
Citation: Yang, X.; Zhang, Y.; Li, R.;

Zheng, X.; Zhang, Q. Learning

Underwater Intervention Skills Based

on Dynamic Movement Primitives.

Electronics 2024, 13, 3860. https://

doi.org/10.3390/electronics13193860

Academic Editor: Cecilio Angulo

Received: 20 August 2024

Revised: 26 September 2024

Accepted: 26 September 2024

Published: 29 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Learning Underwater Intervention Skills Based on Dynamic
Movement Primitives
Xuejiao Yang 1,2,3 , Yunxiu Zhang 1,2, Rongrong Li 4, Xinhui Zheng 1,2,3 and Qifeng Zhang 1,2,*

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China

2 Key Laboratory of Marine Robotics, Liaoning Province, Shenyang 110169, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 College of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
* Correspondence: zqf@sia.cn

Abstract: Improving the autonomy of underwater interventions by remotely operated vehicles
(ROVs) can help mitigate the impact of communication delays on operational efficiency. Currently,
underwater interventions for ROVs usually rely on real-time teleoperation or preprogramming by
operators, which is not only time-consuming and increases the cognitive burden on operators but
also requires extensive specialized programming. Instead, this paper uses the intuitive learning
from demonstrations (LfD) approach that uses operator demonstrations as inputs and models the
trajectory characteristics of the task through the dynamic movement primitive (DMP) approach
for task reproduction as well as the generalization of knowledge to new environments. Unlike
existing applications of DMP-based robot trajectory learning methods, we propose the underwater
DMP (UDMP) method to address the problem that the complexity and stochasticity of underwater
operational environments (e.g., current perturbations and floating operations) diminish the represen-
tativeness of the demonstrated trajectories. First, the Gaussian mixture model (GMM) and Gaussian
mixture regression (GMR) are used for feature extraction of multiple demonstration trajectories to
obtain typical trajectories as inputs to the DMP method. The UDMP method is more suitable for
the LfD of underwater interventions than the method that directly learns the nonlinear terms of
the DMP. In addition, we improve the commonly used homomorphic-based teleoperation mode to
heteromorphic mode, which allows the operator to focus more on the end-operation task. Finally, the
effectiveness of the developed method is verified by simulation experiments.

Keywords: learning from demonstration; underwater intervention; ROV; dynamic movement
primitives

1. Introduction

In the late 1970s, remotely operated vehicles (ROVs) became the main tool for un-
derwater interventions, and operators located on the mother ship or shore base remotely
operated the ROV to accomplish underwater interventions such as sampling, operating
valves, welding, etc. [1,2]. The joystick currently used to control the underwater manipu-
lator and the underwater manipulator has the same configuration of degrees of freedom,
similar shapes, and proportional sizes, and the operator remotely operates the underwa-
ter manipulator directly in the joint space by referring to the underwater video of the
feedback, while the ROV adopts a handle for remote operation [3]. This model has very
high cognitive requirements for the operator, especially during delicate operations [4].
Additionally, as ocean exploration moves toward deeper and longer-term operations,
the concept of resident ROVs has been introduced to reduce personnel and costs at sea by
changing communication links [5,6]. However, the long-distance transmission of signals
and bandwidth limitations add latency to the underwater operating system, which may
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lead to duplicate or overcorrected commands from the operator, affecting the efficiency of
underwater interventions.

Enhancing the autonomy of underwater interventions reduces the operator’s oper-
ational burden while also helping to mitigate the impact of communication latency on
operational efficiency. In this model, the operator only needs to send out high-level com-
mands, and the slave terminal receives the commands and performs the control tasks in
its own circuits, separating the master and slave control circuits to solve the problems
caused by the time delay. Underwater autonomous intervention has also been a hot re-
search topic in the last decade, and some research projects have begun to demonstrate
underwater autonomous intervention capabilities. The SAUVIM project [7] proposes the
first underwater vehicle able to intervene autonomously on a floating pedestal, where the
operator only needs to confirm that the seafloor recovery target is within the searchable
area during the entire operation process. In the TRITON project [8], vision-based servoing
completes automated docking with underwater panels with a priori knowledge, as well as
valve attachment, rotation, and extraction motions for fixed bases, a process that uses a task
prioritization framework to control the underwater vehicle and manipulator to complete
the gripping task. The PANDORA project [9] aims to provide the underwater vehicle with
the ability to be continuously autonomous, thereby reducing the frequency of requests
for assistance from the mother ship. The project uses a learning by demonstration (LbD)
approach to learn and reproduce the operation process, where a small number of opera-
tor demonstrations based on dynamic movement primitive (DMP) learning are used to
generalize the learned task knowledge into a model, and a hybrid force/motion controller
is used to perform the rotary valve task. To the best of our knowledge, this would be the
first application of demonstration learning techniques for underwater interventions. In the
DexROV project of the EU [10,11], the operator interacts with the real-time simulation envi-
ronment through a wearable manipulator with force feedback to complete the task, and the
remote underwater ROV receives simple high-level semantic commands to complete the
task autonomously, which learns the representation of the task based on a parameterized
hidden semi-Markov model (TP-HSMM).

Due to the dynamic conditions of the underwater environment (current disturbances,
reduced visibility, etc.), realizing autonomous underwater interventions is a considerable
challenge. In addition, different intervention tasks require a lot of programming work. LbD
is one of the most direct and effective skill-learning methods and can be based on existing
underwater teleoperation technology, which is believed to help accelerate the process of
autonomy for underwater interventions.

Most robot behavioral actions are imitated by tracking at the trajectory level. For ex-
ample, in an underwater operation task, the variation in the operation task is usually
between the position of the underwater manipulator and the position of the operation
target, while the essence of the task is the same. Therefore, in this paper, we apply the
method of DMP-based demonstration learning to underwater intervention, and we propose
an underwater DMP (UDMP) method to address the problem of underwater interference
affecting the demonstration trajectories. First, the Gaussian mixture model and Gaussian
mixture regression (GMM–GMR) are used for feature extraction of multiple demonstration
trajectories and regression to obtain typical trajectories. Second, the DMP method is used
to learn that typical trajectory. By learning typical trajectories, the DMP method can be
used to reproduce or generalize already-learned trajectories. This approach is compared
to the one used in [12], which learns the nonlinear terms of the DMP directly. Simulation
experiments show the effectiveness of the proposed method for demonstration learning for
underwater intervention.

The rest of this paper is organized as follows. Section 2 summarizes LbD-related
work in the robotics community and illustrates the incompatibility of existing approaches
for underwater intervention applications. Section 3 describes the ROV system used for
the intervention task. Section 4 presents our proposed learning framework and the main
content of the UDMP approach. Section 5 shows the validity of the proposed method
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through simulation and comparison experiments. Section 6 summarizes our work and
provides our outlook for future research.

2. Related Work

Unstructured work environments increase the difficulty of applying pre-programmed
methods. In contrast, LfD provides an efficient and intuitive way to transfer skills from
humans to robots. Task-relevant prior knowledge is extracted from the demonstration, and
no other prior knowledge or data are required, making it a simple and effective way to
characterize the operator’s actions when completing underwater intervention.

So far, many LfD algorithms have been proposed, such as DMP [13], a stable estimator
of dynamical systems (SEDS) [14], the hidden Markov model (HMM) [15], probabilistic
movement primitives (ProMP) [16], kernelized movement primitives (KMP) [17], and so on.
The DMP method is proposed in [13] for generalizing point-to-point and periodic motions
by learning a single demonstration trajectory. The method uses a spring-damping model
and a nonlinear term to ensure that the generalized trajectory converges to the target point
when imitating the demonstrated skill. The SEDS method, proposed in [14], is based on the
dynamic systems (DS) algorithm and uses a nonlinear solver to optimize the parameters of
a multi-sample GMM to ensure that the system is globally asymptotically stable under a
quadratic Lyapunov function. The KMP method was proposed in [17], which minimizes the
Kullback–Leibler divergence between parameterized and sample trajectories and introduces
a Kernel trick to obtain a non-parametric skill learning model. Due to its generalization,
stability, and robustness properties, DMP has been widely used in robotics to encode
and reproduce motor behaviors such as pouring water [18], painting [19], and obstacle
avoidance [20]. The DMP method has been particularly applied in the collaborative
domain [21] by fusing it with impedance information obtained from electromyography
(EMG)-based methods for estimating the stiffness of human limbs. In [22], collaborative
skills are extracted from a single human demonstration and learned through a Riemannian
DMP, where the learning process is adapted online according to human preferences and
ergonomics to accomplish a human–machine collaborative handling task. In this research,
the position, orientation, and stiffness of human demonstrations are learned to enable the
human-like variable impedance control of robots.

Existing research has focused on manipulators for land-based applications, which
usually require only one demonstration for a task to represent the characteristics of the
taught trajectory since its base is usually cemented to the world. In contrast, an underwater
manipulator is usually fixed to an ROV in a floating operation, and the movement of
the manipulator may affect the movement of the ROV, thus changing the position of
the manipulator’s base coordinates. In addition, due to the current interference in the
underwater environment, the operator needs to resist the motion error caused by the current
interference between the ROV and the manipulator during the teleoperation demonstration,
so the demonstration data usually have a different starting point and end point, which is
different from land manipulator demonstration learning. Therefore, it is not feasible to
directly apply the DMP method, which requires only one acquisition of a typical trajectory
on land, directly to the demonstration learning of an underwater manipulator. Skill learning
for underwater manipulators requires learning multiple sets of demonstrations to obtain
more trajectory features, creating a “1 plus 1 is greater than 2” effect. Currently, methods
based on DMP learning of multiple demonstrations simultaneously focus on estimating
the nonlinear forcing term in the DMP model via GMM [12,23] or obtaining the weight of
the forcing term by transforming the term into solving a linear problem [24]. Inspired by
ProMP and KMP, we use the probabilistic method GMM–GMR to preprocess multiple sets
of demonstration trajectories before applying the DMP method to ensure the convergence of
the trajectories. The aim is to preserve the common features contained in the demonstration
trajectories, which are important for underwater demonstration learning. To illustrate the
infeasibility of migrating the approach for land manipulators directly to underwater, in this
paper, we compare our approach with that proposed in [12].
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3. ROV Teleoperation System
3.1. System Constitution

The underwater teleoperation system consists of four parts (Figure 1): an operation
control center (OCC), a satellite, an ROV, and tasks.

OCC includes an operator and a six-degree-of-freedom joystick with force feedback
(CLAF_mini) to capture the operator’s hand movements. The slave end is an ROV that is in
direct contact with the underwater environment and consists of the main frame, buoyancy
material, power propulsion system, control and energy system, lighting and camera system,
positioning system, and a seven-function underwater manipulator [25]. Table 1 shows the
specifications of the CLAF_mini and ROV.

When the operator accomplishes the underwater intervention task, he expresses the
will to move by controlling the movement of the end of the CLAF_mini. After the mapping
algorithm unit maps the movement of the end of the CLAF_mini to the desired movement
of the ROV, which is transmitted to the ROV via the communication link. While the ROV
executes control commands, the ROV’s status information and the video information of the
surrounding environment are fed back to the OCC through the communication link for the
operator to use as a reference for the next action.

Figure 1. Components of an underwater teleoperation system.

Table 1. The specifications of the CLAF_mini and ROV system.

Item Value

ROV

Design depth 11,000 m
Size (L × H × W) 2.3 m × 1.3 m × 1.5 m
Mass 1470 kg
Thrusters 7

Manipulator
Maximum reach 1.6 m
Function 7
Lift at full extension 20 kg

CLAF_mini
Workspace 0.2 m × 0.2 m × 0.13 m
Force 8.5 N

3.2. Mapping Algorithm

Different from the traditional teleoperation of ROVs in joint space, considering the
operator’s operating habit, we adopt the scheme of motion mapping between the master
and slave in Cartesian space. However, since the master and the slave are heterogeneous,
and the shape and size of the workspace are not the same, we develop workspace map-
ping algorithms to extend the smaller workspace of the master to the larger workspace
of the ROV and the underwater manipulator, while guaranteeing operation accuracy
and efficiency.

For the motion of the ROV, we adopt a velocity-based motion mapping strategy, con-
sidering that it usually performs a wide range of underwater exploration tasks. The desired
velocity of the ROV is as follows:
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vrov_cmd = krov

(
pjoystick_now − pjoystick_init

)
, (1)

where krov is the mapping gain coefficient, and pjoystick_now and pjoystick_init are the current
end position of the joystick CLAF_mini and the initial position of the current control cycle,
respectively. The desired position of the end of the underwater manipulator is as follows:

parm_cmd = parm_now + karm(pmaster_now − pmaster_init), (2)

where karm is the mapping gain coefficient, parm_now is the current position of the end of the
underwater manipulator, and pmaster_now and pmaster_init are the current position of the end
of the manipulator and the initial position of the current control cycle, respectively.

For the orientation of the ROV and the end of the underwater manipulator, we use a
1:1 mapping method to ensure the master–slave end orientation is consistent.

4. Methods

As shown in Figure 2, our learning framework consists of three main parts: multiple
demonstrations, skill learning and generalization, and ROV control.

Figure 2. Overview of the learning framework.

Multiple demonstrations: The operator remotely operates the ROV through the joystick
to accomplish a task multiple times. The resulting demonstration trajectories are then aligned

to the same time frame as the M demonstration trajectories. D =
{
{tn,m, an,m}N

n=1

}M

m=1
is

the output of this module, tn,m denotes the demonstration time, an,m denotes the position,
orientation, velocity and acceleration of multiple trajectories, and N denotes the length of
the sample data.

Skill learning and generalization: To address the problem that underwater environ-
ments (e.g., current perturbations and floating operations) attenuate the features of a single
demonstration trajectory, we first encode multiple sets of multidimensional demonstration
trajectories using GMM–GMR and generate typical trajectories â(t) (position and orienta-
tion) that contain the operational features of an underwater intervention. Then, we use
the extended DMP framework to model, learn, and generalize the typical trajectories of
underwater interventions to obtain the desired trajectories D̂ = {t, â}.

ROV control: The ROV receives the desired velocity command, and the underwater
manipulator receives the desired end-effector position and orientation commands. The
kinematics module is responsible for translating the end-effector position and orientation
commands into the joint space, where the required control commands for each joint are
computed by the underlying PID control.
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4.1. GMM–GMR Preprocessing

To mitigate the influence of the underwater environment on the representativeness
of the demonstration trajectories for underwater interventions, based on the assumption
that each trajectory datum is composed of multiple Gaussian distributions, we use GMM–
GMR to extract the features of multiple demonstration trajectories and fit the regression to
produce a typical, smooth trajectory â(t) that is characteristic of underwater interventions,
so as to achieve the effect of one plus one is greater than two.

4.1.1. Gaussian Mixture Model

The joint probability density of a GMM is defined as follows [26]:

P(t, a) =
K

∑
k=1

αkN (t, a ; µk, Σk), (3)

where ∑K
k=1 αk = 1, and N is the Gaussian probability distribution defined as follows:

N (t, a ; µk, Σk) =
e−0.5([t,a]T−µk)

T
Σ−1

k ([t,a]T−µk)

2π
√
|Σk|

, (4)

where K is the number of Gaussian distributions, αk is the weight, and µk and Σk denote
the mean and the covariance matrix of the kth Gaussian component, respectively.

To better represent the dataset without overfitting because of a large number of
Gaussian components or underfitting because of a small number of Gaussian components,
we use the Bayesian information criterion (BIC) to determine the number of Gaussian
components [27]:

SBIC = −L +
n(K)

2
lg N, (5)

where L = ∑N
j=1 lg(p(t, a)) is the log-likelihood of the model using the demonstrations as a

testing set, n(K) is the number of free parameters required for a mixture of K components,
and n(K) = (K − 1) + K(D + (1/2)D(D + 1)). N is the number of D-dimensional data-
points. The value of K with the smallest value of SBIC is ultimately chosen to achieve a
balance between the fit of the data and the number of parameters required.

The maximum expectation algorithm (EM) is used to estimate the GMM parameters,
where the k-means algorithm is used to initialize the parameters αk , µk, and Σk to mitigate
the sensitivity of the EM algorithm to the initial values [28]. The EM algorithm aims to find
the parameters that maximize the log-likelihood function:

π̂k = arg max
πk

log(p(t, a | πk)). (6)

4.1.2. Gaussian Mixture Regression

We use time t as the query point and estimate the corresponding trajectory values â
via GMR regression [27]. The conditional probability density of a given t is as follows:

P(a | t) ∼
K

∑
k=1

βkN
(
µ̂k, Σ̂k

)
. (7)

As a result, a smooth motion trajectory extracted from a plurality of demonstration
trajectories containing operator demonstration features is represented as follows:

â(t) = µ̂ =
K

∑
k=1

βk

(
µa,k + Σat,k(Σt,k)

−1(t − µt,k)
)

. (8)
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4.2. Cartesian Space Dynamic Movement Primitive
4.2.1. DMP for Position

We use a discrete DMP as the basic motion model, which consists of two parts: a
stiffness damping system and a nonlinear forcing term [13], which can be expressed
as follows: {

τv̇ = Kp(g − x)− Dpv + (g − x0) f (s)
τẋ = v

, (9)

where x, v ∈ R are the position and velocity of the system at a certain moment, x0 ∈ R is the
initial position of the system, and g ∈ R is the target position of the system. Kp, Dp ∈ R+

are the stiffness and damping term coefficients, respectively, and the system is critically
damped when Dp = 2

√
Kp. τ ∈ R+ is the time-scaling coefficient, f (s) is the forcing

term, and s ∈ (0, 1] is a reparameterized representation of time t ∈ [0, T], controlled by a
regular system as follows:

τṡ = −αps, (10)

where αp ∈ R+ is the exponential decay coefficient of the regular system with an initial
value s(0) = 1. The forcing term f (s) is written as follows:

f (s) =
∑N

i=0 ωiψi(s)

∑N
i=0 ψi(s)

s, (11)

where ψi(s) = exp
(
−hi(s − ci)

2
)

is the Gaussian basis function (GBF) with center ci and
width hi. N is the number of Gaussian functions, and when the regular system converges
to the target, the corresponding Gaussian functions are activated, and the forcing term
takes effect.

The above DMP formulation suffers from the problem of cross-zeroing because of the
coupling of the relative position between the target position and the start position with the
forcing term, e.g., when the sign of the target position is changed, the learned trajectory is
also mirrored. Therefore, to overcome the above drawbacks, we use the proposed extended
DMP where the forcing term no longer relies on the relative position between the start and
end points [29,30]: {

τv̇ = Kp(g − x)− Dpv − Kp(g − x0)s + Kp f (s)
τẋ = v

. (12)

The learning process focuses on calculating the weight wi ∈ R that is closest to the
desired forcing term, and we rewrite Equation as follows (12):

fd(s(t)) = 1/Kp
(
τv̇ − Kp(g − x) + Dpv + Kp(g − x0)s

)
. (13)

Thus, the minimized loss function expression is as follows:

Ji =
T

∑
t=1

ψi(t)( fd(t)− wiξ(t))
2, (14)

where ξ(t) = s(t), and it can be obtained by solving the local weighted regression (LWR):

wi =
sTψi fd
sTψis

. (15)

4.2.2. DMP for Orientation

Unlike the position, which can be decoupled into three separate one-dimensional
motions, the set of orientations SO(3) is a three-dimensional manifold that does not allow
for the decoupling scheme described above. In addition, in contrast to rotation matrices, we
use the unit quaternion representation of the orientations because it provides a singularity-
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free, nonminimal representation of the orientations, where a logarithmic mapping function
is used to compute the distance between two quaternions [31,32], and the conjugate of q is
denoted by q̄ = −u + v:

d(q1, q2) =

{
[0, 0, 0]T, q1 ∗ q̄2 = −1 + [0, 0, 0]T

2∥log(q1 ∗ q̄2)∥, otherwise
. (16)

The quaternion logarithm log, S3 7→ R3, is defined as follows:

log(q) = log(v + u) =

{
arccos(v) u

∥u∥ , u ̸= 0
[0, 0, 0]T, otherwise

. (17)

Therefore, the DMP model of orientation can be expressed as follows:{
τη̇ = Ko2 log(go ∗ q̄)− Doη − Ko2 log(go ∗ q̄0)s + Ko f (s)
τq̇ = 1

2 η ∗ q
. (18)

The relation between the quaternion derivative and angular velocity is given by
q̇ = 1

2 ω ∗ q; we obtain η = τω, and ω = 2 log(q1 ∗ q̄2)/dt. Integrating the quaternionic
derivative yields the following:

q(t + ∆t) = exp
(

∆t
2

η(t)
τ

)
∗ q(t), (19)

where the exponential mapping of quaternions R3 7→ S3 is defined as follows:

exp(r) =

{
cos(∥r∥) + sin(∥r∥) r

∥r∥ , r ̸= 0
[0, 0, 0]T + 1, otherwise

. (20)

5. Simulation

The simulation environment is the ROV simulation environment built in the previous
study [25]. In this simulation environment, the ROV has basic video feedback and dynamic
positioning capabilities, and the underwater manipulator has basic functions such as teleop-
eration and joint space PID control. The experiment is run under the Ubuntu 18 operating
system, and Figure 3 shows the composition of the experimental system. The experimental
conditions were set as follows: the ROV was dynamically positioned at a depth of 95 m,
and the fluid density was set to 1028 kg/m³.

To evaluate the performance of our method for learning from demonstrations for
underwater interventions, we compare it to the method in [12], which is an effective
method for solving the problem of learning from multiple demonstrations, except for its
application to robots on land. The approach in this paper we refer to as UDMP, and the
approach in [12], which we refer to as DMP.

Figure 3. The composition of the experimental system.
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5.1. Collection of Multiple Demonstration Trajectories

In this experiment, we assume that the ROV has sailed to the vicinity of the opera-
tional target, and the operator remotely operates the manipulator after turning on dynamic
positioning. We collect six trajectories when the operator completes the valve-gripping task,
the initial state of the ROV is similar in each trajectory, and the operator completes the un-
derwater intervention task based on the feedback video. Figure 4 shows the position of the
demonstration trajectories. Figure 5 shows the orientation of the demonstration trajectories.

The figure shows that the collected trajectories are not smooth, which is due to the fact
that underwater intervention tasks are different from land operation tasks. First, the ROV
operator can only use the video feedback from a limited number of cameras on the ROV
as a reference during teleoperation, while most of the applications on land have global
information feedback. Second, due to the effects of current disturbances and dynamic
positioning errors on the ROV’s position, the ROV operator needs to continuously adjust
the position and orientation during teleoperation to mitigate the effects of the floating base,
whereas most applications on land are based on a fixed base.

Figure 4. The position of the demonstration trajectories.

Figure 5. The orientation of the demonstration trajectories.

5.2. Learning from Multiple Demonstrations

Since the durations of multiple presentations may be different, we regularized the time
of the trajectory set at the same time, after which we used GMM–GMR for operational task
feature extraction as well as regression fitting, as shown in Figures 6 and 7. The Gaussian
component of the position trajectories obtained using the BCI rule is 14, and the Gaussian
component of the orientation trajectories is 11.

The results indicate that the variance (the width of the blue band) becomes progres-
sively smaller as we approach the valve, indicating that the constraints become progres-
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sively stronger due to the same target position and orientation for each demonstration.
The trajectory variance is larger in the initial stage due to the disturbance caused by the
current to the ROV, which makes the initial position and orientation different. The dark
blue curve in the figure indicates the trajectory with typical characteristics obtained af-
ter GMM–GMR preprocessing, which contains the trajectory characteristics of underwa-
ter intervention.

The method in [12] is used to learn and regress the nonlinear term f (s) of the DMP
model directly using GMM–GMR. Figures 8 and 9 show the relationship between s and f (s)
that we obtained using this method. The Gaussian component of the position trajectories
obtained using the BCI rule is 4, and the Gaussian component of the orientation trajectories
is 8. It can be observed that the width of the blue band representing the variance of
the forcing term f (s) first becomes narrower and then wider and then narrower. This is
consistent with the actual operation process, in which the position and orientation of the
end of the underwater manipulator must satisfy the operational requirements of the initial
and final moments, i.e., the constraints are strong, while the constraints of the intermediate
processes are weak.

Figure 6. GMM–GMR preprocessed demonstration trajectories used to obtain the t-a(t) of the position.

Figure 7. GMM–GMR preprocessed demonstration trajectories used to obtain the t-a(t) of the orientation.

Figure 8. Nonlinear term s- f (s) in DMP modeling [12] of demonstration trajectories (position).
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Figure 9. Nonlinear term s- f (s) in DMP modeling [12] of demonstration trajectories (orientation).

5.3. Replication and Generalization of Skill

The purpose of this subsection is to validate the effectiveness of the UDMP method
proposed in this paper for underwater intervention demonstration learning, as well as to
compare it with the DMP method in [12].

The UDMP requires the tuning of three parameters to accommodate different trajectory
behaviors, including the number of Gaussian functions of the nonlinear terms N, the spring
factor K, and the attenuation coefficient α. The DMP requires the tuning of two parameters
to accommodate different trajectory behaviors, including the spring factor K and the
attenuation coefficient α. A higher K causes the system to respond to the target trajectory
more quickly but may cause oscillations. A higher α makes the system converge to the target
quickly. To ensure the smoothness and robustness of the learned trajectories, the parameter
settings for this experiment are shown in Table 2.

We used the DMP and UDMP methods for demonstration reproduction, respectively,
and the reproduction results for position and orientation are shown in Figures 10 and 11.
The reproduction results of the two methods are shown in Table 3. From the results, it can
be observed that the errors of both methods tend to be zero, but compared to the DMP
method, UDMP learns better for the features of underwater interventions, especially in the
orientation dimension, and UDMP can learn better from the demonstrative data which has
little change in orientation.

Table 2. The parameter settings for DMP and UDMP.

Position Orientation

αp Kp Np αp Kp Np

DMP 0.05 0.25 1 900
UDMP 0.05 0.25 50 1 900 50

Table 3. Errors in demonstration replication using DMP and UDMP methods.

Position Orientation

x (m) y (m) z (m) Roll (rad) Pitch (rad) Yaw (rad)

DMP
rmse 0.0037 0.0024 0.0026 0.0073 0.0084 0.0081
max. error 0.0099 0.0053 0.0066 0.0162 0.0178 0.0168

UDMP
rmse 0.0016 0.0007 0.0007 0.003 0.0057 0.0072
max. error 0.0043 0.0021 0.0023 0.0072 0.0139 0.0134

To further validate the learning performance of the UDMP method, we changed the
position of the valve so that it could be approached without changing the orientation. This
is due to the fact that the valve position, i.e., the target position, is usually changed in this
type of underwater intervention task, and the orientation of the underwater manipulator
end-effector when approaching the valve is usually the orientation facing the valve, i.e., it
is similar to the initial orientation of the manipulator end-effector in this experiment. Still,
using the parameters in Table 2, the results after the generalization of the new position
using the DMP method and the UDMP method are shown in Figure 12. The trajectories
obtained from the generalization of both methods converge to the desired new target
position, and the generalization result of the proposed UDMP method is similar to the
shape of the demonstration trajectory, i.e., the constraints in the motion process guarantee
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the phase, while the DMP method is different from the shape of the demonstration trajectory.
Although all of them eventually converge to the target position, the learning of the shape of
the trajectory is the focus of this paper’s research, so the above results show that the UDMP
method proposed in this paper is effective for the application of underwater intervention
demonstration learning.

Figure 10. Position trajectories and errors reproduced by DMP and UDMP methods.

Figure 11. Orientation trajectories and errors reproduced by DMP and UDMP methods (expressed
as RPY).

Figure 12. DMP and UDMP methods for generalizing new target position.
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6. Conclusions

To mitigate the effects of communication delays on underwater intervention tasks
as well as to reduce the cognitive burden on the operator, this paper adopts an intuitive
LfD approach to learn operational skills from a small number of demonstrations, thereby
enhancing the autonomy of underwater intervention. To address the problem that the
complexity and randomness of the underwater operation environment (e.g., current dis-
turbance and floating operation) diminish the representativeness of the demonstration
trajectories, we propose the UDMP method, in which multiple demonstration trajectories
are feature-extracted using GMM–GMR, a typical trajectory is obtained, and then, the
trajectory is modeled using the DMP method. Experiments show that the proposed UDMP
method can extract more motion features than the existing methods that learn the nonlinear
terms of DMP. This is due to the fact that demonstration trajectories of underwater inter-
vention are noisy, and the DMP method that learns the nonlinear term indirectly will lose
some trajectory features, while the proposed UDMP method directly extracts the features
of the taught trajectory first and then proceeds to the learning of the DMP model to retain
more motion features, which is exactly what is required for the learning of demonstration
trajectories of underwater intervention.

The underwater intervention in this paper does not consider operational tasks that
require contact force. In future work, we will consider learning the contact force during
underwater intervention as a way to adapt to more operational tasks.
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4. Sivčev, S.; Rossi, M.; Coleman, J.; Dooly, G.; Omerdić, E.; Toal, D. Fully automatic visual servoing control for work-class marine

intervention ROVs. Control Eng. Pract. 2018, 74, 153–167. [CrossRef]
5. Gilmour, B.; Niccum, G.; O’Donnell, T. Field resident AUV systems—Chevron’s long-term goal for AUV development. In

Proceedings of the 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, 24–27 September 2012; pp. 1–5.
6. Teigland, H.; Hassani, V.; Møller, M.T. Operator focused automation of ROV operations. In Proceedings of the 2020 IEEE/OES

Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020; pp. 1–7.
7. Marani, G.; Choi, S.K.; Yuh, J. Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 2009, 36, 15–23.

[CrossRef]
8. Palomeras, N.; Nagappa, S.; Ribas, D.; Gracias, N.; Carreras, M. Vision-based localization and mapping system for AUV

intervention. In Proceedings of the 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–7.
9. Carrera, A.; Palomeras, N.; Hurtós, N.; Kormushev, P.; Carreras, M. Cognitive system for autonomous underwater intervention.

Pattern Recognit. Lett. 2015, 67, 91–99. [CrossRef]
10. Havoutis, I.; Calinon, S. Learning from demonstration for semi-autonomous teleoperation. Auton. Robot. 2019, 43, 713–726.

[CrossRef]

http://doi.org/10.1016/j.oceaneng.2018.06.018
http://dx.doi.org/10.1016/j.ifacol.2016.10.443
http://dx.doi.org/10.1016/j.oceaneng.2010.03.017
http://dx.doi.org/10.1016/j.conengprac.2018.03.005
http://dx.doi.org/10.1016/j.oceaneng.2008.08.007
http://dx.doi.org/10.1016/j.patrec.2015.06.010
http://dx.doi.org/10.1007/s10514-018-9745-2


Electronics 2024, 13, 3860 14 of 14

11. Gancet, J.; Weiss, P.; Antonelli, G.; Pfingsthorn, M.F.; Calinon, S.; Turetta, A.; Walen, C.; Urbina, D.; Govindaraj, S.; Letier, P.;
et al. Dexterous undersea interventions with far distance onshore supervision: The DexROV project. IFAC-PapersOnLine 2016,
49, 414–419. [CrossRef]

12. Yang, C.; Chen, C.; He, W.; Cui, R.; Li, Z. Robot learning system based on adaptive neural control and dynamic movement
primitives. IEEE Trans. Neural Networks Learn. Syst. 2018, 30, 777–787. [CrossRef] [PubMed]

13. Ijspeert, A.J.; Nakanishi, J.; Schaal, S. Movement imitation with nonlinear dynamical systems in humanoid robots. In Proceedings
of the Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC,
USA, 11–15 May 2002; Volume 2, pp. 1398–1403.

14. Khansari-Zadeh, S.M.; Billard, A. Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Trans. Robot.
2011, 27, 943–957. [CrossRef]

15. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.
[CrossRef]

16. Paraschos, A.; Daniel, C.; Peters, J.R.; Neumann, G. Probabilistic movement primitives. Adv. Neural Inf. Process. Syst. 2013,
26, 2616–2624.

17. Huang, Y.; Rozo, L.; Silvério, J.; Caldwell, D.G. Kernelized movement primitives. Int. J. Robot. Res. 2019, 38, 833–852. [CrossRef]
18. Liao, Z.; Jiang, G.; Zhao, F.; Wu, Y.; Yue, Y.; Mei, X. Dynamic skill learning from human demonstration based on the human arm

stiffness estimation model and Riemannian DMP. IEEE/ASME Trans. Mechatronics 2022, 28, 1149–1160. [CrossRef]
19. Lu, Z.; Wang, N.; Li, Q.; Yang, C. A trajectory and force dual-incremental robot skill learning and generalization framework using

improved dynamical movement primitives and adaptive neural network control. Neurocomputing 2023, 521, 146–159. [CrossRef]
20. Sidiropoulos, A.; Papageorgiou, D.; Doulgeri, Z. A novel framework for generalizing dynamic movement primitives under

kinematic constraints. Auton. Robot. 2023, 47, 37–50. [CrossRef]
21. Yu, X.; Liu, P.; He, W.; Liu, Y.; Chen, Q.; Ding, L. Human-robot variable impedance skills transfer learning based on dynamic

movement primitives. IEEE Robot. Autom. Lett. 2022, 7, 6463–6470. [CrossRef]
22. Liao, Z.; Lorenzini, M.; Leonori, M.; Zhao, F.; Jiang, G.; Ajoudani, A. An Ergo-Interactive Framework for Human-Robot

Collaboration Via Learning From Demonstration. IEEE Robot. Autom. Lett. 2023, 9, 359–366. [CrossRef]
23. Chen, C.; Yang, C.; Zeng, C.; Wang, N.; Li, Z. Robot learning from multiple demonstrations with dynamic movement primitive.

In Proceedings of the 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), Hefei and Tai’an,
China, 27–31 August 2017; pp. 523–528.

24. Ginesi, M.; Sansonetto, N.; Fiorini, P. Overcoming some drawbacks of dynamic movement primitives. Robot. Auton. Syst. 2021,
144, 103844. [CrossRef]

25. Yang, X.; Zhang, Q.; Wang, C.; Liu, X.; Zhang, Y.; Li, D. Development and Construction of a Simulation Platform for a New
R-ROV. In Proceedings of the 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent
Systems (CYBER), Baishan, China, 27–31 July 2022; pp. 1293–1298.

26. Sung, H.G. Gaussian Mixture Regression and Classification; Rice University: Houston, TX, USA, 2004.
27. Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004,

33, 261–304. [CrossRef]
28. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

1977, 39, 1–22. [CrossRef]
29. Hoffmann, H.; Pastor, P.; Park, D.H.; Schaal, S. Biologically-inspired dynamical systems for movement generation: Automatic

real-time goal adaptation and obstacle avoidance. In Proceedings of the 2009 IEEE International Conference on Robotics and
Automation, Kobe, Japan, 12–17 May 2009; pp. 2587–2592.

30. Saveriano, M.; Abu-Dakka, F.J.; Kramberger, A.; Peternel, L. Dynamic movement primitives in robotics: A tutorial survey. Int. J.
Robot. Res. 2023, 42, 1133–1184. [CrossRef]
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