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Abstract—Autonomous underwater vehicle (AUV) has grad-
ually been developed to showcase its significant value in per-
forming underwater tasks. Given the current situation that
single AUV is constrained with limited abilities in detection,
information processing and communication efficiency, multi-AUV
system is employed to complete complexed tasks, among which
target tracking is one application where multi-AUV system shows
superior performance. However, most of the existing studies
utilize simplified scenario like constant current velocity, which
fails to simulate real dynamic ocean environment including
current and obstacles. These factors can affect the overall
path planning policies of AUVs or cause mission failure and
economic loss. To improve the stability and validity of AUVs
in the target tracking task, this paper introduces a multi-AUV
based underwater target tracking method via reinforcement
learning (RL) in dynamic ocean environment with current and
obstacles. The concept of standoff circle is adopted to balance
the distance between the AUVs. To be specific, we first model the
ocean current and analyze the model of AUV. Then, the target
tracking task is modeled as a Markov decision process, while
RL is applied to achieve navigation and position control between
AUVs and the target. The numerical simulation results reveal
the best success rate of the AUVs at 83%, which proves the
aforementioned method can perform better tracking accuracy
and achieve superior robustness.

Index Terms—AUV, Target tracking, Underwater environment,
Reinforcement learning.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) have been
widely used on various underwater applications due to

its excellent mobility, safety and outstanding performance in
real-time communication. Compared with single AUV, multi-
AUVs can carry more sensors, loads and operation equipment,
perform more difficult missions without manual operation
in the marine environment, such as underwater engineering,
oceanic resources exploration and marine ecological survey
[1] where target tracking is an important, frequently applied
operation. Unlike target hunting, which simply requires the
AUV to reach to the vicinity of the target [2], target tracking
tasks demand that the AUV follow the target’s path as precisely
as possible while dodging any potential collision between
AUVs and the target.

Many AUV target tracking methods have been proposed
by researchers. Dong et al. [3] designed an adaptive target
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tracking method based on extended Kalman filter to simul-
taneously estimate the state of an AUV, and built a neural
network compensator to correct error. Cao et al. [4] proposed
an integrated algorithm by combining the Glasius bio-inspired
neural network and bio-inspired cascaded tracking control
approach to minimize tracking errors. However, most of these
target tracking methods neglected the dynamic underwater
environment with the obstacle and ocean current. Collision
with sea bottom objects brings economic loss and directly lead
to mission failure, while ocean currents can deviate the path
of AUVs, affecting the overall accuracy of target tracking.

Most of the existing target tracking methods are model-
based that requires large amounts of parameters. While for
static targets these solutions are relatively straightforward, in a
dynamic environment with a mobile target, the stability of such
method drops dramatically. To enhance system stability, more
and more researchers are using reinforcement learning (RL)
approach to address target tracking problems. Fang et al. [5]
used deep deterministic policy gradient algorithm to control
the trajectory of AUV in the underwater horizontal plane and
underwater 3-D space. Moon et al. [6] propose a novel RL
approach for multiple unmanned aerial vehicles (UAVs) target
tracking in challenging 3-D environments. The simulation
results show that the proposed RL-based UAV controller
provides a target tracking method with high accuracy and a
very low time consumption. By employing RL, AUVs are able
to interact with the environment and present self -decision
making abilities. This advantage suggests the possibility of
applying RL in dynamic ocean environment target tracking
scenario.

Based on the analysis above, this study introduces a multi-
AUV based underwater target tracking method via RL in
dynamic ocean environment with current and obstacles to
improve the stability and validity of AUVs in the target
tracking task. We set the AUVs on a standoff circle around
the target, which is beneficial for collecting multidimensional
information of the target while improving the efficiency and
stability of the target tracking task [7]. Also, navigating on
standoff circle brings convenience for potential forthcoming
entrapment of the target. To be specific, we first introduce the
kinematic model of the AUVs, then create a dynamic ocean
environment with obstacles and current modeled as multiple
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Fig. 1. Illustration of the multi-AUV underwater target tracking system model.

vortexes. Then we establish the multi-AUV underwater target
tracking system model. Furthermore, the concept of states,
actions and reward functions is introduced to establish the
Markov decision process (MDP) modeling. A multi-AUV path
planning method based on RL algorithm is developed to solve
the problem, with the relative position of the AUVs to the
target as the algorithm input, and the velocity value and
direction of the AUVs as output. During the tracking process,
the distance between AUVs and distance between AUV and
target are carefully controlled to eliminate potential collision.

The rest of this paper is structured as follows. In section II,
we introduce the system model of underwater target tracking
task in detail, including the AUV kinematic model, and the
modeling of dynamic ocean environment. In Section III, the
problem formulation and methodology are described, which
include MDP modeling to accomplish the design of state
spaces, action spaces and reward functions of the target track-
ing task. Then we introduce the multi-agent soft actor-critic
(MASAC) algorithm to solve this problem. In Section IV, sim-
ulation experiments are conducted to evaluate the performance
of the proposed method and its advantage over traditional RL
algorithms, followed by the conclusion in Section V.

II. SYSTEM MODEL

In this study, we consider a multi-AUV underwater target
tracking model, as illustrated in Fig. 1, where AUVs nav-
igate in a dynamic ocean environment with obstacles, and
operate the underwater target tracking task while realizing
avoidance of dangerous areas. First, L AUVs are denoted as
the set A = {AUV1, AUV2, ..., AUVL}. Then we note the
position of AUV i at time slot t as qi(t) = (xi(t), yi(t)),
where xi(t) and yi(t) denote the x, y coordinate of AUV
i at time slot t. Similarly, target T is described by position
pT (t) = (xT (t), yT (t)). Moreover, an obstacle is set with
radius rb and position vector qb = (xb, yb) to label its center.
The obstacle remains static throughout the entire process re-
gardless of ocean current. During the execution, an assumption
is made where the positions of AUVs and targets can be
acquired by underwater sensors, and eventually broadcasted
to AUVs. Also, the velocity and yaw angulsr velocity of an
AUV can be obtained by its measurement devices. The AUV

kinematic model and the dynamic ocean environment model
are discussed in the following subsection.

A. AUV Kinematic Model

Without the interference of ocean current, the kinematic
model of an AUV can be described as{

q̇(t) = v(t),
v̇(t) = F (t)/M,

(1)

where t ∈ [0, T ], T > 0, q(t) ∈ R2 is the position vector
of the AUV in the 2-D plane, v(t) ∈ R2 is the 2-D velocity
vector, while F (t) ∈ R2 is the force vector, and M is the mass
of the AUV. In this paper, the velocity value of an AUV is set
to a constant value v, and the AUV navigates by changing its
yaw angle ϕ(t). This is a common modeling method which
has been applied to torpedo-shape AUVs, or vehicles that does
not use thrusters [8].

B. Dynamic Ocean Environment Modeling

The dynamic characteristics of ocean environment are
mainly derived from ocean currents, which are generated by
rotation of the earth. Since the common velocity value of an
AUV is below 10 m/s [9], the impact of the ocean current
remains to be a significant part affecting AUVs’ motions. To
precisely simulate real world ocean current field, we use 2-D
Navier-Stokes equation to model the ocean current into vortex
as follows [10]

∂ωc

∂t
+ (u⃗∇)ωc = vf∆ωc, (2)

where ωc represents the vorticity of the vortex, while u⃗ =
(ux, uy) denotes the 2-D velocity field vector and vf repre-
sents the current viscosity. ∆ and ∇ are Laplacian operator
and gradient operator, respectively. However, Eq. (2) requires
viscosity of the current, which is very difficult to obtain. To
simplify the equation, an approximate manner of Eq. (2) is
given as follows

ux(q(t)) = −
Ωv · (y − y0)

2π ∥q(t)− qv∥
2
2

·

(
1− e

− ∥q(t)−qv∥22
r2v

)
, (3)

uy(q(t)) =
Ωv · (x− x0)

2π ∥q(t)− qv∥
2
2

·

(
1− e

− ∥q(t)−qv∥22
r2v

)
, (4)

ωc(q(t)) =
Ωv

πr2v
· e−

∥q(t)−qv∥22
r2v , (5)

where qv denotes the center of Lamb vortex in the 2-D ocean
plane. The strength of the vortex is described as Ωv , and the
radius of the vortex is rv . Besides, Fig. 2 shows the simulation
result of the ocean current field with three vortexes.

While navigating in the ocean, underwater vehicles such as
the target and AUVs are applied drag force generated by the
vortexes. The relationship between the exerted drag force and
velocity of the vortex current can be described in the following
equation [11]

F (q, t) =
1

2
ρACd∥u(q, t)∥22, (6)



Fig. 2. Three ocean vortexes with radius 4, 10, 4 and strength 8m2/s, 20m2/s,
8m2/s, respectively. Brighter color suggests higher current velocity

where A stands for the cross-sectional area if the vehicle
moves along the current direction, Cd denotes the drag coef-
ficient, and ρ is the density of seawater. Then F (q) deviates
the vehicle by adding a velocity increment ∆u(q) on it with
the same direction as F (q). Apparently, we have

∆u(q, t) = σ0F (q, t). (7)

Furthermore, if the navigation velocity of the vehicle at
position q is (v0(q), then the actual velocity vector before
it leaves position q can be described as

v(q, t) = v0(q, t) + ∆u(q, t). (8)

III. PROBLEM FORMULATION AND METHODOLOGY

A. Markov Decision Process

The process of the multi-AUV underwater target tracking
task can be modeled as a MDP, which is an optimal decision-
making process based on the Markov decision theory, and is
suitable for dynamic stochastic systems and RL, which aims
to improve the agent’s policy to maximize returns. The MDP
M can be expressed by the combination of the state space
S, action space A, the state transition function P a

SS′ and
the reward functions Ra

S , M = (S,A, P a
SS′ , Ra

S). The state
space, action space and reward functions for the target tracking
problem in this paper are designed as follows:

1) State space: The state space should be carefully defined
in order to cover every possible state of the AUVs. Also, the
state space must avoid redundancy, otherwise it costs large
time expense in the later training phase, and even leads to
convergence failure. As suggested in Section II-A, one possible
way to describe the state of the AUV i at time slot t can be
defined as follows

Si(t) = [qi(t),vi(t), ϕ(t)] . (9)

The overall state space at time slot t is then given as S(t) =
{Si(t)}. Moreover, to make the simulation process operable,
the state values in set S(t) must be discretized.

2) Action space: Given the aforementioned assumption that
all AUVs navigate with the same velocity, the action space of
AUV i can be easily defined as follows:

Ai ∈ {ωmin, . . . , ωmax} , (10)

where ωmin and ωmax are the minimum and maximum possi-
ble yaw angular velocity values of an AUV. And the overall
action space of the AUVs is A = {Ai}.

3) Reward function: The main purpose of introducing the
reward function is to realize policy improvement of AUVs via
RL training. With carefully pre-designed reward functions, the
AUVs can achieve the goal of approaching the target closely
and then following its path with a pre-set distance r0, which
is also the radius of the standoff circle. Besides, punishment
function is also designed so that an AUV can avoid collision
with the obstacle and the other AUVs. Finally, the AUVs
are controlled to averagely encircle around the target on the
standoff circle. The specific reward functions are designed as
follows:

Target Approaching R(1)(t): To rapidly approach the target,
an AUV should receive a constantly existing reward that is
negatively correlated with the distance between AUV i and
the target noted as di(t). So we have R(1)(t) defined as

R(1)(t) = −
∑
i

di(t). (11)

Target Following R(2)(t): Target following requires an
AUV to maintain an exact distance with the target, thus, we
define this reward of AUV i as

R
(2)
i (t) =

{
−adi(t)2 + 2ar0di(t) + c, di(t) < r0,

0, di(t) ≥ r0,
(12)

where a and c stand for constant values.
Collision Avoidance R(3)(t): R(3)(t) is a contingent nega-

tive reward which is only effective when two objects (AUVs
or obstacles) collide. Thus, for AUV i, we have

R
(3)
i (t) =

 Ra, if colliding with other AUVs,
Rb, if colliding with the obstacle,
0, else,

(13)

Standoff Circle Formation R(4)(t): R(4)(t) should be
designed based on the distance between AUV i and AUV
j, noted as dij(t). And the expected position of AUVs can
be different according to the number of AUVs. Specifically,
the expected position of three AUVs should be an equilateral
triangle on the standoff circle with side length d0 =

√
3r0. As

a result, we have

Ri,j(t)
(4) =

{
e(µ(d0−dij(t))−1), dij(t) ≤ d0,

e(µ(dij(t)−d0)−1), dij(t) ≥ d0,
(14)

where µ is a coefficient based on experiments.
Combining equations Eq. (11) ∼ Eq. (14), the reward of the

multi-AUV underwater target tracking task can be obtained by

R(t) = R(1)(t) +
∑
i

R
(2)
i (t) +

∑
i

R
(3)
i (t) +

∑
i,j

R
(4)
i,j (t).

(15)



Algorithm 1 MASAC
1: Input: initial policy parameter ϑ, Q-function parameters

φ1, φ2, empty replay buffer B.
2: Set target parameters to main parameters:

φt,1 ← φ1, φt,2 ← φ2

3: while not convergence:
4: Observe state s and choose an action a ∼ πθ(·|s).
5: Take a step in the environment, then observe the next state

s′, acquire reward r, and update signal d to decide whether
s′ is the termination state.

6: Add (s, a, r, s′, d) to B.
7: If s′ is the termination state, reset the environment.
8: for m in range (number of updates) do
9: Sample a batch B = {(s, a, r, s′, d)} from B.

10: Compute the target network for the Q-functions:

y(r, s′, d)=r+β(1−d)
(
min
j=1,2

Qφt,j(s
′, ã′)−α log πϑ (ã

′|s′)
)
,

where ã′ ∼ πϑ (· | s′)
11: Update Q-functions:

∇φj

1

|B|
∑

(s,a,r,s′,d)∈B

(
Qφj (s, a)−y (r, s′, d)

)2
for j=1, 2

12: Update the policy:

∇ϑ
1

|B|
∑
s∈B

(
min
j=1,2

Qφj
(s, ãϑ(s))−α log πϑ (ãϑ(s) |s)

)
,

where ãϑ(s) is a sample from πϑ (· | s′).
13: Update the target network:

φt,j ← σφt,j + (1− σ)φj for j = 1, 2

14: end for

B. Multi-Agent Soft Actor-Critic Algorithm

To achieve multi-AUV underwater target tracking with high
accuracy, an efficient RL algorithm is employed. This paper
mainly focuses on MASAC algorithm, which is suitable for
continuous action space and achieves better learning efficiency
than traditional policy gradient algorithms.

MASAC is an off-policy actor-critic RL algorithm. Com-
pared with other actor-critic algorithms, MASAC does not
require meticulous parameter tuning and can process large
samples. Meanwhile, MASAC possesses promising conver-
gence properties [12]. By training a stochastic policy π(a|s), it
aims to maximize the reward and entropy at the same time. In
another word, MASAC has the ability to successfully achieve
the expected goal while exploring as randomly as possible.
The details of MASAC are shown in Algorithm 1.

IV. SIMULATION SETTINGS AND RESULTS

For the convenience and validity of simulation, we employ
three AUVs in this experiment with the safety radius (collision
occurs within this range) r. The experiment uses OpenAI Gym

TABLE I
PARAMETER SETTINGS.

Name Symbol Value
Environment:
Radius of the obstacle rb 1.85m
Radius of AUV r 0.05m
Vortex 1-3 position qv1 (15.7, 1)

qv2 (−5.9,−5.3)
qv3 (10, 5.2)

Radius of vortex 1-3 rv1 0.4m
rv2 1m
rv3 0.4m

Strength of vortex 1-3 Ωv1 0.02m2/s
Ωv2 0.05 m2/s
Ωv3 0.02 m2/s

Action set:
Yaw angular velocity (min) ωmin −π/3 s−1

Yaw angular velocity (max) ωmax π/3 s−1

Reward function:
Coefficient a a −6
Coefficient c c −25
Collision punishment a Ra −5
Collision punishment b Rb −9
Designed coefficient µ µ 0.1
Learning period:
Simulation step ∆T 0.1s
Discount factor β 0.99
Target network update speed τ 0.005
Learning rate L 3e−4

Buffer size S1 1e6
Batch size S2 256
Maximum episode length T 200s
Number of episodes N 500

environment which is automatically wrapped in a compatible
layer.

In the simulation, the target’s initial position is placed on the
origin of a 40m × 40m square area. We use x-y coordinate
system to describe the position of an object, in which one
unit length represents 1m. The target is on (0,0), and the
obstacle’s center is placed on (7,8). Three AUVs are placed
at (16,16), (16,15), (16,14), respectively. The target has an
original speed at 0.01m/s and initial yaw angle 0.9π. Three
AUVs have the same velocity value at v = 0.1m/s, while
their initial yaw angles are randomly selected from [π, 3π/2].
Other necessary environment settings and training parameters
are listed in Table I.

The entire process of multi-AUV target tracking under
dynamic ocean environment is presented in Fig. 3, which
is the result of using MASAC to train the AUVs after 500
episodes. The green thick curve is the trajectory of target,
while the thinner curves are the trajectories of AUVs. As
shown in Fig. 3, the target trajectory is not a straight line due
to the obstruction of vortexes. The result demonstrates that
all AUVs can successfully track the target by following target
path and maintaining a safe distance at 2m. The AUVs also
learn to bypass the obstacle while navigating. Besides, they
are equally distributed around the standoff circle and form an
equilateral triangle. This behavior pattern of the AUVs proves
the feasibility of using MASAC to accomplish multi-AUV
cooperative tasks with excellent performance.

To further validate the above conclusions, we compare
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the convergence ability and tracking success rate between
MASAC and other traditional RL algorithms including DDPG
and PPO in Fig. 4 and Fig. 5. In Fig. 4, MASAC-employed
AUVs learn to avoid the obstacle after approximately 50
episodes. and converges after about 150 episodes. Neverthe-
less, DDPG and PPO-employed AUVs reveal obvious dis-
ability in convergence and have much less average reward.
Another important feature is the tracking success rate, defined
as the ratio of the number of successful steps to the number of
steps after an AUV makes initial contact with to the standoff
circle. A step of AUV i is regarded successful only if both the
following two criteria are satisfied:
(a) No collision occurs throughout the navigating process of

AUV i.
(b) AUV i remains approximately on the standoff circle with

di ∈ (1.8, 2.2).
Under criteria (a), (b), the success rates of all AUVs

are displayed separately in Fig. 5. The result shows that
all the MASAC-employed AUVs have tracking success rate
over 75%, while the general success rate of the system (the

83.42

75.59
81.06

89.84

3.00
0.20 2.00

5.20

51.59

42.07

57.28
62.41

AUV1 AUV2 AUV3 General
0

20

40

60

80

100

Su
cc

es
s 

ra
te

/(
%

)

MASAC
DDPG
PPO

Fig. 5. Tracking success rate of single AUV and multi-AUVs under different
algorithms including MASAC, DDPG and PPO.

possibility of at least 1 AUV successfully tracking the target)
at 89.84%, which proves multi-AUV system to be more
reliable than single AUV system. Besides, Fig. 5 illustrates
the outstanding performance of MASAC, as all AUVs trained
with MASAC receive remarkable success rate improvement
than with other two algorithms.

V. CONCLUSIONS

This paper introduced a flexible and robust multi-AUV
cooperation method to achieve target tracking task in com-
plexed ocean environment including obstacle and vortexes.
Meanwhile, we borrow the concept of standoff circle, encir-
cling the AUVs around the target to ensure efficiency and
stability of detection. Simulation results validate that RL-
based MASAC approach can converge rapidly and achieve
promisingly competitive performance. The experiment also
implicates multi-AUV system to be much more advanced than
single AUV system, and has the potential to operate more
complicated cooperative tasks.
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