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Abstract: Due to the singularity of Euler angles and the ambiguity of quaternions, to further expand
the attitude reachable range of underactuated AUVs in the vertical plane, SO(3) is used to represent
the attitude change of underactuated AUVs. The transverse function of the attitude on SO(3) is
designed, and the exponential mapping method is used to construct the attitude kinematic controller
of underactuated AUVs. Considering the changes in the model and ocean current during motion,
interval type II fuzzy systems (IT2-FLSs) are used to estimate these changes. The backstepping
method and the small gain theorem are adopted to design dynamic controllers to ensure the stability
and robustness of the system. A novel saturation auxiliary system is designed to compensate for the
influence of actuator saturation characteristics. Finally, the simulation results verify the effectiveness
of the proposed controller and ensure the practical stabilization of the underactuated AUV attitude.

Keywords: practical stabilization; SO(3); transverse function; fuzzy logic system; actuator saturation;
small gain theorem; underactuated AUV

1. Introduction

Due to their excellent maneuverability and autonomous navigation capabilities com-
pared with other types of underwater vehicles, AUVs have become one of the main technical
means for ocean observation [1]. To shorten the time consumed by AUVs during the float-
ing/diving process and enable them to observe vertical profiles, the vertical attitude motion
capability of AUVs can be achieved through structural design and control algorithms [2].

The AUV attitude representation methods include the Euler angles [3], the quater-
nions [4–6], and the rotation matrices [7,8]. An improved integral sliding mode control is
proposed using the Euler angle representation method to control the attitudes of AUVs
in [3]. However, when the pitch angle approaches 90 degrees, the use of Z-Y-X sequen-
tial Euler angles to represent the AUV attitude results in singularity issues [9]. Ref. [10]
replaced the common Z-Y-X sequential Euler angle representation method and used the
Z-Y-Z rotation sequential Euler angle to represent the attitude of the AUV, avoiding the
singularity problem at the pitch angle and conducting water tank experiments to verify
the vertical attitude control of the AUV. Ref. [11] directly used the Z-Y-X order and Z-Y-Z
order as positive and negative Euler equations to represent the attitude of the AUV and
switched the Euler angles within appropriate attitude intervals. However, the switching
algorithm between positive and negative Euler angles still faces the problem of the pre-
cise transformation of positive and negative Euler angles and the selection of the optimal
switching value. To avoid singularity problems, ref. [4] used quaternions to describe the
translational and rotational motion of AUVs and designed an AUV attitude tracking con-
troller via a finite-time convergent extended state observer combined with the sliding mode
control method. A quaternion-based adaptive non-singular terminal sliding mode control
scheme is proposed for AUVs affected by ocean currents and modeling uncertainties in [5].
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However, quaternions exhibit the phenomenon of unwinding, which prevents globally
asymptotically convergent continuous control to stabilize the attitude motion of AUVs [12].
To address this issue, ref. [13] integrated the initial values of quaternions into the sliding
mode surface to avoid unwinding and used a finite-time sliding mode control method to
solve the AUV trajectory tracking control problem. An auxiliary variable was designed
to limit the initial error value of quaternions to avoid the phenomenon of unwinding [14].
Although the phenomenon of unwinding has been well solved, the quaternion-based con-
trol method also has the problem that underactuated systems are unable to achieve global
stabilization. Ref. [15] proposed that underactuated systems cannot achieve asymptotic
stabilization through continuous state feedback. To achieve the three-dimensional stable
control of underactuated AUVs based on quaternion attitude representation, the character-
istics of the nonholonomic control system of AUVs with three-dimensional control inputs
were studied using nonholonomic system theory. However, using this method to control
underactuated AUVs results in long-term system oscillations [16]. Compared with Euler
angles and quaternions, the rotation matrix has global and unique properties, making it one
of the best solutions for attitude representation [17]. A sliding mode control method based
on a rotation matrix is proposed for AUVs to achieve tracking control in [18]. Refs. [19,20]
also used the rotation matrix to solve the trajectory tracking control problem of AUVs.
Similar to the quaternion control method, the control method using the rotation matrix
cannot achieve asymptotic stability for underactuated systems. To solve this problem,
ref. [20] used the transverse function control method to solve and enable the rigid body
to achieve practical stability of any attitude trajectory. Because the rotation matrix is also
a special Lie group, this method is suitable for solving the underactuated AUV attitude
control problem under the representation of the rotation matrix. The attitude tracking
control problem of underactuated spacecraft was solved using the cross-sectional function
method, and practical stabilization was achieved in [21]. However, this method cannot be
directly applied to the attitude control of underactuated AUVs, and it is also singular.

There are several methods for solving the impact of AUV model uncertainty and
ocean disturbances on control problems. Common methods include observer [22,23],
neural network approximation [24,25], and fuzzy logic approximation [26,27]. Among
them, fuzzy logic systems have become one of the best solutions because of their ability
to continuously self-learn parameters using linguistic fuzzy information provided by
technicians. Refs. [28,29] used type I fuzzy logic systems to estimate the AUV model and
disturbances and achieved good control results. However, the membership function of type
I fuzzy logic must be precise, and it directly affects the approximation efficiency. To further
improve the approximation effect on unknown functions, a type II fuzzy logic system was
proposed in [30]. To reduce computational complexity, ref. [31] proposed interval type II
fuzzy logic systems (IT2-FLSs). At present, the method has been applied, such as in [32],
which combines an IT2-FLS with PID control to design a UAV tracking controller and
completes the corresponding method deployment and experimental verification, achieving
good control effects. Research on the saturation characteristics of controllers has focused on
two main methods: model estimation [33,34] and auxiliary system compensation [35,36].
A saturation auxiliary system has been designed to compensate for the effects of input
saturation in [23], but the state of the system converges regardless of whether the input is
saturated or not, and the compensation effect needs to be improved.

On the basis of the above analysis, to achieve the vertical attitude control of under-
actuated AUVs and improve their maneuverability, the attitude reachable range can be
expanded. This study adopts a rotation matrix combined with a transverse function to
design an attitude kinematics equation for underactuated AUVs. Considering the singu-
larity problem of the controller, the SO(3) exponential mapping method is introduced to
design the expected angular velocity as the outer loop control of the closed-loop system.
In dynamic inner loop control, the IT2-FLS is used to approximate the AUV model and
external disturbances, and further improvements are made on the basis of the auxiliary
system in [23] to solve the problem of AUV input saturation. Moreover, to improve the
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robustness of the system, a vertical attitude controller for underactuated AUVs is designed
by combining the backstepping method and the small gain theorem to achieve practical
input state stability of the system. The main contributions of this study are as follows.

1 To avoid the singularity of Euler angles and the ambiguity of quaternions, the meth-
ods of rotation matrix and transverse function are introduced to design the attitude
controller of underactuated AUVs. Moreover, unlike in research [21], a kinematic
controller based on SO(3) exponential mapping is designed to address the singularity
issue of the traditional error function.

2 A new AUV saturation auxiliary system is modified based on [23] to achieve better
control input compensation effects. Moreover, considering the approximation error of
the IT2-FLS, the small gain theorem is introduced to design an inner loop controller to
improve the robustness of the control system.

The remaining structure of the work is as follows. The relevant theoretical basis of this
study and the AUV model are introduced in Section 2. The design and stability proof of
the controller are presented in Section 3. Section 4 presents the simulation verification. The
conclusions are presented in Section 5.

2. Preliminaries and Problem Formulation
2.1. Notations and Definitions

In this study, we use R to represent real numbers. Rn denotes an n-dimensional
vector, and its elements are real numbers. Rn×n denotes an n × n dimensional real ma-
trix. For real vectors x ∈ Rn, ||x|| =

√
x⊤x denotes the Euclidean norm of the vec-

tor. For a real matrix A ∈ Rn×n, λs(A) represents the smallest eigenvalue of the ma-
trix A. λb(A) denotes the largest eigenvalue. trac(A) denotes the trace of the matrix
A. SO(3) is a special Lie group called the special orthogonal group, and it satisfies
SO(3) :=

{
R ∈ R3×3|R⊤R = RR⊤ = I3×3, det(R) = 1

}
. The Lie algebra so(3) of SO(3)

is represented as so(3) :=
{

S ∈ R3×3|S = −S⊤}. For the vector x ∈ R3, we use the hat

map ∧ : R3 → so(3), which can be denoted as x̂ or S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

, where xi

denotes the element of the vector x. Its inverse operator is represented as (.)∨ : so(3) → R3.
The exponential map of SO(3) is

exp(ξ̂) = I + sin(||ξ||) ξ̂

||ξ|| + (1 − cos(||ξ||)) ξ̂⊤ ξ̂

||ξ||2

where ξ is the exponential coordinate and ξ̂ is the Lie algebra so(3) of SO(3). The time
derivative of the exponential map is as follows ([18]):

d
dt

exp(ξ̂(t)) = exp(ξ̂(t))(dexp(−ξ(t))ξ̇(t))∧

= I +
S2

2
ξ̂ +

1 − Scos(||ξ||/2)
||ξ||2 ξ̂⊤ ξ̂

where S = sin(||ξ||/2)/(||ξ||/2). When ξ = [0, 0, 0]⊤, dexp(ξ) = I3×3.
If a continuous function α(.) is strictly increasing in [0, a) and α(0) = 0, it can be called

the class-K function. When a → ∞, α(a) → ∞, it is a class-K∞ function. For a continuous
function β(r, s) : [0, a)× [0, ∞) → [0, ∞), if s is fixed, the function β is a class-K for r, and
it is strictly decreasing for s with every fixed r. When s → ∞, β → 0, the function β can
be called the class-KL function. For a continuous function f : x → Rm and is bounded,
supx∈Br

( f (x)) denotes the supremum norm of f in domain Br.
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Definition 1. For a nonlinear system ẋ = f (x, u, d, t), d is a nonnegative constant. If there exists
a class KL function β and a class-K function γ and for any initial state x(t0) and bounded input
u(t), x(t)(t ≥ t0) is solvable, and the following inequality holds (see [37])

||x(t)|| ≤ β(||x(t0), t − t0) + γ( sup
τ∈[t0,t]

||u(τ)||) + d (1)

then, the system is input-to-state practically stable (ISPS).

Definition 2. Small gain theorem—Consider two nonlinear interconnected systems:

H1 :

{
ẋ1 = f1(x1, y2, u1)

y1 = h1(x1, y2, u1)
H2 :

{
ẋ2 = f2(x2, y1, u2)

y2 = h2(x2, y1, u2)

where xi(i = 1, 2), yi(i = 1, 2), andui(i = 1, 2) are the state, output, and external inputs of the
system Hi(i = 1, 2), respectively. If there exist two class-KL functions βi(i = 1, 2) and four
class-K functions γ

j
i(i = 1, 2; j = u, y), and two nonnegative constants di(i = 1, 2) such that

||y1(t)|| ≤ β1(||x1(0)||, t − t0) + γ
y
1(||y2(t)||)

+ γu
1 (||u1(t)||) + d1

||y2(t)|| ≤ β2(||x2(0)||, t − t0) + γ
y
2(||y1(t)||)

+ γu
2 (||u2(t)||) + d2

(2)

then, the feedback connected system H1 and H2 is ISPS when the following inequality holds
(see [38]):

γ
y
1 ◦ γ

y
2 ≤ c, ∀c > 0. (3)

where ◦ denotes the composite calculation of functions.

Lemma 1 (See [39]). The continuous smooth function f (x) approximated by the IT2-FLS can
be represented as f (x) = ξ⊤Θ∗ + ε. Θ∗ is the optimal weight vector of the IT2-FLS, and ε is the
approximation error. IT2-FLS can infinitely approximate any smooth continuous function f (x)
within a compact set with a small bounded error. For any ε > 0, we have:

sup
x∈Rn

∣∣∣ f (x)− ξ⊤Θ̂
∣∣∣ < ε (4)

where Θ̂ is the estimation weight vector of the IT2-FLS. The definition of the estimation weight error
vectors is Θ̃ = Θ̂ − Θ, and the optimal weight vectors can be expressed as:

Θ∗ = arg min
Θ∈RM

(
sup
x∈Rn

∥ f̂ (x)− f (x)∥
)

(5)

where f̂ (x) = ξ⊤Θ̂ represents the estimated value of the IT2-FLS. For a detailed introduction to
IT2-FLS, please refer to the work of [39].

2.2. AUV Model on SO(3)

As shown in Figure 1, the attitude representation of an underactuated AUV is estab-
lished in the Cartesian coordinate frame. The North-East-Down (NED) coordinate frame is
denoted by E − ηξζ. The body coordinate frame (B) is denoted by o − xyz. The attitude
angle in NED is represented as ηA = [ϕ, θ, ψ]⊤. ϕ is the roll angle, θ is the pitch angle, and
ψ is the yaw angle. The angular velocity in the B frame is represented as ω = [ωx, ωy, ωz]⊤.
The kinematic equation of an underactuated AUV on SO(3) is represented as follows
(see [8]).

Ṙ = RS(ω) (6)
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where the rotation matrix R is detailed as follows.

R =

c3c2 c3s2s1 − s3c1 c3s2c1 + s3s1
s3c2 s3s2s1 + c3c1 s3s2c1 − c3s1
−s2 c2s1 c2c1

 (7)

s(·) and c(·) denote sin() and cos(), respectively, and the subscripts 1, 2, and 3 represent
the roll angle ϕ, the pitch angle θ, and the yaw angle ψ, respectively.

In frame B, the attitude dynamic model of underactuated AUVs is described as follows
(see [6]).

Jω̇ + C(ν, ω)ω + D(ν, ω)ω + g(ηA) = τ + τd (8)

where J = diag
{

Ixx − K ṗ, Iyy − Mq̇, Izz − Nṙ
}

. ν = [u, v, w]⊤ denotes the velocity in three
directions along the B-frame. C(ν, ω) is described as follows:

C(ν, ω) =

 0 −mxgq + m11w −mxgr − m22v
mxgq − m11w 0 −m33 p
mxgr + m22v m33 p 0

 (9)

where m is the mass of the AUV; m11, m22 and m33 are the added mass parameters; and xg is the

x-position of the center of gravity. D(ν) = diag
{

Kp + Kp|p||p|, Mq+ Mq|q||q|, Nr + Nr|r||r|
}

.

g(ηA) = [(zgW)c(θ)s(ϕ), (zgW)s(θ), 0]⊤, where zg is the z-position of the center of gravity.
τ ∈ R3×1 represents the torque vector of underactuated AUVs. τd ∈ R3×1 represents the
external disturbance vector of underactuated AUVs.

Figure 1. Schematic of the underactuated AUV coordinate system.

2.3. Problem Formulation

This study focuses on the attitude stabilization control of underactuated AUVs in the
vertical plane. The roll angle ϕ of underactuated AUVs is uncontrollable; therefore, the
torque corresponding to its roll angular velocity ωx is zero. However, due to the presence
of external disturbances and the coupling between angles, maintaining the roll angular
velocity of underactuated AUVs at zero is difficult. Moreover, accurately obtaining the
dynamic parameters of underactuated AUVs is difficult, so we can consider the matrices
C(ν, ω), D(ν, ω), and g(ηA) as unknown terms of the AUV controllable models and the
parameter matrix J = J0 + Ju, where Ju is also unknown. Thus, the attitude controllable
dynamic model can be rewritten as follows.

J0ω̇ = τ + d (10)

where J0 ∈ R2×2, ω = [ωy, ωz]⊤, and d ∈ R2×1 represents the overall unknown terms of
the model and is defined as d = −C(ν, ω)ω − D(ν, ω)ω − g(ηA) + τd. Without loss of
generality, the assumption of this work is given.
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Assumption 1. The overall unknown terms d are bounded and unknown. Its derivatives are
also bounded and unknown, that is, ||d|| ≤ Ld and ||ḋ|| ≤ Lḋ. Ld and Lḋ are unknown
positive constants.

Control goal: On the basis of Assumption 1, considering the saturation characteristics of
the control input, we design the control input τ for the model (10) to practically stabilize its
attitude angle, except for the roll angle ϕ. That is,

lim
t→∞

||θ(t)− θd|| ≤ εθ , lim
t→∞

||ψ(t)− ψd|| ≤ εψ (11)

where θd denotes the desired pitch angle and where ψd denotes the desired yaw angle. εθ

and εψ are two small positive constants. Notably, when the roll angle ϕ changes, we cannot
guarantee the asymptotic stabilization of the pitch angle θ and the yaw angle ψ, and there
may be steady-state errors.

3. Controller Design and Stability Analysis

In this section, the first step is to design the kinematic controller based on transverse
function. This can ensure that the attitude error is exponentially convergent. Next, the
backstepping method is adopted to design the dynamic controller, and the unknown parts
of the model are estimated by the IT2-FLS. The stability analysis of the attitude stabilization
system is promising and is based on the small gain theorem. Finally, the saturation auxiliary
system is designed to compensate for the saturation characteristics of the system control
inputs. The closed-loop system diagram is shown in Figure 2.

Figure 2. The closed-loop system diagram.

3.1. Kinematic Controller That Is Based on the Transverse Function

The desired angle on SO(3) is defined as Rd; the desired angular velocity is ωd. The
attitude error matrix can be described as Re = R⊤

d R. The derivative of Re is taken as follows.

Ṙe = ReS(ωye2 + ωze3 + ωxe1 − R⊤
e ωd) (12)

where ωx is uncontrollable. The feasible trajectory of the attitude error equation is
ωx = e1(R⊤

e ωd). According to [20], the transverse function of (12) is constructed as follows.

f (α) = exp(ε sin(α)S(e2) + ε cos(α)S(e3))

=

 c(ε) −c(α)s(ε) s(α)s(ε)
c(α)s(ε) c2(α)c(ε) + s2(α) c(α)s(α)(1 − c(ε))
−s(α)s(ε) c(α)s(α)(1 − c(ε)) s2(α)c(ε) + c2(α)

 (13)

The transverse function is an embedded submanifold near a certain equilibrium point of
the AUV attitude Lie group. Because underactuated AUVs have only two control variables,
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to solve the problem of three-dimensional state variables, an embedded submanifold is
introduced to expand the dimension of the attitude manifold to ensure that the uncon-
trollable state is maintained near the equilibrium point. The transverse function f (α) is
the matrix of rotation with ε angle about the unit axis [0, sin(α), cos(α)]⊤ and ε ∈ (0, 2π).
Furthermore, the derivative of f (α) is as follows:

d f (α)
dα

= f (α)S(Ω) (14)

where Ω = [1 − cos(ε), cos(α)sin(ε), sin(α)sin(ε)]⊤. When f (α) is called the transverse
function of (12), the vectors Ω, e2 and e3 must be linearly independent, so cos(ε) ̸= 1. The
matrix f (α) is invertible.

We define the new attitude error as z = Re f (α)⊤ f (αd). Our goal is to design the
desired angular velocities ωy, ωz and α̇ to ensure that the matrix z converges to I3×3, that is,
let Re → f (α)⊤ f (αd). α̇ is a virtual kinematic control input. Hence, the parameter ε should
be small enough to ensure that the attitude error meets the requirement of boundedness.
The derivative of the variable z is taken as follows.

ż = zS(( f (αd)
⊤ f (α))(ωye2 + ωze3 − α̇Ω + ωxe1 − R⊤

e ωd))

= zS(Eu + µ) = zS(ur)
(15)

where the control input is denoted as u = [ωy, ωz, α̇]⊤, and the unit axis vector is denoted
as E = f (αd)

⊤ f (α)[e2, e3, Ω] and µ = f (αd)
⊤ f (α)(ωxe1 − R⊤

e ωd). The new input variable
is denoted as ur = Eu + µ.

To avoid singularity, the exponential map is used to represent the attitude error. The
rotation vector of z is defined as ϱ. ϱ̂ is the Lie algebra of z; that is, z = exp(ϱ̂). The
exponential format of the attitude error z is written as follows.

ϱ̇ = dexp−1(−ϱ)ur (16)

The matrix dexp−1(−ϱ) is invertible if ϱ is restricted within a ball Br =
{

ϱ ∈ R3 : ||ϱ|| ≤ π
}

.
If ϱ = [0, 0, 0]⊤, we have dexp−1(ϱ) = I.

Theorem 1. For the attitude kinematic model (12) of underactuated AUVs, the kinematic control
input u can be designed as E−1(−k1dexp(−ϱ)ϱ − µ), which can ensure the bounded exponential
convergence of the attitude error.

Proof. We choose the Lyapunov candidate as Vk = 1
2 ϱ⊤ϱ. The derivative of time is V̇k =

ϱ⊤dexp−1(−ϱ)ur. By substituting u into ur, ur can be recast as −dexp−1(−ϱ)ϱ. Therefore,
the derivative of time satisfies V̇k = −k1ϱ⊤ϱ ≤ 0, and the attitude error z is exponentially
convergent. The actual attitude error converges to f (α)⊤ f (αd). Therefore, the attitude error
is bounded exponential convergent.

Remark 1. The critical points can be calculated as ϱ = {0,±π}. It shows that ϱ ∈ Br =
{ϱ : ||ϱ|| ≤ π} identify the true attitude error. Thus, the value of variable ϱ should be restricted to
[−π, π], when ϱ⊤ur > 0 and ||ϱ|| ≥ π + δ, ϱ = ϱ − 2π

ϱ
||ϱ|| .

Remark 2. To ensure convergence of the attitude, the selection of the parameter ε has a significant
effect. By linearizing (15), the following equation can be obtained:

e⊤1 ˙̄α = −e⊤1 [S(ωd)]ᾱ (17)

where ᾱ = Ω(αd)(α − αd). We define a new variable y = e⊤1 ᾱ = (1 − cos(ε))(α − αd), which
equals zero if and only if α = αd. Hence, the derivative of y is as follows:
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ẏ =
−e⊤1 [S(ωd)]Ω(αd)

1 − cos(ε)
y

= (ωd3cos(αd) + ωd2sin(αd))cot(
ε

2
)y

(18)

For the convergence of the system (17), we select αd = pi
2 , so ε can be designed as follows:

ε = −|εr|sgn(ωd2), εr ∈ (0.2 ∗ pi) (19)

3.2. Dynamic Controller Based on the Small Gain Theorem

In this section, we adopt the IT2-FLS to estimate the unknown parts of the model
(10) and then combine the small gain theorem and the backstepping method to design a
new robust attitude dynamic controller. On this basis, considering the saturation charac-
teristic of the controller, a saturation auxiliary system is introduced to further modify the
robust controller.

In Section 3.1, the kinematic control input u ∈ R3×1 is given. This includes the
expected pitch angular velocity ωd

y , the expected yaw angular velocity ωd
z , and a virtual

control input α̇. The variables ωd
y and ωd

z are the desired values of the model (10), that
is, ωd = [ωd

y , ωd
z ]
⊤. The error is defined as eω = ω − ωd. τ is divided into τ1 and τ2. τ1

ensures the practical stability of the underactuated AUVs’ attitudes, whereas τ2 is a robust
compensation term used to improve the disturbance immunity of the attitude control. τ2 is
designed as follows. {

ẋ = A1x + Beω + A2u
τ2 = Bx

(20)

where A1, A2 ∈ R2×2 is a positive definite parameter matrix, B ∈ R2×2 is a unit matrix, and
u is an auxiliary input variable.

Theorem 2. For the underactuated AUV model (10), the controller is designed as τ1 = −k3eω −
Θ̂⊤ξ + J0ω̇d, the robust controller input τ2 is designed as (20), the auxiliary input u = −2A−1

2 A1x,
and the IT2-FLS updating law is designed as ˙̂Θ = −2βΘ̂ + e⊤ω ξ; these can ensure that the attitude
system is ISPS, where Θ̂ and ξ are the weight vector and the basis function of the IT2-FLS,
respectively, and k3, β ∈ R2×2 are positive definite matrices.

Proof. The attitude control system can be established as two interconnection systems H1
and H2 as follows:

H1 :

{
ėω = J−1

0 (τ1 + τ2 + d)− ω̇d

y1 = eω

H2 :

{
ẋ = A1x + Beω + A2u
τ2 = Bx

(21)

For the system H1, we choose the Lyapunov candidate as V1 = 1
2 e⊤ω J0eω + 1

2 Θ̃⊤Θ̃, where
Θ̃ = Θ − Θ̂. Taking its derivative as follows.

V̇1 = e⊤ω τ1 + e⊤ω τ2 + e⊤ω Θ⊤ξ − e⊤ω J0ω̇d − Θ̃⊤ ˙̂Θ (22)

Substituting τ1 and ˙̂Θ into (22) and 2βΘ̃⊤Θ̂ = β||Θ||2 − β||Θ̂||2 − β||Θ̃||2, the result can be
recast as follows.

V̇1 ≤ −k3||eω ||2 − β||Θ̃||2 + e⊤ω τ2 + β||Θ||2 (23)

Because τ2 = y2 and Θ can be used as the external input, the following must hold.

V̇1 ≤ −λs(K)V1 +
1

2ϑ
||y2||2 + β||Θ||2 (24)
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where K = diag
{
(k3 − ϑ

2 ), β
}

. Integrating the above equation in the interval of [0, t] is easy
to obtain as follows:

V1(t) ≤ e−2λs(K)tV1(0) +
1

2ϑ

∫ t

0
e−2λs(K)(t−τ))||y2||2dτ

+
∫ t

0
e−2λs(K)(t−τ))||Θ||2dτ

(25)

The square root of the above equation is calculated to obtain

||eω || ≤ e−λs(K)t||eω(0)||+
1√
2ϑ

c||y2||+
√

k2c||Θ|| (26)

where c =
√

1−e−2λs(K)t

2λs(K)
. The H1 system is ISPS.

For system H2, we choose the Lyapunov candidate V2 = 1
2 x⊤x. By performing

derivative calculations, we can also obtain the following:

||x|| ≤ e−λs(A1− ϑ
2 )||x(0)||+ 1√

2ϑ
c||y1|| (27)

Therefore, the following inequality must hold:

||y2|| ≤ λb(B)e−λs(A1− ϑ
2 )t||x(0)||+ λb(B)√

2ϑ
c||y1|| (28)

The H2 system is ISPS(ISS). For system H1, α3(s) = λs(K)s2, α4(s) = 1
2ϑ s2, and there exist

α1(s) and α2(s) that are K∞ functions. Its gain is γH1 = α−1
1 ◦ α2 ◦ α−1

3 ◦ α4(s). For system
H2, α3(s) = λs(A)s2, α4(s) = 1

2ϑ s2, and there exist α1(s) and α2(s) that are K∞ functions.
Its gain is γH2 = α−1

1 ◦ α2 ◦ α−1
3 ◦ α4(s). According to Definitions 1 and 2, when the overall

control parameters satisfy 2ϑλ2
s (K) ≤ λs(A), the entire system is ISPS.

3.3. Dynamic Controller with Input Saturation

Considering the impact of control input saturation characteristics on system perfor-
mance, this section introduces a saturation auxiliary system to compensate for this effect.
The auxiliary system is designed as follows:

λ̇ =

{
−Kλλ − (e⊤ω ∆τ/||λ||2)λ + eω |∆τ| ̸= 0
eω |∆τ| = 0

(29)

where ∆τ denotes the error of the control input, that is, ∆ = sat(τ)− τ, λ represents the
state variable of the auxiliary system, and Kλ ∈ R2×2 denotes the gain parameter.

Remark 3. In |∆τ| ̸= 0, the denominator has no solution when λ = 0. To avoid unsolvable
situations, when |λ| < ϵ,λ̇ = 0. When |λ| ≥ ϵ, λ̇ is still (29). ϵ is a small positive constant.

Theorem 3. Considering the saturation characteristics of the control input, the controller is
designed as τ1 = −k3eω − Θ̂⊤ξ + J0ω̇d − λ, the robust controller input τ2 is designed as (20), the
auxiliary input u = −2A−1

2 A1x, the IT2-FLS updating law is designed as ˙̂Θ = −2βΘ̂ + e⊤ω ξ, and
the saturation auxiliary system is designed as (29), which can ensure that the attitude stabilization
is practically asymptotically stable.
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Proof. We choose the Lyapunov candidate as V = 1
2 e⊤ω eω + 1

2 Θ̃⊤Θ̃ + 1
2 x⊤x + 1

2 λ⊤λ. The
control input is τ = τ1 + τ2. When ∆τ ̸= 0 and |λ| > ϵ, we take its derivative of time and
substitute τ, the updating laws, and (29) into the result, which can be written as follows:

V̇ ≤ −k3||eω ||2 − β||Θ̃||2 − λs(A1)||x||2 − Kλ||λ||2

+ β||Θ||2 + 2λb(B)|x||eω |
≤ −(k3 − λs(B))||eω ||2 − β||Θ̃||2 − Kλ||λ||2

− (λs(A1)− λs(B))||x||2 + β||Θ||2

(30)

When ∆τ = 0 and |λ| > ϵ, the derivative of the Lyapunov V is as follows:

V̇ ≤ −(k3 − λs(B))||eω ||2 − (λs(A1)− λs(B))||x||2

− β||Θ̃||2 + β||Θ||2
(31)

When |λ| < ϵ, the system tends to stabilize, and |∆τ| = 0. Hence, the derivative of the
Lyapunov V is as follows.

V̇ ≤ −(k3 − λs(B)− 1
2
)||eω ||2 − (λs(A1)− λs(B))||x||2

− β||Θ̃||2 + β||Θ||2 + 1
2
|ϵ|2

(32)

When the system is in the adjustment process, on the basis of (30), we define A =
diag((k3 − λs(B)), β, (λs(A1)− λs(B)), Kλ) and integrate (30) from 0–t; the result can be
obtained as follows:

||p|| ≤ e−λs(A)t||p(0)||+
√

βc||Θ|| (33)

where c =
√

1−e−2λs(A)t

2λs(A)
, p = [eω, Θ̃, x, λ]⊤. Therefore, vector p is bounded and exhibits

exponential convergence. The convergence speed is related to matrix A, and the final
convergence bound is determined by the initial state and Θ. When |λ| < ϵ, Kλ = 0, the
system error is also bounded and satisfies

||p|| ≤ e−λs(A)t||p(0)||+
√

βc||Θ||+ 1√
2

c||ϵ|| (34)

In summary, the system error is bounded and directly related to the initial state. The
closed-loop system is ISPS. The steady-state error of the system is caused by two factors.
The first factor is the introduction of the transverse function in the kinematic controller
(Theorem 1), where the parameter ε of the transverse function cannot be zero, resulting
in a small error in the attitude error z. The second factor is due to the introduction of
the dynamic controller (20). By using the Lyapunov theorem to prove the stability of the
system, the error inequality (34) can be obtained. The overall system error must satisfy
||p|| ≤ k||p(0)||+ δ, where k = e−λs(A)t and δ is a bounded small constant.

4. Simulation Results

To verify the effectiveness and robustness of the proposed controller, simulation
verification is conducted, and the results are compared with those of [21,23]. The proposed
controller in [21] is called “Comparison 1”, and the proposed controller in [23] is called
“Comparison 2”. The simulation object is the “REMUS100” underactuated AUV, and its
hydrodynamic parameters are listed in Appendix A. The compared controllers in [21] are
as follows.

τ = −Cω − Dω − g − A−1 f⊤d (k1ur + k2νR + fdΦ) (35)

where νR = (z−z⊤)∨

2
√

1+tr(z)
, Φ = 2 −

√
1 + tr(z), k1 = diag{0.21, 0.21, 0.07} and

k2 = diag{12.4, 23.5}. The simulation step is 0.1 s, and the simulation time is 800 s. The
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initial angle of the AUV is set as θ(0) = 0◦ and ψ(0) = 0◦. The initial angular velocity is
ωy(0) = 0 rad/s, and ωz(0) = 0 rad/s. The initial α(0) = 0.15 rad, the initial weight vectors
Θ(0) and the basis function vectors ξ(0) are random numbers in (0, 1). The initial state
λ(0) of the auxiliary system is set as 1 and x(0) = 0. ωd = [0, 0, 0]⊤. The input boundary
for controlling torque is [−15, 15] N/m. The disturbance vector dis is set as follows:

dis =

−0.1 sin(0.02πt) + 0.2 cos(0.02πt)
0.2 sin(0.02πt)− 0.3 cos(0.02πt)
−0.2 sin(0.02πt) + 0.1 cos(0.02πt)


4.1. Selection of the Controller Parameters

On the basis of (19), we select αd = π
2 , and the parameter εr is selected as 0.8. According

to (33) and (34), to obtain faster response speed, the minimum eigenvalue of matrix A
should be sufficiently small. However, to minimize the margin of error, the parameters c
and β should be smaller; that is, the minimum eigenvalue of matrix A should be sufficiently
large. To solve the steady-state error of this method, we strive to ensure that the initial
state is not significantly different from the expected state as much as possible and that the
selection of controller parameter A should be as large as possible to reduce the impact of
the initial state on the errors. However, excessively large parameters can slow the response
speed of the system. Meanwhile, the transverse function parameter ε should be kept as
small as possible and can be chosen to be approximately 0.01. Hence, the parameters k3,
A1, B, and Kλ should be chosen eclectically. Table 1 shows the selection of the parameters.

Table 1. The controller parameter selection in the simulation.

Parameters
Value

Pitch Channel Yaw Channel

A1 10 10
B 1 1

Kλ 2 2
k1 0.15 0.11
k3 23.5 22.5
β 0.2 0.2
ϵ 0.01 0.01

The basis function of the IT2-FLS is as follows:

µi
FUMF

φ
= exp(−(

φ − mφ1 + mφ2i
mφ3

)
2

)

µi
FUMF

φ
= exp(−(

φ − mφ4 + mφ25
mφ6

)
2

)

where φ denotes the state of the AUV and φ = [p, q, r, ϕ, θ]⊤; mφ1,4 = [1, 1, 0.2, 2π, π],
mφ2,5 = [0.5, 0.5, 0.1, π, π/2], and mφ3,6 = [0.25, 0.25, 0.05, π/2, π/4].

4.2. Controller Performance Verification

This section validates the performance of the proposed controller via two different
underwater task scenarios. We use three metrics to evaluate the performance of the
controller: the integral of square error (ISE) J1 =

∫ T
0 te2(t)dt, the integral of time square

error (ITSE) J2 =
∫ T

0 te(t)2dt, and the controller energy (CE) J3 =
∫ t

0 u(t)2dt. ISE is used to
evaluate the response speed and stability, ITSE is used to evaluate the steady-state error,
and CE is used to evaluate the control input energy consumption. However, there is a
significant difference in the magnitude of the three indicators. Therefore, we normalize the
results. For example, result = ISE1/(ISE1 + ISE2 + ISE3). Among them, ISE1 represents the
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ISE of the proposed controller, ISE2 is the ISE of the Comparison 1 method, and ISE3 is
the ISE of the Comparison 2 method. Other indicators are also calculated in the same way.
The smaller the performance indicators of the corresponding controllers are, the better the
controller is.

4.2.1. Scenario 1

At present, the use of Euler angles for the vertical diving attitude control of AUVs
exhibits singularity. The proposed controller can meet the task requirements of AUV
vertical diving. Therefore, the desired attitude angle is set as θd = 90◦ and ψd = 0◦.

Our goal is to make the error attitude rotation matrix Re equal to the identity matrix
I3×3 and the matrix Re ≈ I + S(r). When vector r is equal to zero, Re ≈ I. Hence, we use
vector r to represent the attitude error. Figure 3 shows the attitude stabilization errors of
the proposed controller and the controller in [21,23]. Although the comparison methods
can converge quickly, they have larger steady-state errors. The proposed controller can
converge the attitude error to a certain range in the presence of an external disturbance
and an unknown model. This further proves that the controller is practically exponentially
stable. Figure 4 shows the control input of the two controllers. Under the influence of
disturbances, the controller is continuously adjusted. In the initial stage, the proposed
controller input is only in a saturation state for 2 s, whereas the saturation state of the
Comparison 1 controller lasts for 7 s.

Figure 3. The attitude stabilization error.

Figure 4. The control input.
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Figure 5 compares the indicators of the three controllers. Based on the analysis of ISE,
ITSE, and CE, we can conclude that the proposed controller outperforms the compared
algorithms in terms of response speed, steady-state error, system stability, and robustness.
In terms of energy consumption, there is not much difference between the two methods.

Figure 5. The comparison of indicators.

Figures 6 and 7 show the IT2-FLS weight vectors, and the auxiliary system state λ can
quickly converge to a stable value. Figure 8 shows that the proposed controller can ensure
a sufficiently small range of attitude changes near the desired attitude, that is, achieve
practical attitude stabilization. Figure 9 shows the motion trajectory of the underactuated
AUV in vertical diving.

Figure 6. The weight vectors of the IT2-FLS.
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Figure 7. The auxiliary system state λ.

Figure 8. The quaternion of the underactuated AUV.

Figure 9. The diving trajectory of the underactuated AUV in scenario 1.
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4.2.2. Scenario 2

To further verify the effectiveness of the controller, an underwater operation scenario
with continuous attitude changes is designed, and the desired attitude design is

θd =

{
75◦ 0 s ≤ t ≤ 500 s
−75◦ 200 s < t ≤ 500 s

ψd = 0◦. The simulation time is 1000 s.
Figure 10 shows the attitude stabilization error. The proposed controller can ensure

that the underactuated AUV completes attitude switching smoothly and maintains a
sufficiently small steady-state error. Figure 11 shows the control input curves. As the
disturbance changes, the control input also constantly changes. At the moment of attitude
switching, the control input undergoes a sudden change and quickly converges. Figure 12
shows the comparison results of three indicators. For ISE and ITSE, the proposed controller
performs better, and its response speed, stability, and robustness are better than those of
the comparison methods. In terms of the CE indicator, there is not much difference.

Figure 10. The attitude stabilization error.

Figure 11. The control input.
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Figure 12. The comparison of indicators.

Figures 13 and 14 show the convergence of the IT2-FLS weight vectors and auxiliary
system state λ. They can achieve good convergence to a fixed value. Figure 15 shows the
quaternion of the underactuated AUV. The proposed controller has a smaller steady error
than the comparison method does; even for more complex attitude switching tasks, this
method can still ensure practical stabilization of the AUV attitude. Figure 16 shows the
motion trajectory of the underactuated AUV in this scenario.

In the subsequent experiments, our experimental subject is a 20-kilogram small AUV.
It is equipped with four thrusters that can control five degrees of freedom except for
roll. We first conduct controller testing on the AUV within a small pitch angle range
(−45 degrees∼45 degrees) in the vertical plane, completing two consecutive small-scale
continuous profiles. Afterwards, the AUV’s profile observation control capability will
be tested with a large pitch angle. Like in scenario 2, the expected pitch angle is set to
±75 degrees, and two profile observation missions are completed. Finally, the control
capability of vertical ascent and descent in simulation scenario 1 is tested. All the above
tests analyze the stability, stability error, and robustness of the controller separately. Among
them, robustness testing is conducted in the wave-making pool.

Figure 13. The weight vectors of the IT2-FLS.
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Figure 14. The auxiliary system state λ.

Figure 15. The quaternion of the underactuated AUV.

Figure 16. The diving trajectory of the underactuated AUV in scenario 2.

5. Conclusions

To avoid the singularity of Euler angles and the ambiguity of quaternions, this study
adopts SO(3) and designs the transverse function of the attitude to solve the attitude con-
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trol problem of underactuated AUVs. To avoid the unsolvable phenomenon of traditional
error functions, the exponential mapping of SO(3) is used to design attitude kinematic con-
trollers. IT2-FLS is used to approximate model uncertainty and ocean current disturbances.
Moreover, to improve the robustness of the system, the small gain theorem is adopted to
design the dynamic controller and ensure the practical input–output stability of the system.
A new saturation auxiliary dynamic system is designed to compensate for the impact of
actuator saturation characteristics. Finally, simulations in two different scenarios confirmed
that the proposed controller can ensure the practical attitude stabilization of underactuated
AUVs. However, this method has steady-state errors, and the errors are related to the initial
state. In the future, we will conduct field experiments to validate this method and achieve
asymptotic convergence of the system. We will also improve the transverse function (13)
to make it an invertible matrix in all cases, such as when auxiliary variables are used.
Moreover, the form of the dynamic controller (20) will be further modified such that its
stability is no longer related to the initial error state.
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Appendix A. Hydrodynamic Parameters

The model inertia matrix is M = diag{31.511, 8.33, 8.33}. The model Coriolis and
centripetal matrix is

C = [−30.6vr + 30.6wq,−3.3pr + 0.3(wq − vr), 3.3pq]⊤

The quadratic and linear frag matrix is as follows: D = [−1.62u|u| − 35.5wq − 1.93q2 +
35.5vr − 1.93r2,−3.18w|w| + 188q|q| + 2uq + 1.93vp − 4.86rp − 24uw, 3.18v|v| + 94r|r| +
2ur + 1.93wp + 4.86pq + 24uv]⊤. The model hydrostatic vector is g = [0,−3 sin(θ), 0]⊤.
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