of AUVs at time f. Therefore, we define the action space
of AUVs at time ¢ as follows:

A=(a,a},...,a" )e RN )

In Equation (9), érepresents the action decided by the i-th AUV at time ¢, and N rep-

resents the number of AUVs. Taking into account the constraints imposed by the kinematic
characteristics of AUVs, we impose the following restrictions on the action set a:

~90° < Ay, <90°
(10)

a; e {-90°,-45°,0°,45°,90°}

In Equation (10), positive angle values indicate that the AUV is turning counterclock-
wise, negative angle values indicate that the AUV is turning clockwise, and an angle value
of 0 indicates that the AUV is maintaining its current heading angle.

According to the AUV’s two-dimensional kinematic equation in the inertial coordi-
nate system E-&nC, the AUV's position can be updated using the following equation:

|:xt+1:|:|:xt:|+|:C?SWt _Sln'//::||:ut:|dt (11)
yl+l yl sin l//[ COSI//[ Ut

In Equation (11), x+1 and y=1 represent the position coordinates of the AUV along the
¢ and 1 axes in the inertial coordinate system at time t + 1. y, represents the heading
angle of the AUV at time £, ur and v: represent the longitudinal velocity and lateral velocity

of the AUV at time ¢, and dt represents the time interval.

At time t + 1, the heading angle ¥/ can be updated using the following equation:

Via =Y +AY, (12)

In Equation (12), y, represents the heading angle of AUV at time t + 1, and Ay,

represents the change in heading angle at time .

4.6. Design of Reward Functions

The individual reward for an AUV in the multi-AUV cooperative area search prob-
lem can indeed be divided into multiple components to encourage specific behaviors. It is
a common practice in reinforcement learning to create composite rewards that consider
different aspects of the agent’s behavior. Based on the search information map, we have
identified four components for individual reward: coverage reward (r), uncertainty re-
ward (rv), target discovery reward (r:), and collaboration reward (r«). Therefore, the indi-
vidual reward (r) for an AUV can be expressed as follows:

r=or+fr A (13)
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In Equation (13), &,/3,7,A€ R represent the weight coefficients for each part of the
reward.

4.6.1. Coverage Reward

When an AUV goes to a grid area grid(m, n) that has never been searched before, i.e.,
the coverage value cun of grid area grid(m, n) is 0, the AUV receives a coverage reward re,
and the coverage value cn: of that grid area grid(m, n) changes from 0 to 1, indicating that
it has been searched by the AUV, and its coverage value ¢ will not change thereafter. The
specific update formula for coverage reward is as follows:

B {1,if grid(m,n) is searched

0,else (14)

If the coverage value of the grid area that the AUV goes to is 0, then the AUV receives
a coverage reward. If the coverage value is already 1, the AUV does not receive any cov-
erage reward.

4.6.2. Uncertainty Reward

For AUVs that have already searched a grid area grid(m, n), even though its coverage
value ¢ no longer changes, its uncertainty value kwn continues to increase over time.
Therefore, when an AUV goes to a grid area grid(m, n) that has already been searched, it
can still receive uncertainty rewards r« related to its uncertainty value ku». The expression
for uncertainty rewards is as follows:

K 1k <k
kmax

rk B k”’l” > K (15)
k 4 mn

In Equation (15), K is the tuning coefficient. When the uncertainty value km: of the
grid area grid(m, n) that the AUV is going to is greater than K, rx is a positive reward.
However, when km: is less than K, r« is a negative reward.

4.6.3. Target Discovery Reward

The target discovery reward (r:) is designed based on the probability of target exist-
ence in the grid cells within the AUV’s sonar detection range. The probability of target
existence represents the degree to which an AUV is inclined toward the presence of a tar-
get. If the grid cells within the AUV’s sonar detection range have a higher probability of
target existence, it implies that the AUV is closer to the target, and there is a greater like-
lihood of discovering the target in those areas. Essentially, the AUV is more likely to find
the target in regions with a higher probability of target presence. Therefore, based on the
probability of target presence in the grid cells within the AUV’s sonar detection range, we
have designed the target discovery reward (r:), and its specific expression is as follows:

rid(m,n)e p""’
rfzzg d(m,n)e FOV (16)
NFOV

In Equation (16), FOV represents the grid cells within the AUV’s sonar detection
range, and Nrov represents the number of grid cells within the AUV’s sonar detection
range.

4.6.4. Collaborative Reward

In the process of multi-AUV searching within partitioned area S;, the collaborative
reward is designed to encourage individual AUVs to perform distributed area searches.
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This aims to maximize the coverage of the multi-AUV system’s search area while avoiding
the problem of AUVs clustering too closely and causing overlap in their sonar detection
ranges. However, it is important to maintain a minimum distance between AUVs to en-
sure effective communication for sharing search information and updating the search in-
formation map. The specific formula for the collaborative reward may take into account
factors related to AUV dispersion and the maintenance of communication within a certain
range. The reward formula should encourage AUVs to strike a balance between spreading
out to cover more area and staying close enough for efficient information sharing. There-
fore, we design the collaboration reward (ra), and its specific expression is as follows:

-R, d <D,
d—-D
=<k|——=|,D.<d. <D
r[l (D( _DSJ s 1 c (17)
0, D <d,

In Equation (17), di represents the average distance between the i-th AUV and the
other AUVs, Ds represents the maximum detection distance of the sonar, and D. represents
the communication distance between AUVs. When the average distance di between AUV:
and the other AUVs is less than Ds, the AUVs are too close together, resulting in a signifi-
cant overlap in their sonar detection ranges and a higher risk of collisions. This situation
is unfavorable for the collaborative search of multiple AUVs, and AUVireceives a negative
reward. When di is between Ds and D, the distance between AUV: and the other AUVs is
appropriate, and AUV: receives a positive reward that is positively correlated with di.
When di exceeds D., the average distance between AUVi and the other AUVs exceeds the
communication distance, which hinders information sharing in the multi-AUV system.
Therefore, AUV does not receive any reward.

5. Algorithm Design

The QMIX algorithm [14] is a value-based algorithm in multi-agent reinforcement
learning. Its core idea is to use a mixing neural network to combine the action-values

Qr (Ti,lli ),i € {1,2,...,N } of individual agents in a complex nonlinear manner to synthe-
size the joint action-value Q, (s, a). This is used to estimate the action-value of joint ac-
tions a= (111,{12,. oy ) e R in a multi-agent system. Indeed, it is worth noting that in the

action-values QF (71' /4, ) of individual agents, the history of observed actions 7, isbased
on local observations o, . This means that the action-values of each agent take into account

the historical actions. Additionally, the joint action-value Q,,(s,a) is monotonically in-

creasing with respect to the action-values Q (Ti,ai) of individual agents, satisfying
Equation (18). This constraint ensures consistency between the centralized strategy

Q,.(s,a) and the individual agent strategies Q (Ti’ui ) .

a 7
W (s2) >0,Va, (18)

Q" (7,2,

The QMIX algorithm based on the maximum entropy mechanism [15] builds upon
the QMIX algorithm and incorporates ideas from the soft actor-critic algorithm, which is
based on maximum entropy reinforcement learning. First, each agent adopts an actor-
critic network framework, enhancing the existing network structure by introducing a pol-
icy network 7z, . Secondly, during the training process, a maximum entropy mechanism

is introduced. Each agent not only aims to maximize the expected return but also seeks to
maximize entropy. This mechanism makes the learning search strategies of agents more
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stochastic, encouraging agents to explore the environment more extensively and prevent-
ing the search strategy from converging prematurely.

5.1. Algorithm’s Computation Process

After incorporating the maximum entropy mechanism, the expected return for each
agent during the training process is no longer solely determined by the rewards provided
by the environment. Instead, it is composed of both the rewards from the environment
and the entropy associated with the actions taken by each agent. Therefore, the expected
return in reinforcement learning is formulated as follows:

N
R(s,a,)+Y aH, (;z(~ | rl.,t)) (19)
i=1
In Equation (19), s, represents the global state of the environment at time ft,
a = (allt sy renes aN,,) denotes the joint action taken by multiple agents at time f, R(st ,at)
represents the joint reward received by multiple agents, and ¢, is the entropy regulari-

zation coefficient. H, (7[( Iz, )) represents the entropy of the action 4,, taken by agent i

at time t. The formula for calculating the entropy Hi for agent i at time ¢ is as follows:
H(x(a, 1z,)) =Y, 7 (a7, Jlog(7 (a7, ) (20)

The training objective is to learn the optimal policy 7~ that maximizes the expected

return. In other words, the optimal policy 7~ satisfies the following equation:
oo N
n" =argmaxBE_ . {Z 7 (R (s,a)+> eH, (17, ))ﬂ (21)
b4 t=0 i=1

The joint action-value function Q, (s,a) for multiple agents can be calculated

through a mixing neural network using the following expression:
Quui (S'“) =F (ql (Tl’al )'qz (Tz'az)""'qN (TN’aN )) (22)

In Equation (22), ¢, (Ti /4. ) represents the action-value function for the i-th agent, and
the F . function represents the mixing neural network.

The individual state-value function v,(7,) for an agent can be obtained by taking
the expectation of the action-value function g, (ri,u,,) with respect to actiona,, and the

calculation formula is as follows:
v(z)=E,_[4(7.a)] (23)

The overall state-value function V,, (s) for multiple agents can be obtained by tak-

ing the expected value of the joint action-value function Q,,(s,a) with respect to the joint

tot

action a. The calculation formula is expressed as follows:

Vtot (S) = Ea~/tQt0t (S,a)
= Eu~l[ |:Fmix (ql (Tl’ul )/qz (72/[12 )""’qN (TN’aN )):I

Due to the complexity of taking the expected value of the joint action-value function

(24)

Q,, (s,a) with respect to the joint action a, to reduce computational complexity, Equation

(24) can be approximated as follows:
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Vit (S) =E,_, I:Fmix (ql (71'{11 )/qz (TZ/az )""’qN (TN’aN )):|
= F,; |:Eal~7rq1 (Tl’al )’Ea2~7rq2 (2'2,Ll2),..., EaN N (TN’HN ):| (25)
= Fmix |:Ul (Tl)’vz (TZ )""’UN (TN ):|

After incorporating the maximum entropy mechanism, the overall state-value V (s)
based on the maximum entropy mechanism can be expressed as a function of the individ-

ual state-values v, (7,) of agents and the entropy H, (ﬂ'(a,, Iz, )) . The specific formula is as

follows:
V*(s)=V,,(s) +ZalHi (75( Iz, ))
B B 05 (5 ) o 5 )+ S (17, )

i=1

(26)

N
= Fmix |:En1~/zq1 (Tl’ﬂl )’Ea2~7zq2 (TZ’QZ)""’ EuN~7qu (TN’aN ):|+ leaiHi (7[( | Ti,f ))

“F, [vl(q),vz(rz),...,vN(TN)]éa,.Hi(;z(.um))

The Bellman equation for the action-value function Q" (s, u) regularized by entropy

can be expressed as follows:

~R(sa)e Vi (5) Bt (1) @)
=R(s,a)+7/V”(s')

Based on Equation (27), we can compute the target Q-values. Therefore, the loss func-
tion for the critic network can be represented as follows:

Ly=E, . p|Qu(sa)-(R(s,a)+ 7V (s))] (28)

In Equation (28), Q,, (s,a) represents the joint action-value function for multiple
agents. It can be computed from individual action-value functions ¢,(7,,4,) of each agent
using the mixing neural network as defined in Equation (22). R(s,u) denotes the joint

reward obtained from the environment. V (s') represents the target state-value function,

which can be calculated based on the individual target state-value functions of each agent
and the entropies of the agents, as defined in Equation (26).
The training objective of the actor network is to maximize the overall state-value

1’4 (s) . Therefore, the loss function of the actor network can be represented as follows:

L,=-E V™ (s) (29)

s~D,a~m

The above can be summarized, and the algorithm’s computational flowchart is illus-
trated in the following Figure 3. The significance and explanations of symbols and abbre-
viations used in the design process of the algorithm are summarized in the Appendix.
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Figure 3. The computational flowchart.

5.2. Algorithm Framework Design

The SAC-QMIX algorithm consists of networks for multiple agents and a mixing neu-

ral network. The specific network architecture is designed as shown in the Figure 4. The
design involves the following components:

1.

Individual agent networks: Each agent has its own actor-critic neural network archi-
tecture. This network takes local observations as input and outputs action probabili-
ties (actor) and action-value estimates (critic);

Mixing neural network (QMIX): The mixing neural network takes the individual
agents’ action-values and combines them in a complex, non-linear manner to esti-
mate the joint action-values for the multi-agent system;

Maximum entropy mechanism: During training, a maximum entropy mechanism is
incorporated into the agent networks, which encourages exploration and introduces
randomness into the policies. This mechanism helps agents to learn more robust and
diverse strategies;

According to the diagram in Figure 4, the agent’s network includes both a policy

network 7, and avalue network Q,.The mixing neural network consists of a hypernet-

work and a feedforward neural network. The hypernetwork generates the weights w1, w2
and biases b, bz for the feedforward network based on the global state (s). The feedforward
network combines the action-values Q  of each agent to produce the joint action-value

Q,, - It is important to note that the weights w1, w2 of the feedforward network must re-

main positive to satisfy the condition in Equation (18).

Oroi(s.0).V(s) Orod(s.a).V(s) B W) ) R
<« e I
q5(tray)
Mixing Network |¢ St "
§ T<«—¢ n-ior)
W, «— [ A A 4 $
st ' ' S MLP
q1(t1.an (1) gu(Tnay)v(my) x
PR 4 ) he.1_>[GRG}»>he
T - ] >/ GRI > ]’1 7y
Ll 1 MLP
\ & ) A / “; = A
q)(r.ap ) aTn.a) (1) 0] On e 9i A %
(a) (b) (c)

Figure 4. (a) The structure of the mixing neural network. (b) The overall structure SAC-QMIX con-
sists of. (c) Network structure of the agents.

The training approach used in this paper for the algorithm is called centralized train-

ing with decentralized execution (CT-DE). This means that during the training process,
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the mixing neural network synthesizes the joint action-value function Q,, (s,a) and the
global state-value function V (s) based on the individual agents’ action-value functions
q,(7,,a,) and state-value functions v, (z,) as well as the global environment state s.

However, after training is completed, each agent makes real-time action decisions based
solely on observations 0 when executing tasks. The training framework of the algorithm
isillustrated in Figure 5. This training method utilizes the global state s during the training
process to compensate for the adverse effects caused by the insufficient observational in-
formation of the individual agent. The global state s contains information from all agents,
which helps alleviate the instability issues that can arise during multi-agent reinforcement
learning training.

. AUVI 7
T(*\7).
Sonar ! Clr:6) ,

Lk—> MLk SLEE
detection

% AUV2 /
(+[12:0) - Search task V(5004011512 1,04-1)

: 2,k 52,k+ 11—
i environment \

‘;n . i restore . buffer D
: . model :
: : . Sample
AlVA (*|7;,:6) m
a3,k s 2 ks Snk+ episodes,

"/ Update policy |
network 6.value
network @

(Information Replay ]

Figure 5. Training framework diagram.

Incorporating the computational process of the above algorithm with the algorithmic
framework, the training process of the SAC-QMIX algorithm is as shown in Algorithm 1.

Algorithm 1. SAC-QMIX algorithm training process.

1: Input: initial policy parameters €, Q-functions parameters @, @, empty replay
buffer D
2: Set target parameters equal to main parameters, Qarg,l —4q, %rg,z <o

3: for steps = 1:M do:
4:  Observe the state s, obtain observations o;, fori=1,2, ..., n
Select action a, ~ 7, (sl 7,),fori=1,2, ..., n

Execute action 4, in the environment, fori=1,2, ..., n

5
6
7:  Observe next state s', next observation o', reward r (s,a) , done signal
8: Store (s,0,a,r,d) inepisode experience exp

9

if s' isterminal, done is true then
10:  Supplement the episode experience exp to the maximum episode experience
11:  Reset environment
12: end if
13: Store episode experience exp in replay buffer D
14: if it is time to update then
15:  Randomly sample a batch of episode experience exp from replay buffer D

16:  Compute individual action-value qi:qsz‘p/i(Tk,ak), q" =Q¢l y (Tk,llk),

fori=1,2fork=1,2, ...,n
17:  Compute individual state-value v;:

U{((T.)=Eﬂi%[qf(rk,ak)} fori=1,2fork=1,2, -+, n
Vi (T)=E, . [0h: (700,)] fori=1,2fork=1,2, -, n

1
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18:  Compute united action-value function:
Qoo (s,a) =F,. (qzl (Tl’al)""qin (Tn’an)) fori=1,2
19:  Compute the overall state-value function V,, (s)=F, (vf (7,),....0 (7, ))

fori=1,2
20:  Compute target Q-function y:

Ve, 8) =y i e (o () et (7)) + St ({15 ) |

21:  Update Q-network parameters using gradient descent:

V@ |% z (er,i (s,a)—y(r,o',d))2 fori=1,2
expe B

22:  Update policy network parameters using gradient ascent:

W i I o)

expe

23:  Update the entropy regularization coefficient using gradient descent:
v, L3 (3n(a o 1)-A)
‘B expeB \ i1
24:  Soft update target network:
25 s =+ (1-7) P
26 Py =7 +(1-7)0,,

27: end if
28: end for

6. Simulation Test

This paper sets the collaborative search area for multiple AUVs in two different sce-
narios. Scenario 1 is a square area with dimensions of 420 m X 420 m, and the Cartesian
coordinate system’s origin is located at the bottom left corner of the search area. The search
area is divided into 7 X 7 primary subregions, with each primary subregion measuring
60 m X 60 m in size. The corresponding secondary subregions are 14 X 14. Scenario 2
is an irregular octagonal area with sides measuring 180 m. This scenario is primarily used
to test the adaptability of the search strategy to irregular search areas. We used the QMIX
algorithm as well as an improved version of the QMIX algorithm to train in both of these
scenarios. Initially, all grid cells have a coverage mark of 0, an uncertainty value of the
maximum value kmax equal to 1 and an uncertainty growth factor T equal to 50. In the
corresponding uncertainty reward module, the tuning coefficient K is set to 0.5. The con-
figuration includes three AUVs, each with a maximum sonar detection range (Ds) of 90 m,
a sonar detection accuracy (Pp) of 0.8, a sonar false alarm probability (Pr) of 0.2, an effective
communication distance between AUVs of 240 m, an AUV cruising speed (v) of 1 m per
second, and an AUV action execution time (Af) of 60 s. We established a neural network
framework based on PyTorch in the Python platform and implemented the algorithm. The
neural network parameters and learning training parameters are detailed in Table 2. Fi-
nally, we conducted simulation testing in a reinforcement learning gym environment.

Table 2. Training parameters table.

Parameter Value

Actor learning rate Ir1 1x10™*

Critic learning rate Ir2 1x10™*




J. Mar. Sci. Eng. 2024, 12, 1194

20 of 30

«learning rate Irs 1x107™*
Target entropy H 0.2
Discount factor ¥ 0.99

Soft update coefficient 7 0.1
RNN dimension 64
Batch size 32

Max episodes M 30,000

Max steps T 1.5x10°

Our simulation Scenario 1 is set up as follows: AUV 1 starts at (30 m, 30 m), AUV 2
starts at (90 m, 30 m), and AUV 3 starts at (150 m, 30 m). Each AUV has an initial heading
of 90°. The target is located at (330 m, 270 m) and remains stationary.

Figure 6 shows the simulation diagram based on the reinforcement learning gym en-
vironment. Figure 6a represents the search trajectory map based on the QMIX algorithm,
Figure 6c represents the search trajectory map based on the SAC-QMIX algorithm, and
Figure 6b,d represent the corresponding uncertainty maps of the search areas. In Figure
6, the first AUV is represented in blue, the second AUV is represented in yellow, the third
AUV is represented in green, and the golden pentagon star represents the target. The
search areas of AUVs are assigned different colors based on the magnitude of uncertainty
values, with uncertainty values increasing from red to light blue.
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Figure 6. (a) Search trajectory map based on QMIX. (b) Uncertainty map based on QMIX. (c) Search
trajectory map based on SAC-QMIX. (d) Uncertainty map based on SAC-QMIX.

Our simulation Scenario 2 is set up as follows: the first AUV’s initial position is at (30
m, 270 m), the second AUV’s initial position is at (30 m, 210 m), and the third AUV’s initial
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position is at (30 m, 150 m). The initial heading for each AUV is 0°. The target position is
at (330 m, 270 m), and it remains constant. It is worth noting that, compared to the regular
square search area in Scenario 1, the four corners of the search area in Scenario 2 are re-
stricted zones. Therefore, the boundary conditions for the search area in Scenario 2 will be
more complex. The final simulation results for Scenario 2 are shown in Figure 7. In Figure
7a, the search trajectory is based on the QMIX algorithm, and in Figure 7c, it is based on
the SAC-QMIX algorithm. Figure 7b,d represent the corresponding uncertainty maps of
the search area.
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Figure 7. (a) Search trajectory map based on QMIX. (b) Uncertainty map based on QMIX. (c) Search
trajectory map based on SAC-QMIX. (d) Uncertainty map based on SAC-QMIX.

Based on the simulation results of the two scenarios, we can observe that both the
search strategies using the QMIX algorithm and the SAC-QMIX algorithm achieve high
area coverage rates and successfully locate the target. However, the trajectory pattern of
the search based on the QMIX algorithm lacks regularity, indicating lower coordination
among AUVs during the search process. In contrast, the search trajectory based on the
SAC-QMIX algorithm appears more organized, suggesting better coordination among
AUVs. The latest research progress of the multi AUVs cooperative area search system
(MACASS) in unknown environments is shown in the Supplementary Materials.

We also conducted simulation tests on the fault tolerance performance of the MARL-
based multi-AUV cooperative area search system. To simulate the potential single AUV
breaks down in the multi-AUV cooperative area search system, we set a limited number
of decision times for AUV 2. When AUV 2 reaches this limited number of decision times,
it ceases to perform the search task, while the remaining AUVs continue with the search
task. In the simulation test, we applied the search area from Scenario 1. The multi-AUV
cooperative area search system utilized the search strategy based on the SAC-QMIX
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algorithm. We present the simulation results in Figure 8, where Figure 8a represents the
initial stage of the search task, Figure 8b represents the stage when each AUV has made
five decisions, Figure 8c represents the stage when AUV 2 breaks down, Figure 8d repre-
sents the stage when the remaining AUVs have made 15 decisions, and Figure 8e repre-
sents the stage when the remaining AUVs have made 25 decisions.

420m!| 420m| 420m|
360m 360m| 360m:
300m/ 300m| 300m
240m/ 240m| 240m
180m 180m| 180m
120m| 120m| 120m|
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Figure 8. (a) Initial stage of the search task (b) Stage of decision-making with 5 decisions. (c) Stage
when AUV 2 breaks down (d) Stage of decision-making with 15 decisions (e) Stage of decision-
making with 25 decisions.

From the simulation results, it can be observed that even when one AUV experiences
a failure and anchors, the remaining AUVs can still achieve a high area coverage rate in
completing the area search task. This indicates that the MARL-based multi-AUV cooper-
ative area search system possesses a certain degree of fault tolerance.

Furthermore, since the target information in the search area is initially unknown to
each AUV, they can only obtain observational information through sonar detection and
communication between AUVs during the search process and use this information to
make action decisions based on the policy network. We illustrate the changes in the target
probability map for AUVs during the search process in Figure 9. As shown in Figure 9, at
the beginning of the search task, due to the lack of a priori information about the target,
the target follows a uniform distribution in the search area. However, as the search task
officially begins, each AUV calculates the target’s probability of existence within the sonar
detection range using the Bayesian formula based on sonar detection results. The target
probability map is updated accordingly. Therefore, as the AUVs continue the search, the
target’s probability of existence in the grid areas without targets gradually approaches
zero, and eventually, the target probability map converges to the target location.

We compared the training results of the SAC-QMIX algorithm with the QMIX algo-
rithm graph. The training results of both algorithms are shown in Figure 10, where Figure
10a represents the training reward graph and Figure 10b represents the search area cov-
erage. Besides, we adopt the classic reinforcement learning method DQN (Deep Q-Net-
work) to train the collaborative area search strategy network for multiple AUVs, and we
use the training results as a contrast. The training method is also distributed training.
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Figure 9. (a) Probability map for initial stages. (b) Probability map for 5 decisions. (c) Probability
map for 8 decisions. (d) Probability map for 15 decisions (e) Probability map for 25 decisions.
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Figure 10. (a) Training curve of reward. (b) Training curve of coverage rate.
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From the training results, we can observe that the SAC-QMIX algorithm converges
faster than the QMIX algorithm. SAC-QMIX achieves a high level of search strategy in
approximately 100,000 iterations. This is because the addition of the maximum entropy
mechanism in the SAC-QMIX algorithm encourages agents to explore more during the
training process, preventing them from getting stuck in local optima, thus speeding up
the overall convergence process. The collaborative search strategy based on DQN did not
converge to satisfactory results, and the reward and area detection rate remained consist-
ently low.

Finally, we conducted ablation experiments on the coverage reward and uncertainty
reward to explore the effects of different reward modules on the algorithm training results
and the final test results. The algorithm used during the training process was the QMIX
algorithm. The training results of different reward modules are shown in the Figure 11.
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Figure 11. Training results under different reward settings.

From Figure 11, it can be observed that although the final training results under dif-
ferent reward settings are consistent, the AUVs can complete the area search task with a
higher degree of exploration. However, under the initial reward setting, the algorithm
converges faster, starting to converge around 600,000 steps. The algorithm without the
coverage reward module converges slightly slower, starting to converge around 700,000
steps. On the other hand, the algorithm without the uncertainty reward module converges
slowest, starting to converge around 1.1 million steps.

Corresponding to the ablation experiment mentioned above, this article conducts
simulation tests based on the policy networks trained with different reward modules to
validate the performance of different policy networks in searching for targets. The simu-
lation areaisa 600 m X 600 m square region, with the origin of the Cartesian coordinate
system located at the bottom left corner of the search area. The initial positions of AUVs
are as follows: AUV 1 starts at (30 m, 30 m), AUV 2 starts at (90 m, 30 m), and AUV 3 starts
at (150 m, 30 m). The initial heading of each AUV is set to 90°, and the cruising speed of
AUVs is 1 m/s. The sonar detection model used is the one established in Section 4.2. In
each simulation test, each AUV can make a maximum of 40 decisions. The target’s position
(xt, yr) is randomly generated in each simulation test, and the simulation is conducted 300

times, where x, € [O, 600] , Y, € [0, 600] ; the results are shown in the table 3.

From Table 3, it can be seen that policy networks trained with different reward mod-
ules can enable multiple AUVs to achieve a high success rate in completing the target
search task. However, the success rate of searches without the coverage reward and with-
out the uncertainty reward modules is significantly lower than that of searches under the
initial reward module.

Table 3. Table of test results with different reward modules.
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Reward Module Number of Tests Successful Search Times Success Search Rate
Initial reward 300 299 99.7%
Reward without coverage 300 278 92.7%
Reward without uncertainty 300 262 87.3%

To compare and analyze the target search efficiency under different reward modules,
this paper randomly selected 80 simulated tests from the successful target search simula-
tions mentioned above and recorded the number of steps required to search for the target.
The statistical results are shown in the Figure 12.
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Figure 12. Number of target search decisions under different reward modules.From Figure 12,
we can see that the average number of decisions for the initial reward is 10, with a total
variance of 9.49. For the network without coverage reward, the average number of deci-
sions is 13, with a total variance of 40.23. Similarly, for the network without uncertainty
reward, the average number of decisions is also 13, with a total variance of 74.32. The
policy network based on the initial reward has the fewest average decision times and the
smallest total variance, indicating the best performance. The policy network based on
the reward without coverage and the reward without uncertainty have the same average
decision times, but the total variance of the former is smaller, indicating better stability
compared to the latter.

To analyze the training results under different reward modules as described above,
we recorded the proportion of global rewards attributed to each module throughout the
training process. The results are depicted in Figure 13. From the figure, it is evident that
during the initial stages of training, the rewards for exploration and uncertainty accounted
for a significant proportion. Specifically, coverage rewards constituted 30% of the global
rewards, uncertainty rewards comprised 40%, while target discovery rewards represented
only 3%. As training progressed, the proportions of coverage and uncertainty rewards
decreased somewhat, whereas the proportion of target discovery rewards gradually in-
creased and eventually stabilized around 30%. This indicates that each AUV began to fo-
cus its search on areas with a higher probability of target presence.
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Figure 13. The proportion of global rewards attributed to different reward modules.

7. Conclusions

In this paper, we have transformed the problem of multi-AUV collaborative area
search into a two-dimensional plane search problem and modeled the search process as a
decentralized partially observable Markov decision process (POMDP). To address the
challenge of limited perception capabilities of AUVs in underwater environments, we
have constructed search information maps, including coverage maps, uncertainty maps,
and target existence probability maps. Each AUV updates these maps through sonar sens-
ing and communication with other AUVs to make action decisions during the search pro-
cess. Furthermore, we have employed multi-agent reinforcement learning to solve the
Markov decision process we established earlier. We first used the classical QMIX algo-
rithm to solve the Markov decision process mentioned above, verifying the feasibility of
multi-agent reinforcement learning in the problem of multi-AUV cooperative area search.
Subsequently, we further analyzed and specifically designed the improved algorithm
SAC-QMIX based on the QMIX algorithm and conducted a comparison between the two
algorithms based on simulation test results and training outcomes. Finally, we validated
the effectiveness of the established model and multi-agent reinforcement learning method
through simulation tests. From the simulation test results, it can be observed that each
AUV can complete the search task through action decisions generated by the policy net-
work. Lastly, from the reward training curve, it is evident that the SAC-QMIX algorithm
converges faster compared to the QMIX algorithm, but the final absolute performance is
the same as the QMIX algorithm. This is a limitation of the SAC-QMIX algorithm and an
area for improvement in the future. In the future, we can further research the multi-AUV
cooperative area search system from the perspectives of target search time and searching
moving targets. Additionally, we can compare the performance of more different algo-
rithms and explore local path planning methods for the execution module in the MA-
CASS.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/jmse12071194/s1, Video S1: Presentation of Multi-AUV Co-
operative Area Search Task in Unknown Environments. The latest research progress of the multi
AUVs cooperative area search system (MACASS) that we have established has been provided. The
video showcased the latest research progress of MACASS that we have established. From the video,
it can be seen that each AUV has preliminarily achieved a high area detection rate in completing
area search tasks in unknown obstacle environments while ensuring safety conditions.
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Appendix A

In Section 4, the significance and explanations of the symbols and abbreviations used
in modeling the cooperative area search task are summarized in the following table:

Table A1. The significance and explanations of symbols and abbreviations used in Section 4.

Symbol and Abbreviation Significance and Explanation
L, Length of the search area (m)
L, Width of the search area (m)
L

N

Height of the search area (m)

5, The i-th search subzone
S, Height of the subzone (m)
s, Simplified subzone
P, Sonar detection probability
P, Sonar detection precision
I Sonar’s false alarm probability
D, Maximum sonar detection range (m)
G Primary subregion
grid(m, n)/g The secondary subregion
Coun Coverage value of grid cell grid(m, n)
k.. Uncertainty value of grid cell grid(m, n)
Prun Target presence probability of grid cell grid(m, n)
1, Pose information of the i-th AUV
FOV The effective sonar detection range of each AUV
N The number of grid cells within the AUV’s sonar detec-
FOV
tion range
S Global state
Oi Observation for the i-th AUV
A Joint actions of AUVs
V., Relative orientation angle between AUV:and AUV;
d,v,i Distance between AUV: and AUV;
H Relative spatial relationships between AUV and the
i other AUVs
r Individual reward of AUV
Te Coverage reward

Tk Uncertainty reward
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Tt Target discovery reward

Ta Collaboration reward

In Section 5, this paper summarizes the significance and explanations of symbols and
abbreviations used in the design process of the QMIX algorithm based on the maximum
entropy mechanism as shown in the following table.

Table A2. The significance and explanations of symbols and abbreviations used in Section 5.

Symbol and Abbreviation Significance and Explanation

s, Global state of the environment at time ¢
a, Joint action taken by multiple agents at time ¢
R(s,,a,) Joint reward received by multiple agents
7z Policy network
Q, Value network
H, (ﬂ' ( Iz, )) The entropy of the action a,, taken by agenti at time ¢
q; ( T, 111-) Action-value function for the i-th agent
F . Mixing neural network
Q,,(s,a) Joint action-value function
v, (z,) Individual state-value function
Vo (S) Overall state-value function
Q" (s,a) Action-value function regularized by entropy
V(s) Entropy-regularized state-value function
1% (S ) Target state-value function
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