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Abstract: The allocation of tasks among multiple Autonomous Underwater Vehicles (AUVs) with
energy constraints in underwater environments presents an NP-complete problem with far-reaching
consequences for marine exploration, environmental monitoring, and underwater construction. This
paper critically examines the contemporary methodologies and technologies in the task allocation
for multiple AUVs, with a particular focus on strategies that optimize navigation time with energy
consumption constraints. By conceptualizing the multiple AUVs task allocation issue as a Capac-
itated Vehicle Routing Problem (CVRP) and addressing it using the SCIP solver, this study seeks
to identify effective task allocation strategies that enhance the operational efficiency and minimize
the mission duration in energy-restricted underwater settings. The findings of this research provide
valuable insights into efficient task allocation under energy constraints, providing useful theoretical
implications and practical guidance for optimizing task planning and energy management in multiple
AUVs systems. These contributions are demonstrated through the improved solution quality and
computational efficiency.

Keywords: multiple AUVs; task allocation; underwater search; constraint programming

1. Introduction

Autonomous Underwater Vehicles (AUVs) have emerged as essential instruments
in oceanographic research, underwater surveillance, and resource exploration. Their
capacity to function autonomously in hostile and hard-to-reach environments renders
them indispensable for a variety of tasks, including scientific data collection and military
reconnaissance [1]. However, an underwater mission poses distinct challenges, particularly
regarding energy limitations and communication barriers. Efficient task allocation among
multiple AUVs is important for optimizing their performance and fulfilling the mission
objectives within these constraints [2].

In recent years, the task allocation problem for multiple AUVs has garnered significant
attention and has been modeled as a Capacitated Vehicle Routing Problem (CVRP), which
has been proven to be NP-complete. Several approaches have been proposed to address this
problem, including optimization algorithms such as Quantum Particle Swarm Optimiza-
tion (QPSO), Reinforcement Learning (RL), and Multi-Objective Discrete Particle Swarm
Optimization combined with Simulated Annealing (MODPSO-SA). These methods have
effectively improved the computational efficiency and reduced the energy consumption in
task allocation and path planning.

In practical applications, task allocation in multiple AUVs systems is influenced by
several environmental factors, including interference from ocean currents, the dynamic con-
straints of AUVs, and energy consumption. To address these challenges, researchers have
proposed various algorithms and models. For example, Pang et al. (2021) [3] introduced a
QPSO-based task allocation method that can find globally optimal task allocation plans for
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multiple AUVs systems in a constant ocean current environment, significantly improving
the task execution efficiency by optimizing the path length and energy consumption. Simi-
larly, Lu et al. (2020) [4] developed an MODPSO-SA algorithm that addresses local extrema
in task allocation and improves the global search capabilities and energy efficiency.

The task allocation problem for multiple AUVs has also been approached as a time-
constrained optimization issue. Wang et al. (2023) [5] proposed a constraint-driven optimal
control method that uses a minimum input norm objective to achieve energy-aware task
execution. This method enhances computational efficiency through quadratic programming
and avoids task conflicts by adjusting the task priorities, ensuring reliable and energy-
efficient task execution.

Reinforcement Learning has also gained traction in multiple AUVs systems, par-
ticularly in optimizing task allocation in ocean current environments. Ding and Zheng
(2022) [6] designed a reward function to optimize task allocation and introduced the Auto-
matic Policy Amendment Algorithm (APAA) to overcome the slow convergence issue in
the traditional RL approaches. The algorithm leverages cumulative task rewards to rapidly
identify optimal task allocation strategies under complex environmental conditions.

Additionally, research has focused on workload balance and path planning in multiple
AUVs systems. Chen and Zhu (2019) [7] proposed a workload-balanced algorithm that
dynamically assigns tasks through a self-organizing map (SOM) neural network, ensuring
rational task distribution and avoiding energy wastage due to suboptimal path selection.
Qu et al. (2019) [8] also developed an optimized SOM algorithm that reduces computational
time and energy consumption by addressing invalid task assignments.

In the energy-constrained environment of multiple AUVs task execution, optimizing
task allocation and path planning to minimize task execution time and maximize energy
efficiency remains a significant challenge. Bychkov et al. (2019) [9] introduced a two-
level dynamic mission planner that combines evolutionary algorithms with path planning
techniques to manage energy and task allocation during long-term missions. Sarkar et al.
(2018) [10] presented a nearest-neighbor clustering and routing algorithm (nCAR) that
significantly improves the task allocation execution efficiency in large-scale problems and
reduces the energy consumption.

In summary, the underwater search environment is defined by limited energy re-
sources, communication challenges, and dynamic environmental conditions [11]. These
obstacles demand innovative task allocation strategies to enable multiple AUVs to collabo-
rate effectively and efficiently. Energy constraints are especially crucial as they significantly
influence the operational range and duration of AUV missions. The application of a CVRP
framework to multiple AUVs task allocation provides useful theoretical implications and
practical guidance for optimizing task planning and energy management. By combining
techniques such as Particle Swarm Optimization, Reinforcement Learning, and Simulated
Annealing, researchers have significantly improved the quality of the solutions and compu-
tational efficiency, providing strong support for the application of multiple AUVs systems
in complex underwater environments.

This research addresses the multiple AUVs task allocation problem by modeling it as
a Capacitated Vehicle Routing Problem (CVRP) and utilizing the SCIP solver to propose
a strategy that optimizes both navigation time and energy consumption. While several
approaches have been proposed in the field of multiple AUVs task allocation, few studies
have comprehensively addressed the combination of global optimality, energy consumption
optimization, and mission duration. By integrating the mathematical model of a CVRP, this
study offers a novel theoretical framework to tackle this complex problem. Furthermore,
the use of the SCIP solver significantly enhances the computational efficiency of task
allocation solutions, enabling faster and more accurate identification of optimal task plans
in real-world multiple AUVs systems. The contributions of this research not only improve
the solution quality but also provide practical guidance for enhancing the operational
efficiency of multiple AUVs systems in complex underwater environments. The findings
hold important theoretical implications and offer actionable insights for optimizing task
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planning and energy management in future marine applications, supporting sustainable
ocean resource exploration.

In Section 2, we provide in-depth background on the multiple AUVs task alloca-
tion problem, detailing the challenges and complexity of energy-constrained underwater
environments. We explore different task allocation algorithms and introduce the SCIP
solver, which plays a key role in solving the optimization problem. Section 3 focuses on
the methodology, including the problem formulation, modeling approach, and the algo-
rithms and frameworks used in our study. We also analyze the optimality and existence
of solutions, ensuring the effectiveness of our proposed method. Section 4 discusses the
simulation setup and results, along with a comparative analysis between our algorithm
and the Particle Swarm Optimization (PSO) algorithm, comparing performance, computa-
tional time, and machine configuration. Finally, in Section 5, we summarize the practical
implications of our findings and suggest potential directions for future research.

2. Background
2.1. Mutiple AUVs Task Allocation Problem

Multiple Robots Task Allocation (MRTA) is a vital component of multi-robot systems,
aiming to allocate tasks among robots to maximize the overall efficiency and effectiveness.
In the context of multiple AUVs, task allocation involves assigning tasks to optimize
mission performance while accounting for the capabilities and constraints of each AUV.
Depending on the nature of the tasks, AUVs with similar functions may be needed to
perform specific tasks, while more complex missions may necessitate the cooperation of
heterogeneous AUV clusters.

In 2004, Gerkey and Mataric [12] introduced a taxonomy for multi-robot task allo-
cation according to Figure 1, distinguishing the task type, assignment type, and robot
type. According to this taxonomy, task allocation in underwater search environments is
categorized as SR-MT-IA, meaning that each task can be completed by a single robot, each
robot can handle multiple tasks, and the task assignments are allocated instantaneously.

Figure 1. Visual representation of the three axes of Gerkey and Mataric’s taxonomy.

Wang et al. [13] conducted a comprehensive analysis of the existing literature on task
allocation models and algorithms for multiple AUVs systems, providing a macro-level
overview to help researchers enhance these algorithms more thoroughly.

In this paper, the modeling of task allocation for multiple AUVs leverages mathe-
matical methods such as combinatorial optimization and operations research. After es-
tablishing the mathematical model, we propose corresponding algorithms tailored to it.
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Miloradovic et al. [14] formulated MRTA using a Mixed-Integer Linear Programming
(MILP) approach, capitalizing on the potential parallelism of the robots.

2.2. Task Allocation Algorithms

The approaches to task allocation include centralized and decentralized algorithms,
heuristic methods, and optimization techniques [13].

Centralized algorithms involve a central controller assigning tasks to AUVs, optimiz-
ing the task allocation on a global scale. However, they are often constrained by the com-
munication range and reliability [15]. In contrast, decentralized algorithms enable AUVs to
make independent decisions based on local information, offering greater robustness against
communication failures but potentially failing to achieve globally optimal solutions.

In this study, we examine an underwater search environment where AUVs are ini-
tially positioned near shore, with the mission and task information disseminated by an
information center. At this stage, the AUVs are on the water surface and can communicate
via radio. To achieve optimal task allocation, we assume ideal communication conditions
and employ a centralized task allocation method.

2.3. SCIP Solver

The SCIP (Solving Constraint Integer Programs) solver is a state-of-the-art software
tool designed to tackle mixed-integer linear programming (MILP) and constraint integer
programming (CIP) problems [16]. Developed by the Zuse Institute Berlin (ZIB), SCIP incor-
porates features from branch-and-bound algorithms, cutting planes, heuristics, and domain
propagation techniques, making it one of the most versatile and powerful solvers available.

SCIP’s capability to handle various problem structures, including linear and nonlinear
constraints, renders it particularly suitable for complex optimization challenges across
fields such as logistics, energy systems, and telecommunications. A key strength of SCIP
is its flexibility, allowing users to customize the solving process by implementing specific
heuristics and branching strategies tailored to their unique problem instances.

In the context of multiple AUVs task planning, SCIP plays a critical role in optimizing
task allocation under energy constraints. The task allocation problem for AUVs can be
effectively modeled as a Capacitated Vehicle Routing Problem (CVRP), where the goal
is to determine the most efficient routes for a fleet of AUVs to complete a set of tasks
while minimizing the energy consumption and ensuring that each AUV’s energy capacity
constraints are met.

By employing SCIP to solve the CVRP, researchers can leverage its advanced algorith-
mic capabilities to discover optimal task allocation strategies [17]. SCIP’s branch-and-cut
framework, combined with its robust cutting planes and heuristics, facilitates efficient
exploration of the solution space, even for the large-scale and complex problem instances
typical of underwater environments.

3. Methodology
3.1. Problem Formulation and Modeling

The task allocation problem is formulated as an optimization problem with the objec-
tive of minimizing the total execution time of AUVs. The constraints include the power
energy limits of the AUVs, the energy requirements of the tasks, and the maximum traveling
distance of the AUVs.

The task allocation for multiple AUVs under energy constraints in an underwater
search environment is modeled as a Capacitated Vehicle Routing Problem (CVRP). As illus-
trated in Figure 2, three AUVs, each with varying power energy capacities, must ensure
sufficient power for their assigned task nodes. The limited energy capacity of each AUV
restricts the number of task nodes it can serve. This energy constraint also prevents highly
capable AUVs from completing all task nodes in a single mission.



Electronics 2024, 13, 3852 5 of 13

Figure 2. Example of 11 task nodes searched and identified by 3 AUVs.

To model the problem, we need to define some variables. The set of task nodes
is X = {t0, t1, . . . , tn} (X′ = X\{t0}), where the first node t0 represents the starting
point of the AUVs, assuming all AUVs depart from the shore base. The set of AUVs
is V = {v1, v2, . . . , vm}. In this model, the energy consumption for an AUV to service task
node tj is determined by the energy demand of the task node, which is Pu(j). The position
of task nodes tj is xj, provided by its 2-dimensional coordinates xx

j , xy
j , and the Euclidean

distance between task nodes xi and xj is calculated as d(xi, xj) =
√
(xx

i − xx
j )

2, (xy
i − xy

j )
2.

In practice, different AUVs carry different amounts of energy. For simplicity, the energy
capacity of AUV vi is modeled as Au(i), indicating that AUV vi carries Au(i) units of energy.
And the speed of AUV vi is represented by Sv(i).

We denote the time required to serve ti as Tp(i). Consequently, the energy carried
by each AUV limits its capacity to serve task nodes. The model employs two objective
functions: one aims to minimize the maximum AUV traveling time (min–max) and the
other seeks to minimize the toal AUV traveling time. Given the complexity of energy
consumption along the path, the optimization objective inherently includes minimizing the
total task completion time, which implies finding the shortest path.

min max
v∈V

(
∑
i∈X

∑
j∈X

(
d(xi, xj)

Sv(v)
+ Tp(i)wv

ij

)
(1)

min ∑
v∈V

∑
i∈X

∑
j∈X

(
d
(
xi, xj)

Sv(v)
+ Tp(i))wv

ij (2)

In this model, wv
ij is a binary variable, where wv

ij = 1 indicates that AUV v moves from
task node i to task node j and serves both, and wv

ij = 0 otherwise.
In summary, the task allocation problem for a multiple AUVs system involves a

heterogeneous fleet of AUVs departing from the shore base, with each AUV selecting
subset of task nodes. The AUVs must satisfy certain constraints, ensuring that the energy
carried by each AUV can sequentially complete the tasks at each task node position and
return to the shore base. Based on these requirements, our constraints are as follows:
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∑
v∈V

∑
j∈X

wv
ij = 1, i ∈ X′ (3)

wv
ij − wv

jk = 0, v ∈ V, j ∈ X, i ∈ X, i ̸= j ̸= k (4)

∑
i∈X

∑
j∈X

wv
ijPu(i) ≤ Au(v), v ∈ V (5)

∑
i∈X

∑
j∈X

wv
ijd(xi, xj) ≤ MaxPath(v), v ∈ V (6)

∑
i∈X

wv
ij −

v

∑
jk

wv
jk = 0, v ∈ V, i, j, k ∈ X′, i ̸= j ̸= k (7)

wv
ij = {0, 1}, v ∈ V, i ∈ X, j ∈ X (8)

Constraints (3) and (4) ensure that each task node is visited only once and that each
path is completed by the same AUV. Constraint (5) ensures that the energy demands are
met before visiting a task node. Constraint (6) ensures that the distances traveled by each
AUV do not exceed its present power capacity. Constraint (7) guarantees the continuity of
traveling different task nodes.

3.2. Algorithms and Frameworks

This Algorithm 1 tackles the problem of task allocation challenges for multiple Au-
tonomous Underwater Vehicles (AUVs) during their missions. It establishes a constraint
model based on the CVRP and solves this constrained model to ensure optimal task alloca-
tion of each AUV while adhering to energy and path length limitations.

Input Parameters

• X = {xi}n
i=0: Set of task nodes, where x0 is the starting point, and the remaining nodes

are target points.
• V = {vi}m

i=1: Set of AUVs.
• Pu[j]: Energy required to complete task j.
• Au[v]: Energy capacity of AUV v.
• dist[i, j]: Distance between node i and node j.
• MaxPathLength[v]: Maximum path length for AUV v.

Output

Optimal paths for each AUV.

Algorithm Steps

1. Initialize Remaining Energy: Initialize the remaining energy variable for all AUVs.
2. Calculate Node Distances: Calculate the Euclidean distance between each pair of

nodes and compute the energy required to reach each target point based on the energy
consumption model.

3. Set Constraints:

• No Immediate Return Constraint: Ensure that an AUV does not immediately
return to the same node after completing a task.

• One AUV per Task Constraint: Ensure that each target point is serviced by
exactly one AUV.

• Path Continuity Constraint: Ensure path continuity for each AUV between
consecutive nodes.

• Energy Limit Constraint: Ensure that the total energy consumed by each AUV
does not exceed its energy capacity after completing all assigned tasks.

• Path Length Limit Constraint: Ensure that the total travel distance for each AUV
does not exceed its maximum path length.
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4. Optimize Solution: Call the optimizer to solve the above constraint model and obtain
the optimal path for each AUV.

Algorithm 1: SCIP-based MRTA-CVRP algorithm
Input: X = {xi}n

i=0 (Task Nodes), V = {vi}m
i=1 (AUVs), Pu[j] (Energy required for

task j), Au[v] (Energy capacity of AUV v), dist[i, j] (Distance between i and
j), MaxPathLength[v] (Maximum path length for AUV v)

Output: Optimal paths for each AUV
foreach i ∈ X do

foreach j ∈ X do
if i ̸= j then

model.addCons(w[i, j, v] + w[j, i, v] ≤ 1, No_Immediate_Return_
end

end
end
foreach j ∈ list(X)[1 :] do

model.addCons(∑v∈V ∑i∈X,i ̸=j w[i, j, v] = 1, One_AUV_per_Task_
end
foreach v ∈ V do

foreach j ∈ list(X)[1 :] do
model.addCons(∑i∈X,i ̸=j w[i, j, v]− ∑k∈X,j ̸=k w[j, k, v] = 0, Continuity_

end
end
foreach v ∈ V do

model.addCons(∑i∈X ∑j∈X,i ̸=j w[i, j, v] · Pu[j] ≤ Au[v], Power_Limit_
end
foreach v ∈ V do

model.addCons(∑i∈X ∑j∈X,i ̸=j w[i, j, v] · dist[i, j] ≤ MaxPathLength[v],
Max_Distance_Limit_

end
model.optimize();
Result: travel_dict

3.3. Analysis of the Optimality and Existence of Solutions

In this section, we analyze both the optimality and the existence of solutions when
solving the multiple AUVs task allocation problem using the SCIP solver. The SCIP solver,
known for its robustness in handling Mixed-Integer Linear Programming (MILP) problems,
was employed to ensure that the solutions obtained are either globally optimal or, in the
case of infeasibility, report a lack of feasible solutions.

3.3.1. Optimality of Solutions

The SCIP solver guarantees optimality for solvable MILP problems through a com-
bination of branch-and-bound algorithms, cut-plane methods, and other optimization
techniques. For problems within a reasonable scale, such as the multiple AUVs task al-
location problem studied here, the solver is capable of finding global optimal solutions
within acceptable computational times. For instance, in the case of a problem involving
4 AUVs and 10 tasks, the solver successfully identified the optimal solution with the output
in Table 1.

In this example, the primal and dual bounds converged perfectly (Primal Bound = 9680.47;
Dual Bound = 9680.47), with a gap of 0.00, confirming that the solution is globally optimal.
The results were obtained within a computational time of just 1 s, demonstrating the solver’s
efficiency for small-scale task allocation problems. This reinforces the viability of using the
SCIP solver in scenarios where global optimality is required under operational constraints.
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Table 1. SCIP solver results for 4 AUVs and 10 tasks.

Parameter Value

SCIP Status problem is solved [optimal solution found]
Solving Time (s) 1.00
Solving Nodes 1 (total of 2 nodes in 2 runs)
Primal Bound +9.68047032967033 × 103 (6 solutions)
Dual Bound +9.68047032967033 × 103

Gap 0.00%
Objective value 9680.47032967033

3.3.2. Existence of Solutions

While the SCIP solver guarantees the optimality of solutions for feasible problems,
it also effectively identifies cases where no feasible solution exists. This is particularly
important when dealing with real-world operational constraints, such as battery life or
maximum path lengths for AUVs. For instance, when solving a problem with 4 AUVs and
20 task nodes, the solver output the following in Table 2.

In this case, the SCIP solver determined that the problem was infeasible under the
current constraints. This infeasibility likely arises from excessive limitations imposed by
the problem, such as the AUVs’ battery capacities or task allocation requiring paths beyond
feasible operational distances. The solver’s ability to identify these infeasible scenarios is
crucial for adjusting the model or constraints to ensure that feasible solutions can be found
in practical applications.

Table 2. SCIP solver results for 4 AUVs and 20 tasks.

Parameter Value

SCIP Status problem is solved [infeasible]
Solving Time (s) 0.00
Solving Nodes 0
Primal Bound +1.00000000000000 × 1020 (0 solutions)
Dual Bound +1.00000000000000 × 1020

Gap 0.00%
Objective value infeasible

4. Results and Discussion
4.1. Simulation Setup and Results

Simulations are conducted to evaluate the performance of our method, which is based
on the SCIP solver under various AUV fleets and different numbers of task nodes.

The multiple AUVs system studied in this paper is deployed underwater, where
AUVs are typically assigned to different depths. Given this predefined depth allocation,
the likelihood of AUVs occupying the same physical space is minimized. Therefore,
the issue of potential collisions between AUVs is not considered in this study.

The AUVs have different power capacities, and the task nodes require specific amounts
of energy for execution. We simulated six scenarios, as illustrated in Figure 3. From the
results of the task allocation, Figure 3a—three AUVs and eleven task nodes, Figure 3b—four
AUVs and eight task nodes, Figure 3c—four AUVs and ten task nodes, Figure 3e—eight
AUVs and sixteen task nodes, and Figure 3f—eight AUVs and twenty task nodes achieved
optimal task allocation within 10 s. However, Figure 3d—four AUVs and twenty task nodes
did not yield a feasible solution as it failed to meet the energy requirements of all the task
nodes, suggesting the need to increase the number of AUVs.
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a. 3 AUVs, 11 nodes b. 4 AUVs, 8 nodes c. 4 AUVs, 10 nodes

d. 4 AUVs, 20 nodes e. 8 AUVs, 16 nodes f. 8 AUVs, 20 nodes

Figure 3. Different AUVs and different task nodes’ allocation results.

4.2. Comparative Analysis of Our Algorithm and PSO Algorithm
4.2.1. Introduction to PSO Algorithm

The Particle Swarm Optimization (PSO) algorithm is a heuristic optimization method
widely used for solving complex combinatorial optimization problems such as the Capacity-
Constrained Vehicle Routing Problem (CVRP). While the CVRP is classified as an NP-hard
problem, PSO emulates the behavior of bird flocks searching for food to iteratively optimize
solutions. This makes it suitable for large-scale or complex problems.

4.2.2. Performance Comparison

To compare the performance of both algorithms, we conducted several experiments
across various problem instances. The results are summarized in Table 3, where the
objective values obtained by both the SCIP solver and the PSO algorithm are compared.

Table 3. Comparison of objective values between SCIP solver and PSO.

Experiment No. a b c d e f

SCIP Solver (s) 10,040.6 11,220.9 9680.5 0 22,480.7 21,783.9

PSO (s) 12,007.5 11,258.8 10,308.7 inf 24,776.6 26,993.1

From the results in Table 3, it is evident that, while PSO can provide a feasible solution,
the SCIP solver consistently finds the optimal solution. For example, in the a, e, and f
experiment, the SCIP solver outperforms the PSO algorithm by a significant margin in
terms of the objective values. This indicates that the SCIP solver is more effective in terms
of achieving the globally optimal solution.

The corresponding visualization of the objective values is shown in the figure below
(Figure 4):
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Figure 4. Objective value comparison between our algorithm and PSO.

4.2.3. Computational Time Comparison

The following Figure 5 presents a comparison of the computational time for both
algorithms across the same set of problem instances. As shown in Figure 5, PSO has an
advantage in terms of the computational time, especially for smaller problem instances.
Importantly, for most of the problem instances, the SCIP-solver-based algorithm solves
the problems in less than 10 s, demonstrating that it is practical for real-world applica-
tions. In half of the instances, the SCIP solver completes the task in less than 1 s, further
emphasizing its computational efficiency.

Figure 5. Algorithm running time comparison between our algorithm and PSO.

4.2.4. Machine Configuration

The experiments were conducted on a machine with the following configuration in
Table 4:
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Table 4. Machine configuration.

Parameter Value

Processor Core i7-10750H @ 2.60 GHz
Memory 16 GB RAM
Operating System Windows 10 64-bit
Solver Version 8.0.4

This configuration was sufficient to efficiently handle both the SCIP solver and PSO
algorithm for the problem instances considered in this study. The computation times re-
ported are consistent with the expectations for small- and medium-scale problems, making
our method applicable in practical scenarios.

4.2.5. Summary

Through this comparative analysis, it is evident that, while the PSO algorithm can
generate feasible solutions quickly, our method based on the SCIP solver consistently
finds the globally optimal solution in reasonable time frames, making it a more robust
choice for complex optimization problems like the CVRP. Furthermore, the computational
time for our algorithm is competitive, especially when considering larger problem in-
stances, where the solver can provide solutions efficiently. The combination of optimality
guarantees and practical computational times makes our algorithm highly applicable for
real-world problems.

While the proposed methodology based on the SCIP solver demonstrates clear ad-
vantages in finding globally optimal solutions for complex optimization problems like
the CVRP, it has certain limitations. First, the approach may struggle with scalability for
large problem instances. Although the computational time is competitive for larger cases
compared to PSO, the solver’s performance could degrade when handling significantly
larger or more complex datasets, potentially leading to longer processing times or increased
resource consumption. Additionally, the solver’s requirements for precise input and con-
straints might make it less flexible in real-time dynamic environments where the problem
parameters can change frequently, requiring constant recalibration or re-optimization. Fur-
thermore, the current model lacks the inclusion of key real-world constraints relevant to
underwater applications. Critical factors such as 3D problem treatment, inertial effects
when changing course, and marine currents are not yet accounted for.

4.3. Practical Implications

The diversity in the battery power capacities among different AUVs and the specific
energy requirements of the task nodes significantly impact task allocation. Our simulations,
which encompass eight distinct scenarios, provide valuable insights into the practical
challenges and solutions in multiple AUVs systems.

The findings indicate that, in the scenarios represented by Figure 3a–c,e,f, the AUVs
successfully achieved optimal task allocations. These scenarios demonstrate the feasibility
of effectively allocating tasks among AUVs with varying energy capacities, ensuring that
the mission objectives are met within the given constraints.

However, the scenario depicted in Figure 3d highlights a critical limitation. The failure
to obtain a feasible solution in this scenario underscores the importance of adequate energy
provisioning for all the task nodes. This infeasibility suggests that the current fleet size and
battery capacities were insufficient to meet the energy demands of the task nodes. Therefore,
one practical implication is the necessity of increasing the number of AUVs or enhancing
their energy capacities to ensure successful mission completion in similar contexts.

These insights are crucial for the design and operation of multiple AUVs systems,
emphasizing the need for the careful consideration of the energy management and fleet
composition to achieve efficient and effective task allocation.
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5. Conclusions and Future Work

In this study, we propose a novel task allocation model for multiple AUVs based
on the CVRP, optimizing the navigation time under battery constraints and offering both
theoretical and practical insights into task allocation and energy management in energy-
constrainted underwater environments.

To address these limitations, future work could explore hybrid approaches that com-
bine the strengths of the SCIP solver with heuristic or metaheuristic methods like PSO.
Such a combination could maintain the solver’s optimality guarantees for smaller and
mid-sized instances while using heuristic methods for quicker solutions in larger-scale
or time-sensitive scenarios. Additionally, implementing parallelization techniques or
utilizing distributed computing could further enhance the scalability of the proposed
method, allowing it to handle larger datasets more efficiently. Incorporating mechanisms
for real-time adaptability would make the algorithm more applicable to dynamic real-
world environments, where the problem constraints and parameters evolve during the
optimization process.

While the centralized approach proved to be effective in controlled simulation en-
vironments, practical applications necessitate a shift towards distributed strategies. The
real-world deployment of multiple AUVs systems involves dynamic and uncertain environ-
ments where centralized control may not be feasible or efficient. The future work will focus
on developing distributed task allocation algorithms that can operate effectively under
weak communication conditions. These algorithms will leverage local decision-making
capabilities and robust coordination mechanisms to ensure resilience and adaptability in
diverse operational scenarios.

By transitioning to distributed approaches, we aim to enhance the scalability and
reliability of multiple AUVs systems, ultimately facilitating their deployment in real-world
applications where robust performance under varying communication conditions is critical.
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