
Citation: Xu, Z.; Shen, Y.; Xie, Z.; Liu,

Y. Research on Autonomous

Underwater Vehicle Path

Optimization Using a Field Theory-

Guided A* Algorithm. J. Mar. Sci. Eng.

2024, 12, 1815. https://doi.org/

10.3390/jmse12101815

Academic Editor: Rafael Morales

Received: 9 September 2024

Revised: 4 October 2024

Accepted: 9 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Research on Autonomous Underwater Vehicle Path Optimization
Using a Field Theory-Guided A* Algorithm
Zhiyuan Xu 1 , Yong Shen 2, Zhexue Xie 2 and Yihua Liu 1,*

1 Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China; 19963846305@163.com
2 Ningbo Dagang Pilotage Co., Ltd., Ningbo 315812, China; sheny@nbport.com.cn (Y.S.);

xiezx@nbport.com.cn (Z.X.)
* Correspondence: liuyh@shmtu.edu.cn

Abstract: Autonomous Underwater Vehicles (AUVs) have become indispensable tools in the fields
of ocean exploration, resource exploitation, and environmental monitoring. Path planning and
obstacle avoidance are crucial to improve the operational capabilities of AUVs. However, most
algorithms focus only on macro-global or micro-local path planning and rarely address both problems
simultaneously. This study extends the classical A* algorithm by integrating field theory principles.
The resulting Field Theory Augmented A* (FT-A*) algorithm combines the constraints in the AUV’s
dynamics and the threats posed by obstacles to ensure a safe navigation distance. The paths planned
by the FT-A* algorithm were subsequently re-optimised in conjunction with Dubins curves, taking
into account path smoothness and redundant node problems. Simulation experiments confirm
that the improved algorithm can effectively help AUVs navigate safely around obstacles, which
greatly improves navigation safety and increases the arithmetic power and navigation efficiency. The
proposed FT-A* algorithm provides a robust solution for underwater path planning and demonstrates
great practical value for AUV operation in complex marine environments.

Keywords: Autonomous Underwater Vehicle; A* algorithm; FT-A* algorithm; path planning; field
theory

1. Introduction

Path planning for Autonomous Underwater Vehicles (AUVs) has been a hot topic of
interest and challenge. This is attributed to its great potential in areas such as scientific
research and underwater operations. In recent years, due to the advancement of science and
technology as well as the growing demand for marine exploration, underwater submarines
have been playing an increasing role in various marine applications, such as mine clearance,
pipeline maintenance, and marine environment monitoring [1–3]. Path planning is essential
for AUV navigation. The underwater collision avoidance problem is fundamentally a path
planning challenge, requiring AUVs to find safe routes from start to finish. Given the
complexity and uncertainty of the underwater environment, AUVs must be sufficiently
intelligent to navigate autonomously in such conditions [4].

In recent years, various solution methods have been developed and applied to the
collision-free path planning problem for underwater robots, and these methods can be
broadly classified into two main categories, i.e., local path planning algorithms and global
path planning algorithms [5].

Micro-local planning algorithms such as rapidly exploring random trees (RRTs), fuzzy
logic algorithms, and algorithms for neural networks (ANNs) are widely used for AUV
navigation. The RRT algorithm searches for paths in a high-dimensional state space and
performs superiorly for non-convex obstacles and complex environments. Its stochastic and
stepwise growth characteristics make it suitable for most continuous state space planning
problems. However, the paths generated by RRTs are usually not optimal solutions, with
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poor real-time performance and stability [6–8]. The fuzzy logic algorithm takes into
account the uncertainty of the environment, such as sensor noise or uncertainty of obstacle
locations due to the dynamics of the environment. The algorithm enhances the ability of
the system to adapt to the environment; however, the algorithm suffers from drawbacks
such as insufficiently accurate mathematical models and lack of systematicity [9,10]. Neural
network algorithms mainly learn the features of the environment and optimal paths by
training neural networks to achieve intelligent path planning [11]. Common algorithms
are deep reinforcement learning (DRL) [12] and convolutional neural networks (CNN).
However, applying these algorithms in path planning usually requires a large amount
of training data and the design of complex neural network structures to achieve good
results [13].

Macro-global path planning algorithms include the genetic algorithm (GA), particle
swarm optimization (PSO), ant colony optimization (ACO), and A* algorithms. Genetic
algorithms have a powerful global search capability, but convergence is slower and less
stable [14]. The particle swarm algorithm has the advantage of a fast search time, but is
prone to fall into local optimum [15]. The ant colony algorithm has the advantage of a
high search capability and is highly efficient, but is characterised by slow pre-convergence
when used for path planning [16]. The traditional A* algorithm, as a heuristic algorithm,
has the characteristics of simplicity, high efficiency, and an optimal search path, which
is the research hotspot of path planning today [17–19]. Considering the plasticity of the
traditional A* algorithm itself, several scholars have improved it. In order to shorten the
search time, Szczerba and Cai et al. [20,21] proposed a sparse A* search algorithm, which
uses the maximum steering angle and the maximum path length as the constraints of
the basic search algorithm. Subsequently, Chen et al. [22] constructed an obstacle search
space by randomly distributing points based on the sparse A* search algorithm, combined
with a visibility detection method under the constraint of the maximum turning radius
to make AUV paths smoother. Li and Zhang [23] designed a multi-directional search A*
algorithm, which reduces the number of search nodes in order to obtain the optimal path.
Traditional A* algorithms often simplify the object of study to a point mass, ignoring the
key feature that AUVs have a physical volume. This simplification fails to take into account
the complexity of the dynamic and variable underwater environment and ignores the fact
that AUVs have six degrees of freedom of motion underwater. Therefore, it lacks practical
significance to simply consider AUVs as particles and apply them directly to underwater
path planning problems. In contrast, this study focuses on refining the traditional A*
algorithm by incorporating the concept of field theory. The conventional A* algorithm
excels in macroscopic global path planning, efficiently identifying the optimal route from
the starting point to the destination. Field theory, on the other hand, offers robust support at
the microscopic level, enabling the newly planned path to effectively avoid collisions within
local areas, thereby ensuring both the safety and efficiency of navigation. To summarise,
the constraints that must be taken into account when AUVs perform the path planning
problem include the following two points.

• Limitations of kinematic characteristics

Due to the complex underwater environment and the limitation of an AUV’s own
kinematic characteristics, an AUV does not have the flexible steering ability and acceleration
of cars on the road. Considering the kinematic characteristics of AUVs in path planning
will greatly improve safety during navigation.

• Threat cost of obstacles

Considering the shape, position, and other information of the obstacles, as well as the
complexity of the seabed environment, a suitable safety distance threshold is determined,
so as to ensure that the planned path has stronger practical significance.

In light of these constraints, this paper proposes an innovative approach by integrating
field theory with the traditional A* algorithm to address the specific challenges in AUV
path planning. The main contributions of this work can be summarised as follows:
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• A hybrid optimisation algorithm (FT-A*) is formed by combining field theory and
the A* algorithm to compensate for the lack of local obstacle avoidance ability of the
traditional A* algorithm in microscopic conditions.

• Redefining G and H as weighted combinations of safety potential energy values and
Euclidean distances not only takes into account the kinematic properties of the AUV
itself, but also incorporates the threat cost of obstacles into path planning.

• The redundant node removal algorithm is proposed to perform redundant node
removal to improve the arithmetic power and search efficiency while ensuring the
security of the planned path.

The rest of this paper is organised as follows: Section 2 introduces the kinematics and
dynamics model of the AUV. Section 3 introduces the concept of a potential energy field,
proposes the FT-A* algorithm on the basis of the A* algorithm, and further improves the
FT-A* algorithm for the problems of redundant nodes and path smoothness. In Section 4,
simulation experiments are conducted to analyse and compare the operation results of
various algorithms, which prove that the improved FT-A* algorithm has considerable
robustness. Finally, the whole paper is summarised.

2. Mathematical Modelling of an AUV
2.1. Coordinate Framework and Motion Parameter Specification

The dynamics study for an AUV is usually described in two coordinate systems,
i.e., an Earth-fixed coordinate system and body coordinate system, as shown in Figure 1.
OE − xEyEzE is the Earth-fixed coordinate system, the origin of which is a point on the
horizontal plane, and it has three axes in three directions, namely xE, yE, zE, which is also
known as the static coordinate system. OB − xByBzB is the body coordinate system, the
origin of which is usually chosen in the center of gravity of the AUV, and it has three axes
in three directions, respectively xB, yB, zB. This coordinate system is often referred to as
the moving coordinate system because it changes with the moving state of the AUV. The
motion parameters and symbols used to describe these dynamics are listed in Table 1.
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Figure 1. Earth-fixed and body coordinate systems.

Table 1. Motion parameters and symbols for AUV.

Position and Angle L-Vel and A-Vel * Force and Torque

coordinate system NED-Frame B-Frame B-Frame
Surge xE u X
Sway yE v Y
Heave zE w Z

Roll ϕ p K
Pitch θ q M
Yaw ψ r N

* L-vel and A-vel are abbreviations for linear velocity and angular velocity.
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The definitions of displacement vector η, velocity vector v, and thrust vector τ of
the AUV are shown in Equations (1)–(3). The external force acting on the AUV can be
represented by the external force vector τ1 = [X, Y, Z]T , where X, Y, Z are the forces
received by the AUV in the directions OB − xB, OB − yBOB − zB, and OB − zB, respectively.
And the external moments to which the AUV is subjected can be expressed by the external
moment vector τ2 = [K, M, N]T , where K, M, N represent the roll, pitch, and yaw moments
to which the AUV is subjected, respectively.

η = [x, y, z, ϕ, θ, ψ]T (1)

v = [u, v, w, p, q, r]T (2)

τ= [X, Y, Z, K, M, N]T (3)

2.2. The Kinetic Modelling of AUVs

By considering the various forces and moments of the AUV, comprehensive equations
covering attitude and position variations can be derived to analyse in depth the complex
kinematic properties of the AUV. The general description of the six-degree-of-freedom
dynamical equations for the motion of the AUV is provided as follows [24]:{ .

η = J(η)v
M

.
v + C(v)v + D(v)v + g(η) + τw = τ

(4)

where η = [x, y, z, ϕ, θ, ψ]T is the displacement vector; v = [u, v, w, p, q, r]T is the velocity
vector; x, y, z are positions along surge, sway, and heave directions; ϕ, θ, ψ denote the
Euler angles of the underwater vehicle in the Earth coordinate system; u, v, w denote linear
velocities along surge, sway, and heave directions; p, q, r denote rotational velocities in
roll, pitch, and yaw motions; J(η) denotes the Jacobi transformation matrix; M denotes the
system inertia matrix; C(v) is the Coriolis-centripetal matrix; D(v) is the hydrodynamic
damping matrix; g(η) denotes the restoring force vector from gravity and buoyancy; and τ
denotes the propulsive and rotational torques.

By selecting the spindle, the system inertia matrix is defined as:

M =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 Iz

 (5)

The Coriolis-centripetal matrix is defined as:

C =


0 0 0 −mv
0 0 0 mu
0 0 0 0

mv −mu 0 0

 (6)

The hydrodynamic damping matrix is defined as:

D(ν) =


Xu + Xu|u||u| 0 0 0

0 Yv + Yν|y|v||v| 0 0
0 0 Zw + Zw|w|w| 0
0 0 0 Nr + Nr|r|r||r|

 (7)
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τ = [Tu, Tv, Tw, 0, 0, Tr]
T , where Tu, Tv, Tw Tr are the variables of the AUV in the

direction of longitudinal surge, longitudinal sway, heave, and yaw, respectively. The
kinematic equations of the AUV are shown in Equation (8):

.
x = ucosψ − vsinψ
.
y = usinψ + vcosψ

.
z = w
.
ψ = r

m
.
u − mvr + Xuu + X|u|u|u|u = Tu

m
.
v + mur + Yvv + Y|v|v|v|v = Tv
m

.
w + Zww + Z|w|w|w|w = Tw
Iz

.
r + Nrr + N|r|r|r|r = Tr

(8)

In order to explore the collision avoidance problem of AUVs in underwater navigation,
a PX-210 AUV with a weight of 70 kg is used as an example, and its navigation speed ranges
from 0 to 4 knots. Without considering special cases, we make the following assumptions:
(1) the centre of mass (CM) coincides with the centre of gravity (CG) and the centre of
buoyancy (CB); and (2) since the AUV has a small amount of inertia in the water and its
maximum travel speed is only 4 knots, the effects of small-angle rolls and pitches (e.g.,
1 to 5 degrees) on its travel path are negligible. Based on the fact that the motions of
the AUV in the direction of roll and pitch have a minimal effect on its overall dynamics
(ϕ = θ = 0; p = q = 0), these motions can be considered negligible factors in practice [25].

2.3. Kinematic Equations for AUVs

The kinematic model characterizes the AUV’s motion by describing its position,
velocity, and acceleration, while excluding the forces or moments responsible for generating
these movements.

Since the displacement vector η and the velocity vector v are represented in two
different coordinate systems, a coordinate transformation is required to relate the parameter
information in different coordinate systems.

In particular, the transformation relationship between the position parameter informa-
tion under the B-Frame and the position parameter information under the NED-Frame is
as follows: xE

yE
zE

 = R

xB
yB
zB

 (9)

where R is a passive linear velocity transformation matrix used to convert the velocity
vector of the AUV in the B-Frame to the velocity vector in the NED-Frame. This conversion
is based on the attitude angles of the AUV (i.e., roll, pitch, and yaw) and is realized by
matrix multiplication to transform the velocity in the coordinate system.

R =

cos ϕcos θ cos ϕsin θsin φ − sin ϕcos φ cos ϕsin θcos φ + sin ϕsin φ
sin ϕcos θ sin ϕsin θsin φ + cos ϕcos φ sin ϕsin θcos φ − cos ϕsin φ
−sin θ cos θsin φ cos θcos φ

 (10)

The velocity transformation relationship between the two coordinate systems adheres
to the aforementioned transformation rules. However, it is important to note that this
transformation is only applicable to the velocity at the centre of mass (CM). If the velocity at
other points on the AUV is considered, additional factors from rigid body dynamics, such
as angular velocity, must be taken into account. The transformation relationship between
the velocity parameter information under the B-Frame and the NED-Frame is as follows: .

xE.
yE.
zE

 = R

 .
xB.
yB.
zB

 = R

u
v
w

 (11)
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The conversion relationship between the angular velocity under the B-Frame and the
angular velocity under the NED-Frame is as follows:

.
ϕ
.
θ
.
ψ

 = T

 .
xB.
yB.
zB

 (12)

where T is the angular velocity conversion matrix.
This is obtained by combining Equations (9)–(12):

.
xE.
yE.
zE.
ϕ
.
θ
.
ψ


=

[
R 03×3

03×3 T

]


u
v
w
p
q
r

 (13)

3. Methodology
3.1. Traditional A* Path Planning Algorithm

The A* algorithm is a well-established heuristic search algorithm for solving the path
planning problem for ground-based AUVs. It continuously evaluates the cost of neigh-
bouring nodes and obtains the best neighbouring nodes until the goal is reached [18]. The
algorithm uses heuristics to search for the goal location, where n denotes the current node;
F(n) is the total distance cost from the starting point to the end point; G(n) is the actual
distance cost from the starting point to the current node; and H(n) is the estimated distance
cost from the current node to the goal point (usually expressed in terms of Euclidean
distance). Overall, the A* algorithm is used to minimise the total distance cost F(n):

F(n) = G(n) + H(n) (14)

The A* algorithm is a widely used pathfinding and graph traversal algorithm that
combines the best features of Dijkstra’s algorithm and greedy best-first-search algorithm. It
is designed to find the shortest path from a starting node to a target node in a weighted
graph, while also being efficient by using heuristics to guide the search.

The A* algorithm consists of two main data structures: the OPEN list and the CLOSE
list. The OPEN list stores nodes that have been generated but not yet examined, while
the CLOSE list stores nodes that have already been visited and examined. The algorithm
iteratively expands nodes, evaluates their neighbours, and updates the lists until the target
node is found.

1. Put the starting point as the 1st node into the CLOSE list and calculate the evaluation
function of up to 26 surrounding nodes.

2. Put these nodes and node information into the OPEN list. If the current node already
exists in the OPEN list, compare the evaluation function value of the node and update
the node information of the node with the smaller evaluation function value in the
OPEN list.

3. In the OPEN list, select the node with the smallest evaluation function value as the
child node of the current node.

4. Take the selected child node as the parent node and, at the same time, put its node in-
formation into the CLOSE list, use the new parent node and then child node expansion
and calculate the evaluation function value of each child node.

5. Compare the evaluation function value to the new child node and keep updating the
OPEN and CLOSE list until the target node is searched.

The A* algorithm, as a classical global path planning algorithm, has been widely used
in the field of autonomous driving. However, although the paths planned according to this



J. Mar. Sci. Eng. 2024, 12, 1815 7 of 22

algorithm have the shortest distances, the limitations of the algorithm itself lead to more
constraints when applying it directly to the path planning problem of AUVs.

• Due to the complex underwater environment and the limitation of AUV’s own kine-
matic characteristics, AUV cannot steer and accelerate as flexibly as land vehicles.
Therefore, fully considering the kinematic characteristics of AUVs in path planning
will significantly improve the safety of planned paths.

• The shape and position of obstacles and the complexity of the undersea environ-
ment are considered comprehensively to determine the appropriate safety distance
threshold, so as to ensure that the planned path has stronger practical significance.

• Although the A* algorithm follows the shortest path principle, it still needs to improve
the smoothness of the path and solve the problem of too many steering points.

3.2. Introduction and Analysis of the FT-A* Algorithm

Field is initially a basic concept in physics, and with the development of the idea
of field theory, it has been abstracted into a mathematical concept for describing the
distribution law of a certain physical quantity or mathematical function in space, i.e.,
there is a correspondence between any point in a region of space and a definite physical
quantity [26–28]. In two-dimensional traffic, a microscopic traffic flow model based on
the potential energy field theory can well characterise the driving risk of a vehicle (ship)
in motion [29]. Applying this theory to the path planning problem of an underwater
vehicle can be a good solution to the kinematic characterisation constraints inherent in the
movement of an AUV as well as the threat cost constraints of obstacles.

In this paper, field theory is applied to analyse the entire process of AUV navigation
underwater. This approach helps in understanding both the macroscopic and microscopic
aspects of AUV’s movement and interaction with the environment. From the macroscopic
point of view, the AUV always sails towards the destination, so there is a traction potential
field between the destination and the AUV, which constantly pulls it to the destination to
avoid aimless sailing underwater. From the microscopic point of view, the AUV colliding
with obstacles will bring about a great loss, so it is necessary to avoid obstacles during the
sailing process, thus there is a safety potential field between the AUV and obstacles, which
guides the AUV to travel in the safety area and finally reach the destination. The schematic
is shown in (Figure 2), where (a) is the environment constructed, (b) is the traction potential
field, and (c) is the safety potential field.
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Figure 2. Schematic diagram of potential energy field construction. (a) Schematic diagram of environ-
ment modeling and obstacle distribution; (b) Schematic of the traction potential field; (c) Schematic
diagram of the safety potential field.

3.2.1. The Gravitational Field

The destination exerts a gravitational force on the AUV, guiding the AUV towards its
constant motion (similar to the heuristic function h in the A* algorithm). The AUV will
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always be affected by the traction potential energy field until it reaches the destination.
Let the destination be the zero potential energy point of the traction potential energy
field, E f (destination) = 0, and the starting point has a traction potential energy value of
1, E f (origin) = 1. Points at different locations have varying values of traction potential
energy, and in the case where the AUV does not arrive at the destination, the difference in
the traction potential energy that exists between the point at the location of the AUV and
the destination triggers the AUV’s motion, which moves from the high potential energy
point to the low potential energy point, as shown in (Figure 3). Once the AUV reaches the
destination, it is no longer subjected to traction and thus stops moving. The position of the
starting point is po = [xo, yo, zo] and the position of the destination point is pd = [xd, yd, zd].

Where ∆E f (p1, pd) denotes the potential energy difference between point p1 and the
end point, ∆E f (p2, pd) denotes the potential energy difference between point p2 and the
end point, and ∆E f (po, p2) denotes the potential energy difference between the starting
point and point p2. Within the framework of the traction potential energy field, ∆E f (p1, pd)
denotes the potential energy difference between point p1 and the destination point pd.
Similarly, ∆E f (p2, pd) represents the potential energy difference between point p2 and the
destination. Additionally, ∆E f (po, p2) captures the potential energy variation between
the starting point po and point p2. These potential energy differences, as defined by the
traction potential energy field, are crucial for evaluating the overall path cost by reflecting
the energetic interactions between key points along the planned trajectory.

The traction potential energy function at any p-point underwater is as follows:

E f
(

xp, yp, zp
)
=

√(
xp − xd

)2
+

(
yp − yd

)2
+

(
zp − zd

)2√
(xo − xd)

2 + (yo − yd)
2 + (zo − zd)

2
(15)

The potential energy difference function at any two points p1, p2 underwater is
as follows:

∆E f (p1, p2) = E f (xP1, yP1, zP1)− E f (xP2, yP2, zP2) (16)

The AUV always moves from the direction of the high potential energy gradient
to the direction of the geopotential energy gradient in the direction of the potential
energy difference:

−−−−−→
∆E f (p1,p2)

=
(xi+1 − xi, yi+1 − yi, zi+1 − zi)√

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2

(17)

In order to visualise the value of the traction potential energy at each point and the
potential energy relationship, the potential energy formula is analysed as shown in Table 2.

Table 2. Analytical table of potential energy formulas.

Point Value of the Traction Potential Energy Potential Difference

Origin (po ) E f (origin) = 1 ∣∣∣∣∣−−−−−→∆E f (p1,pd)

∣∣∣∣∣ =
∣∣∣∣∣−−−−−→∆E f (p2,pd)

∣∣∣∣∣
−−−−−→
∆E f (p1,pd)

̸=−−−−−→
∆E f (p2,pd)∣∣∣∣∣−−−−−→∆E f (p2,po)

∣∣∣∣∣ =
∣∣∣∣∣−−−−−→∆E f (p2,pd)

∣∣∣∣∣
−−−−−→
∆E f (p2,po)

=−−−−−→
∆E f (p2,pd)

p1

E f
(

xp1 , yp1 , zp1

)
=√

(xp1−xd)
2
+(yp1−yd)

2
+(zp1−zd)

2√
(xo−xd)

2+(yo−yd)
2+(zo−zd)

2

p2

E f
(

xp2 , yp2 , zp2

)
=√

(xp2−xd)
2
+(yp2−yd)

2
+(zp2−zd)

2√
(xo−xd)

2+(yo−yd)
2+(zo−zd)

2

Destination (pd ) E f (destination) = 0
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3.2.2. The Safety Potential Field

When AUV navigates underwater, if it collides with an obstacle, the loss may be
incalculable, so how to prevent the collision from occurring is a problem worth studying.
The traditional A* algorithm has the characteristics of simplicity, high efficiency, and
optimal search path in the path finding process. However, the algorithm regards the target
as a prime point, and when it is directly applied to the underwater path planning problem,
it ignores the threat cost of the surrounding obstacles and its own dynamic constraints. To
improve this algorithm, we apply field theory to establish the safety potential energy field
of the AUV, through which the effect of obstacles on the AUV’s navigation on the seabed
is represented.

The size of the range of the AUV’s own safety potential energy field is determined by a
variety of factors. For example, under the influence of navigational environment conditions,
if navigating in an area with complicated terrain and more undercurrents, the AUV needs a
larger safety potential energy field to ensure the safety of navigation. Due to the limitation
of its own performance and dynamics, the AUV with more powerful propulsion system
and more sensitive control system can adopt a smaller safety potential energy field. In
addition, different mission requirements and changes in water depth also affect the size of
the potential energy field. Figure 3 shows the safety potential energy field of an AUV when
navigating underwater.
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Where →
V

is the velocity vector of the AUV, σxt , σyt , σyt denote the radius of influence

of the AUV at time t, respectively, and the red ellipsoid enclosing the AUV is the safety
potential energy field of the AUV itself.

The influence of different locations of obstacles on the AUV’s navigation safety is
directly reflected in different safety potential energy values. When the obstacles and the
AUV are farther away, the influence of the safety potential energy field is smaller and the
“repulsive force” is smaller. On the contrary, when they are close to each other, the influence
of the safety potential energy field is large and the “repulsive force” on the AUV is stronger.
The modelling of the function is expressed as follows:

E0(xt, yt, zt) =
b

2πσ′
xt σ

′
yt σ

′
zt

e
− (x−xt)

2

2σ′2xt
− (y−yt)

2

2σ′2yt
− (z−zt)

2

2σ′2zt (18)

where, E0(x, y, z) denotes the safe potential energy value of the submerged point (x, y, z),
(xt, yt, zt) denotes the position of the obstacle’s centre at moment t, and b is a scaling factor
used to adjust the potential energy field between the calculated potential energy value and
the actual degree of obstacle influence on the AUV to account for the actual influence of
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the obstacle on the AUV’s motion. The radius of influence of the potential energy field σ′
xt ,

σ′
yt , σ′

zt will be dynamically adjusted according to the velocity and acceleration of the AUV
in order to adapt to the actual state of motion of the AUV. We can introduce the velocity
vector v = (u, v, w) and the acceleration vector

.
v, as well as the influence τ + τE caused by

propulsion and environmental factors.
The radius of influence is adjusted to the following:

σ′
xt , σ′

yt , σ′
zt = σ

(
1 + kv||v||+ ka

∣∣∣∣ .
v
∣∣∣∣+ kτ ||τ + τE||

)
(19)

where σ is the initial radius of influence and represents the standard sphere of influence of
the potential energy field in the absence of external dynamics (e.g., velocity, acceleration,
or external forces). kv, ka, and kτ are adjustment coefficients used to adjust the spread
of the potential energy field according to the magnitude of velocity, acceleration, and
external force.

The FT-A* algorithm proposed in this paper is an improvement on the traditional A*
algorithm, which enhances the path planning capability of AUVs in complex environments
by introducing a safe potential energy field. In the FT-A* algorithm, instead of characterising
the operating cost in the traditional A* algorithm in terms of distance, the G-value is
redefined as the sum of the safety potential energy values passing through all nodes on the
path. This reflects the potential energy value accumulated in the safety potential energy
field for the path from the starting point to the current node. To represent the heuristic
function of the G-value using an integral formula, the following equation is presented:

G =
∫

Flag d(close-set) (20)

where, Flag = E(p) is the potential energy value of each node in the safe potential energy
field, (close-set) refers to the list of nodes that have been traversed, and d(close-set) denotes
the cumulative summation of each node in the CLOSE list.

In traditional A* algorithms, the H-value is usually based on the Euclidean distance or
the Manhattan distance. In the FT-A* algorithm, the H-value is redefined as a weighted
combination of the security potential cost and distance from the current node to the target
node. Not only the security potential energy value of the target node is considered, but
also the spatial distance from the current location to the end point. The expression of the
H-value heuristic function is shown below:

H = H(Deuclid) + H
(
Epot

)
(21)

H
(
Epot

)
is the weighted value of the potential energy value of this raster.

H(Deuclid) is the weighted value of the Euclidean distance from the current node to
the end point; the mathematical expression is as follows:

Deuclid =

√(
xp − xend

)2
+

(
yp − yend

)2
+

(
zp − zend

)2 (22)

In summary, the value of H is as follows:

H = α · E(P) + E(end)
2

+ β ·
√(

xp − xend
)2

+
(
yp − yend

)2
+

(
zp − zend

)2 (23)

α and β are weighting parameters to adjust the relative importance of potential and
distance costs in the total cost. When the distance from the target node is far or in an open
and relatively safe area, the distance weight β should be increased to make it approach
the target node quickly. And in waters closer to obstacles or in more complex underwater
environments, α should be adjusted to meet the positional requirements.
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We define ω as the ratio of the Euclidean distance from the current node to the
target node to the Euclidean distance from the starting point to the target node, using the
mathematical expression below:

ω =
Deuclid

(
xp,yp,zp,xend,yend,zend,

)
DMax

(24)

α =


α0, ω ≤ ωl

ω−2ωl+ωi
2(ωi−ωl)

× (αi − α0) + α0, ωl < ω ≤ ωi

0.5α0, ω > ωi

(25)

β =


βl , ω ≥ ωs

ωu−ω
ωu−ωs

× (βu − β0) + β0, ωs ≤ ω < ωu

β0, ω < ωu

(26)

α0, β0 are the potential energy weights when the underwater environment is more
complex and the obstacles are denser.

αi, βu are the potential energy weights when the AUV is farther away from the
obstacles.

ωl and ωi are two thresholds relative to the potential energy value, which correspond
to the boundaries where the potential energy weight transitions from the base weight to
increase or decrease, respectively.

ωu and ωs correspond to the thresholds where the distance weights transition from
the base weights to increase or decrease, respectively.

In areas with more complex or dangerous environments, α > β to emphasise safety.
In regions that are open, far from the end point, and relatively safe, α < β to optimise

the path length and improve navigational efficiency.
As shown in Figure 4, the local traction potential energy field between AUV navigation

paths is established, the obstacles are covered with the potential energy field, and the value
at the centre of the grid represents the potential energy value Eo(p) of the network p. The
nodes to be traversed are indicated using open-set, and the nodes that have already been
traversed are indicated using close-set.
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Taking the data in the grey box on the right side of the picture as an example, −158 de-
notes the total evaluation cost in the A* algorithm, i.e., F in the A* algorithm; −148 denotes
the generation value of all nodes of the route path from the starting point, i.e., G in the A*
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algorithm; −10 in the lower right corner of the grid denotes the weighted generation value
from the raster to the destination, i.e., H in the A* algorithm; and in the centre of the grid,
Flag = E(p) denotes that the generation value of the current generation value of the grid
is −10.

The FT-A* algorithm has the following innovations compared to the traditional
A* algorithm:

(1) The G-value and H-value are redefined. Compared to the traditional algorithm that
uses distance as a criterion to evaluate the cost of a path, the FT-A* algorithm uses
the weighted value of the potential energy value and distance as the new criterion,
which takes into account the kinematic characteristics of the AUV itself as well as the
threat cost of the obstacles, and helps to avoid planning a path that passes through
the high-risk areas directly even though they may be the shortest possible paths.

(2) The size of the potential energy field is not fixed, but can be dynamically adjusted
according to the kinematic characteristics of the AUV (e.g., parameters such as velocity
and acceleration). This dynamic adjustment allows the potential energy field to adapt
to instantaneous changes in the environment, enabling the AUV to maintain efficient
and safe navigation when in different undersea environments.

3.3. Improved FT-A* Algorithm

The introduction of potential energy fields solves the problem of searching for local
shortest paths and obstacle avoidance for AUVs, but the inherent flaws of the algorithm
result in the found paths still not being optimal. The limitations of the algorithm are
summarised in this section as follows:

(1) The paths generated by the FT-A* algorithm need to be improved in terms of smooth-
ness and continuity, and the oversteering does not match the actual situation of AUV
underwater navigation.

(2) It still cannot completely solve the dynamic constraint problem. Particularly, the
steering angle change of AUV during underwater navigation is not considered. As
shown in Figure 5, at a certain moment, its steering angle changes more than 180◦

compared with the previous moment.
(3) The traditional A* algorithm produces too many redundant nodes, leading to ineffi-

cient search.

For the path optimisation problem, some current research has considered the dy-
namic constraint problem of the research object to make the path smoother. For example,
Liang et al. (2013) used the maximum steering angle as a constraint for path planning
of unmanned surface vehicle (USV) [30]. Zhang et al. used Dubins curves to satisfy the
steering angle constraints of the AUV [31]. Petres (2007) considered the AUV’s dynamics
equations to control the curvature of the planned path [32]. However, the above studies
are independent of the position information of the AUV itself, which makes it difficult to
effectively improve the navigation efficiency of the AUV. For this reason, to address the
above limitations, the algorithm designed in this paper first calculates the potential energy
values between nodes through a path simplification method using a mathematical model
and removes the redundant nodes to improve the navigation efficiency. Secondly, for the
problem of sharp turns in the path, the path is smoothed by combining the Dubins curve to
ensure that the path improves smoothness and continuity under the premise of meeting
the steering angle limit of the AUV, as shown in Figure 6.
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3.3.1. Removal of Redundant Nodes/Path Simplification

In order to improve the efficiency of navigation and to solve the problem of redundant
nodes, which often occurs in traditional algorithms, we simplify the planned route (as
shown in Figure 7). This simplification aims to reduce unnecessary steering points while
maintaining the integrity of the path. The path simplification process is described by the
following mathematical model:

(1) Calculation of potential energy value

The safe potential energy value at the spatial coordinates (x, y, z) is E(x, y, z)
(2) Defining nodes and paths

Root node: O
Sub nodes: A, B, C, D. . .. . .
Connect the line segments: PiPi+1, where Pi = (xi, yi, zi), Pi+1 = (xi+1, xi+1, xi+1), and

all the raster points on the path between Pi and Pi+1 are the set Si,i+1.

(3) Comparison of potential energy between nodes

Let the potential energy values of all grid points through which the connected line
segment PiPi+1 passes be the set Vi,i+1, where

Vi,i+1 = {E(x, y, z)|(x, y, z) ∈ Si,i+1} (27)

(4) Decision-making rules

If Vi,i−1 = Vi,i+1, then Pi is viewed as a redundant node and is removed from the path
and continues to be checked backward; otherwise, Pi continues to be retained.
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3.3.2. Path Smoothing Process

Redundant nodes are eliminated through potential energy comparison, yet issues
like sharp turns and inadequate path smoothing persist. To enhance path practicality
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and navigation efficiency, it is crucial to consider the AUV’s kinematic characteristics,
particularly the steering angle limitations, during path smoothing. To address this, we
integrate Dubins curves with the FT-A* algorithm to refine path smoothness and continuity
while adhering to the AUV’s kinematic constraints. Dubins’ 1975 research identified that
the shortest path between two points in a plane, considering minimum turning radius and
steering limits, combines arcs and straight lines. This approach not only optimizes path
smoothness but also aligns with the AUV’s directional and speed requirements underwater.

(1) Dubins path existence determination

When designing the Dubins path, it is essential to find the tangent point between
the straight-line segment and the two circular arcs. If such a tangent point cannot be
determined, the Dubins path does not exist. This process is illustrated in Figure 8, which
shows the geometric relationship between the straight line and the circular arcs. The
mathematical expression for this condition is as follows:{

|rt − rs| < |c|
|rt + rs| < |c| (28)

where rt denotes the radius of the terminating arc, rs denotes the radius of the starting arc,
and c denotes the length of the line joining the centres of the two arcs.
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Figure 8. Schematic diagram of Dubins path curve.

(2) Parameter calculation

For the path planning problem with known start position point and end position point,
once the existence of Dubins path is verified by Equation (28), then there exists the path
designed to improve the FT-A* algorithm by using Dubins curves, and solving this path
only requires solving the parameters of the Dubins path, and solving the parameters of
the path is performed by the differential vector method, assuming that the start point is

S, the end point is T, and the position transformation. The vector
→
P is expressed using a

mathematical model as follows:

→
P =

→
r1s −

→
r1t +

→
a +

→
r2s −

→
r2t (29)
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where
→
r1s,

→
r1t,

→
r2s and

→
r2t are the centre vectors of the starting and ending arcs, respectively,

→
a is a linear vector, as shown below:

→
r1s
= rs

[
sin α
−cos α

]
→
r2s = rsR(θ1)

[
sin α
−cos α

]
→
a = aR(θ1)

[
cos α
sin α

]
→
r 1t = −rtR(θ1)

[
sin α
−cos α

]
→
r 2t = −rtR(−θ2)R(θ1)

[
−sin α
−cos α

]
(30)

where R(θ1) is the rotation matrix.
This is obtained by substituting Equation (30) into (29) and simplifying as follows:

C1√
C1

2 + C2
2

sin(α− θ1)−
C2√

C1
2 + C2

2
cos(α− θ1) =

−(r1 + r2)√
C1

2 + C2
2

(31)

where {
C1 = xt − xs − r1sin α − r2sin β
C2 = yt − ys + r1cos α + r2cos β

(32)

xs, ys, xt, yt denote the horizontal and vertical coordinates of the start point and
the termination point, respectively, and C1, C2 are the horizontal and vertical coordinate
differences based on the start point and the termination point.

A basic angle value γ0, calculated based on the coordinate difference between the start
point and the termination point, has the mathematical expression shown below:

γ0 = arcsin(
C2√

C2
1 + C2

2

) (33)

If the quadrant position in the actual coordinate system is considered, the basic angle
value γ is adjusted by the following conditions:

γ =


γ0 i f C1 > 0, C2 > 0

2π + γ0 i f C2 < 0, C1 > 0
π − γ0 i f C1 < 0

(34)

From Equation (31)

θ1 =

 2kπ − arcsin−(r1+r2)√
C2

1+C2
2
+ α − γ

(2k − 1)π + arcsin−(r1+r2)√
C2

1+C2
2
+ α − γ

(35)

Since α − θ1 + θ2 = β, after solving θ2, we can solve for the centre of circle O1 and O2,
as well as the tangent points PS and PT of straight line and circular arc (the starting and
ending points of straight line portion) by analytical geometry. O1 and O2 are the starting
and ending arc circumcentric angles of the path obtained by FT-A* algorithm through the
smoothing process of Dubins curve, and the complete path curves can be plotted by the
known parameters of paths above. The path curve can be plotted by knowing the above
path parameters, and the optimised path, according to this method, not only takes into
account the steering angle constraints of the AUV, but also solves the problem of insufficient
smoothness of the path.
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4. Simulation Experiment and Analysis

In order to verify the accuracy of the results, simulation experiments were conducted
using MATLAB R2022b to compare the traditional A* algorithm, the FT-A* algorithm, and
the improved FT-A* algorithm. Subsequently, in order to further enhance the evaluation
quality of this study, two algorithms most suitable for the current experimental validation
scenario, the RRT* algorithm and the EACO algorithm, were selected as the control group
as a means of verifying the outstanding advantages of the improved FT-A* algorithm.

These two algorithms are chosen as a control group because of their excellent perfor-
mance in path planning. The RRT algorithm is widely recognized in 3D path planning,
especially in multi-obstacle and non-linear environments. However, due to its non-heuristic
nature, it is difficult to guarantee globally optimal paths. RRT* introduces a powerful global
path planning feature that fills the gap of RRT, thus addressing this limitation. In contrast,
ACO (ant colony optimization) is highly praised for its powerful global optimization poten-
tial, which allows for dynamic path adjustment in complex, obstacle-laden environments.
However, the inherent stochastic nature of ACO makes it susceptible to local optimization,
a problem that can be mitigated by EACO (enhanced ACO).

The primary objectives of this simulation study are threefold:

1. Simulation Setup: To thoroughly describe the route planning process of the FT-A*
algorithm, establishing the simulation framework for path generation.

2. Comparative Analysis: To conduct a comparative analysis of the planned paths gener-
ated by different algorithms, assessing their performance across a variety
of conditions.

3. Robustness Testing: To evaluate the robustness of the improved FT-A* algorithm,
confirming its ability to generate feasible paths in environments of varying complexity.

4.1. Simulation Experiment

Firstly, basic parameter information setting was established. As shown in Table 3:

Table 3. Parameterisation.

Parameter Value

Map size 400 × 400 × 400
Origin (20, 20, 20)

Destination (480, 480, 480)
Maximum speed 4

This simulation experiment sets up three working conditions, i.e., the implementation
of all algorithms under six obstacles, eight obstacles, and ten obstacles. The experimental
environment is shown in Figure 9; the results of the run are shown in Figure 10.
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Figure 10. Display of experimental results under different algorithms. (a–c): A* algorithm’s op-
erating path under different operating conditions; (d–f): FT-A* algorithm’s operating path under
different operating conditions; (g–i): Improved FT-A* algorithm’s operating path under different
operating conditions.

Next, the experimental results were considered.
The experimental results for the control group are shown in Figure 11, where the blue

lines represent the paths planned by the traditional algorithm and the red lines indicate the
paths planned by the improved algorithm.
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The results of the running statistics are reflected in Table 4:

Table 4. Analysis of operational results.

A* FT-A* RRT* EACO Im FT-A*

Six obstacles
Distance (m) 648.3 664.7 651.3 653.1 657.4

Number of nodes 9766 9864 13,916 19,156 6753
Search time (s) 0.26 0.31 1.28 6.74 0.69

Eight obstacles
Distance (m) 640.7 656.3 644.8 661.6 648.7

Number of nodes 10,322 10,376 16,483 23,248 6458
Search time (s) 0.29 0.43 2.06 7.71 0.67

Ten obstacles
Distance (m) 639.5 672.4 647.9 658.4 667.1

Number of nodes 10,218 10,421 19,042 26,391 6137
Search time (s) 0.38 0.57 2.97 8.78 0.74

4.2. Analysis of Experimental Results

The results indicate that the improved FT-A* algorithm significantly enhances the
efficiency and performance of path planning while ensuring the safety and feasibility of the
generated paths. In the control group, both the RRT* and EACO algorithms generate better
path distances compared to the improved FT-A* algorithm; however, these algorithms
primarily focus on avoiding geometric collisions, aiming to prevent direct impacts without
considering the threat levels of obstacles or other environmental factors (e.g., the closer
an obstacle is, the greater the associated threat). Consequently, the paths generated by
the RRT* algorithm are often positioned dangerously close to obstacles. A similar issue is
present in the EACO algorithm, which addresses the shortcomings of the ACO algorithm
in terms of path smoothness. However, the stochastic nature of EACO during the explo-
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ration phase leads to slow convergence and higher computational demands. Furthermore,
EACO fails to model the kinematic characteristics of the AUV (such as steering radius and
speed limitations), treating the AUV as a point mass. This results in paths that remain
unacceptably close to obstacles, making EACO unsuitable for direct application in AUV
path planning.

In contrast, the improved FT-A* algorithm greatly enhances navigation capability in
complex underwater environments, reducing computational resource consumption while
maintaining excellent path quality. The advantages of the improved algorithm become
increasingly apparent in more complex operational environments. For instance, in a simple
environment with six obstacles, arithmetic power consumption decreases by 31.1% at the
expense of path length, while in a more complex environment with ten obstacles this
reduction reaches 37.8%, and both greatly improve navigational safety. This research is
expected to be applied to more complex environments.

5. Summary and Outlook

The algorithm proposed in this paper enables accurate and safe path planning for
AUVs, thus ensuring safe travelling of AUVs in complex multi-obstacle environments.
Firstly, the kinematic and dynamic models of AUVs and their six-degree-of-freedom mo-
tions underwater are understood with respect to the basic characteristics of AUVs. On this
basis, the concept of field theory is introduced, and the FT-A* algorithm is proposed, which
makes up for the shortcomings of traditional A* algorithms that tend to treat the study
object as a prime point, ignoring its own dynamic constraints and obstacle threat costs.
After solving the navigation safety problem, considering that the algorithm may generate a
large number of redundant nodes as well as insufficient path smoothness and continuity,
the improved FT-A* algorithm is further proposed to improve the navigation efficiency
and remove the redundant nodes. The results of the simulation experiments show that the
algorithm has significant advantages in terms of security and executability compared with
the traditional A* algorithm and other good path planning algorithms and is expected to
support related fields in future practical applications.

However, some limitations of the algorithm need to be noted.

(1) The algorithm proposed in this paper is an empirical algorithm with potential ap-
plications and shows good performance under specific conditions, but there is no
guarantee that the searched paths are optimal paths, and it may not be suitable for
large-scale navigation in unknown environments.

(2) In practical applications, the target area of an AUV is usually a sea area rather than a
point, so when the AUV navigates to the end point, it may cause oscillations at the
end point boundary due to the influence of the safety potential field of the obstacle.

(3) Although the effectiveness of the algorithm has been validated under ideal conditions,
in real applications, the underwater environments in which AUVs are located tend to
be complex and variable, with high demands on the accuracy of the environmental
maps, which may pose a greater challenge to the implementation of the algorithm.
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