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Abstract: Although the ocean is rich in energy and covers a vast portion of the planet, the present
results of underwater target identification are not sufficient because of the complexity of the underwa-
ter environment. An enhanced technique based on YOLOv8 is proposed to solve the problems of low
identification accuracy and low picture quality in the target detection of current underwater robots.
Firstly, considering the issue of model parameters, only the convolution of the ninth layer is modified,
and the deformable convolution is designed to be adaptive. Certain parts of the original convolution
are replaced with DCN v3, in order to address the issue of the deformation of underwater photos
with fewer parameters and more effectively capture the deformation and fine details of underwater
objects. Second, the ability to recognize multi-scale targets is improved by employing SPPFCSPC, and
the ability to express features is improved by combining high-level semantic features with low-level
shallow features. Lastly, using WIoU loss v3 instead of the CIoU loss function improves the overall
performance of the model. The enhanced algorithm mAP achieves 86.5%, an increase of 2.1% over
the YOLOv8s model, according to the results of the testing of the underwater robot grasping. This
meets the real-time detection needs of underwater robots and significantly enhances the performance
of the object detection model.

Keywords: object detection; YOLOv8; convolutional neural networks; ROV underwater robot

1. Introduction

The ocean accounts for the vast majority of the Earth’s total surface area and contains
abundant oil, natural gas, minerals, chemicals, and aquatic resources [1]. However, due
to the presence of more influential factors in the underwater environment, the detection
results are often unsatisfactory when performing underwater target detection [2]. In recent
years, the rapid development of deep learning technology, especially the introduction of
convolutional neural networks, has brought new possibilities and applications for object
detection in images [3,4]. Deep learning technology can efficiently and accurately complete
difficult tasks like object recognition, picture segmentation, and image classification by
using deep neural network models. Therefore, there is substantial research value in the field
of marine science for using deep learning technology for quick and accurate underwater
target detection.

Deep-learning-based object detection methods can be divided into two-stage algo-
rithms and one-stage algorithms [5].The two-stage algorithm first identifies the candidate
regions containing the target, and then classifies and locates the target, mainly using the Fast
R-CNN (Fast Region-based Convolutional Neural Network) [6] algorithm and the Faster
R-CNN (Fast Region-based Convolutional Neural Network) [7] algorithm. Its modest de-
tection speed and great detection accuracy are its hallmarks. The one-stage algorithm does
not need to generate candidate boxes containing targets, but directly classifies and locates
the targets, mainly using the SSD (Single Shot MultiBox Detector) algorithm [8], the YOLO
(You Only Look Once) series algorithm [9], and the Resnet (Residual Network) [10], which
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offers the one-stage algorithm good detection accuracy and excellent detection speed. This
makes it appropriate for real-time detection jobs, since it makes direct predictions about
categorization and localization. Because of the limitations of underwater gear, single-stage
object detection methods are currently used for most underwater target detection.

Underwater target detection is obviously more difficult in practical applications be-
cause of the diversity and complexity of underwater settings, which lead to the typically
inferior image quality and target clarity obtained by underwater robots. Wei et al. [11]
improved the YOLOv3 model by adding compression and excitation modules, as well
as expanding the detection scale. Zhang et al. [12] proposed a lightweight underwater
object detection method that combines MobileNet v2 and YOLOv4 algorithms with atten-
tion feature fusion to achieve a balance between accuracy and speed in object detection
in marine environments. Li et al. [13] achieved a fast and accurate underwater marine
organism detection method by incorporating attention mechanism and multi-scale de-
tection strategy into the improved YOLOv5 model, combined with image enhancement
and optimized prediction head structure. Lei et al. [14] proposed an improved YOLOv5
object detection algorithm suitable for complex underwater environments by using Swin
Transformer as the basic backbone network of YOLOv5, improving the path aggrega-
tion network for multi-scale feature fusion and optimizing the confidence loss function.
Li et al. [15] proposed an improved YOLOv5s real-time fish target detection network,
which replaces the original backbone network with a ShuffleNetv2 lightweight network us-
ing the SE channel attention mechanism, and uses an improved BiFPN short network
for feature fusion, achieving model lightweighting and improved detection accuracy.
Zhang et al. [16] proposed an improved YOLOv5 underwater target detection network,
which improves accuracy and reduces missed detections by adding a global attention
mechanism, introducing a DAMO-YOLO-based neck fusion module, and using SIoU
(Scale-Invariant IoU) loss. Based on the experimental data, the model performs better.

Li et al. [17] used the YOLOv7 model to improve the accuracy of small target detection
by enhancing feature retention and reducing feature loss, introducing spatial pyramid
pooling and cross-level partial channel modules, as well as integrating coordinate attention
modules. The experimental results show that the improved model is superior to the original
model and other recent algorithms in reducing error and improving average accuracy.
Liu et al. [18] proposed an improved YOLOv7 network, which replaces the original structure
with an ACmixBlock module, integrates jump connections and a 1 × 1 convolutional
architecture, designs a ResNet ACmix module, inserts a global attention mechanism, and
optimizes anchor boxes using the K-means++algorithm, thereby improving the accuracy of
feature extraction and network inference speed. Chen et al. [19] proposed an underwater
YCC optimization algorithm based on YOLOv7, which integrates the convolutional block
attention module (CBAM) to capture fine-grained semantic information. In addition,
Conv2Former is used as a network neck component to handle underwater blurred images.
Finally, the WIoU (weighted Intersection over Union) loss method was used to effectively
improve the detection accuracy. Although these schemes have made progress in certain
aspects, they do not involve a fully consideration of the transferability of the model and
do not support fast detection. For object identification technology to be applied in marine
environments, it needs to have lighter model characteristics and greater real-time processing
capabilities. Therefore, creating a lightweight underwater target identification method with
a small model volume and high detection accuracy is especially crucial and urgent.

This article presents an upgraded YOLOv8s network model that uses the YOLOv8
model from the YOLO series as its foundation, taking into account the background men-
tioned above. The model is lightweight, has enhanced detection accuracy, and maintains
a sufficient detection speed to meet the needs of multi-scale underwater target detection.
The main contributions of this article are as follows:

(1) Due to the frequent occurrence of image deformation, if the convolution process is
still executed according to the preset fixed path, the processing efficiency will be
greatly affected. For this reason, we only adjust the convolutional layer in layer 9, and
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replace the original convolutional method with adaptive deformable convolutional
DCN v3, which can capture changes in and subtle features of underwater targets
more efficiently and effectively deal with the challenge of the deformation of the
underwater image with fewer parameters.

(2) The utilization of SPPFCSPC (spatial pyramid pooling-fast with cross-stage partial
connections) to improve multi-scale target recognition and to improve feature ex-
pression through the integration of shallow, low-level characteristics with high-level
semantic features.

(3) When WIoU loss v3 is substituted for the CIoU (complete intersection over union)
loss function, the model’s overall performance improves.

In order to test the effectiveness of the improved model, we applied it to underwater
robots and made improvements to the YOLOv8 model in the three previously mentioned
areas. We also compared the improved model to other popular algorithms, and the results
demonstrate that optimal outcomes were obtained.

2. Underwater Target Detection Algorithm Based on Improved YOLOv8
2.1. YOLOv8 Object Detection Algorithm

The YOLOv8 algorithm is part of the YOLO family of algorithms, which builds on the
success of its predecessors by integrating innovative features that significantly improve
performance and applicability. In the realm of computer vision, this approach is extensively
employed for tasks including object tracking, instance segmentation, picture classification,
and object recognition, among others. As shown in Figure 1, the YOLOv8 structure is
primarily composed of three parts: the Backbone, Neck, and Head. To meet different per-
formance and resource requirements, YOLOv8 offers five different scale models: YOLOv8n,
YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x.

1 
 

 
 

 

Figure 1. YOLOv8 network structure diagram.
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Firstly, the Backbone segment uses the framework of CSPDarknet53 (cross-stage
partial network Darknet53) [20], which includes basic convolutional units (Conv) and
spatial pyramid pooling fast (SPPF) for local and global feature fusion. The SPPF module
uses pooling and convolution techniques to adaptively mix feature data of different sizes
in order to enhance the model’s ability to extract features. Additionally, the C2f module is
incorporated into CSPDarknet53, enhancing the gradient flow of the model and enhancing
feature extraction capacity by broadening the depth and receptive field of the network.
Figure 2 illustrates the C2f module’s precise structure.
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Figure 2. C2f module structure.

C2f input is usually the feature map or raw image output from the previous layer.
Firstly, a convolution operation is performed to change the dimension and size of the
input features. Following a sequence of convolution and pooling operations, the output is
the feature map, which is then sent to the following layer for processing. This procedure
reduces the size of the feature map while maintaining the relevant information.

Secondly, the Neck section adopts the PAN FPN (path aggregation network and
feature pyramid networks) structure, which fuses multi-scale feature maps by processing
the features taken from Backbone. The C2f module is repurposed in this framework to
improve feature processing capabilities.

Finally, the Head section separates classification and detection using the current main-
stream Decoupled Head structure, thereby reducing the conflict between localization and
classification; concurrently, the object detection process adopts the Anchor Free mecha-
nism, which performs better on targets of irregular length and width. Figure 3 depicts the
decoupling head model structure.
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Following receipt of the feature maps from the feature pyramid network, the decou-
pling head divides and processes the classification and regression tasks in the detection
task independently; the target’s class is predicted using the classification loss (Cls loss), and
its bounding box location and size are predicted using the regression loss (Bbox loss).

2.2. Improvement of YOLOv8 Object Detection Network
2.2.1. Improvement of Original Convolution

In traditional convolutional networks [21], the pooling layer keeps the downsampling
ratio constant while the convolutional kernel changes the picture along a predetermined
route and step size. Image distortion is more common in special environments, such
as underwater. The adaptive DCNv3 (Deformable ConvNet v3) [22] effectively solves
the problem of image distortion in underwater target recognition. Unlike traditional
convolution, it introduces additional offset variables into the convolution kernel, allowing
the kernel to flexibly change shape and position based on image content, thereby more
accurately capturing the features of deformed images.

The following is the conventional convolution calculation formula:

y(p0) =
x

∑
k=1

wkx(p0 + pk) (1)

where p0 represents the center position, k signifies the quantity of sample points, pk
represents the k-th position of the sampling grid, and wk shows the appropriate sampling
sites’ projection weight. Deformable convolution adds an offset matrix ∆pk on the basis of
standard convolution, which transforms the convolution into irregular convolution. The
following is the deformable convolution calculation formula:

y(p0) =
K

∑
k=1

wkx(p0 + pk + ∆pk) (2)

where ∆pk represents the offset. Figure 4 compares the convolution kernel with added
offset to the standard convolution kernel. Figure 4a shows the regular convolution, while
Figure 4b shows the deformable convolution.
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In this study, we used DCN v3 instead of the original convolution. DCN v3 introduces
a multi grouping mechanism based on DCN v2 [23], whereby each group may improve
the capacity of aquatic species to represent their features through factor modulation, sam-
pling vector projection, and independent offset sampling. Sampling vector projection’s
primary purpose is to transform the continuous offset into a discrete grid coordinate offset,
while factor modulation dynamically adjusts the size and direction of the offset during
the learning process, flexibly adapting to the diversity of target deformation at different
positions and scales, and optimizing the feature extraction effect. In addition, DCN v3
further introduces a normalization mechanism for modulation scalars, effectively solving
the instability problems that DCN v2 may encounter during training, greatly enhancing
the model’s performance and stability.
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The calculation formula for DCN v3 can be represented by Equation (3):

y(p0) =
G

∑
g=1

K

∑
k=1

wgmgkxg

(
p0 + pk + ∆pgk

)
(3)

where G symbolizes the overall quantity of aggregation clusters, K indicates how many
sample points there are for the g-th category, wg represents the projection weight of the
group, mgk represents the group’s K-th sample point’s modulation scalar, xg represents the
segmented feature map, and ∆pgk represents the sampling offset that matches the sampling
position pk in the g-th group.

In order to create C2f-DCN v3, this post integrates the C2f module in YOLOv8 with
a deformable convolutional network. The module structure is shown in Figure 5. This
can improve the model’s target identification performance even further, particularly when
handling objects with intricate shape changes and geometric deformations. Furthermore,
as shown in Figure 6, by altering the convolution of the Bottleneck portion in C2f, the
convolution kernel is able to adaptively shift its spatial location, better capturing the target’s
form variations.
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2.2.2. Improvement of Spatial Pyramid Pooling

The input feature map is serially passed through several 5 × 5 max pooling layers
using SPPF in order to extract and fuse high-level features, fuse local and global features,
and output an adaptive size. The SPPF structure is shown in Figure 7.
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Figure 8 illustrates the construction of SPPCSPC, which combines the two approaches
of spatial pyramid pooling (SPP) and cross-stage partial connection (CSPC). Typically, the
SPP module has a pyramid structure with several layers, each of which corresponds to
a distinct pooling scale. The feature map is split up into varying numbers of blocks at
each level, and each block is pooled. By capturing data in various sizes, the network may
enhance its feature extraction skills. The CSPC module separates the features into two
subsets, one of which is processed using ordinary convolution and the other using spatial
pyramid pooling. These two sections’ characteristics are combined at the end.
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Conventional convolution only processes some features, while the SPP structure
processes all features, avoiding redundant calculations. This can effectively promote
the interaction and fusion of features at different stages, maintain high accuracy, reduce
computational complexity, and improve the real-time processing speed and capability of
underwater robots.

In order to avoid image distortion, duplicate feature extraction, and improve the
algorithm’s feature fusion ability, in this study, we adopted the SPPFCSPC (spatial pyramid
pooling-fast and cross-stage partial connection) structure to replace SPPF, and Figure 9
depicts its network structure. Large underwater targets require the model to be able to
record a wider range of spatial information, which is made possible by SPPFCSPC, which
broadens the network’s receptive field. In an underwater environment, the size of a target
can vary significantly due to the distance between the target and the camera. Target size
variations may be better accommodated by the detection model thanks to SPPFCSPC’s
capacity to encode feature information at different scales. Furthermore, SPPFCSPC main-
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tains good performance while optimizing the network structure, lowering computational
complexity, and accelerating the model’s runtime.
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2.2.3. Improvement of Loss Function

The regression branch and the classification branch are the two halves of the loss
function in YOLOv8, where the regression branch uses distribution focal loss [24] and
CIoU loss [25]. While intersection over union ratio (IoU) is an indicator for assessing object
recognition accuracy and is used to evaluate the coverage between the predicted box and
the genuine box, regression loss is used to investigate the divergence between the predicted
box and the actual box. The following is its formula for calculation:

IoU =
A ∩ B
A ∪ B

(4)

The actual bounding box and the expected bounding box are displayed in A and B,
respectively. Figure 10 displays the schematic diagram of the IoU parameters.

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (5)

where b and bgt show the centers of the expected box and the real box, respectively, ρ2(b, bgt)
shows the distance in Euclides between the center points of the predicted and actual boxes,
c shows the length of the diagonal of the smallest bounding box between the actual and
anticipated boxes, α represents a positive equilibrium parameter, and ν demonstrates how
the expected and actual boxes’ aspect ratios match. The following is the calculation formula
for α and ν:

α =
v

(1− IoU) + ν
(6)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(7)

where wgt, hgt, w, and h respectively illustrate the variations in height and width between
the expected and real boxes.

Predicted box assessment accuracy is greatly increased by CIoU loss, which takes into
account the overlap area, center point distance, and aspect ratio of the real and predicted
boxes from various viewpoints. This allows for a more precise assessment of the relative
positions of the two boxes.
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However, when there is a linear relationship between the projected and real boxes’
aspect ratios, the aspect ratio penalty term cannot work as intended. This might have
an impact on the predicted box’s regression. WIoU is a bounding box regression loss
function used in target detection. This loss function is characterized in that it employs a
dynamic non-monotonic focusing mechanism to improve the performance of bounding
box regression when dealing with samples of varying quality. An intelligent method of
assigning gradient enhancement is put into place, and the quality of the anchoring frame is
assessed using an outlier metric. This means alleviating the competitive pressure on high-
quality anchored frames while reducing the negative gradient impact from poor-quality
samples. In light of this, in this article, we suggest using a novel loss function called WIoU
loss v3 [26] in instead of CIoU loss in order to balance the effects of varying picture quality
on model training and enhance the precision of detection findings. The following is the
formula used to calculate WIoU loss:

LWIoUv1 = RWIoU LIoU (8)

RWIoU = exp

(
ρ2(b, bgt)

c2

)
(9)

where the weight decrease of standard anchor boxes was RWIoU enhanced, although the
reduction in weight of superior anchor boxes was LIoU reduced RWIoU .

In accordance with WIoUv1, WIoUv3 constructs non-monotonic focusing coefficients
r through an outlier β, and the following is the computation formula:

β =
L∗IoU

LIoU
∈ [0,+∞) (10)

r =
β

δ · αβ−δ
(11)

LWIoUν3 = r · IWIoUν1 (12)

where β represents outlier, reflecting the quality of the regression box, α, and δ is a hyper-
parameter. The regression box can achieve the maximum gradient gain when its outlier,
β, is equal to the predetermined value. The acquired image quality may differ due to
the intricate undersea environment. WIoU v3’s dynamic non-monotonic focusing mecha-
nism, which can dynamically alter the loss function’s focusing point in accordance with
the quality of the anchor frames, allows it to adapt to a variety of datasets and difficult
settings. While IoU is static and uses the same processing for all anchor frames, WIoU v3
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can process samples with different qualities more efficiently by evaluating the degree of
anomalies of the anchor frames instead of relying only on the IoU values. Additionally, the
gradient gain assignment strategy of WIoU v3 assigns gradients intelligently to lessen the
harmful gradients generated by low-quality samples and to lessen the competitiveness of
high-quality anchor frames. This helps the model to concentrate more on the samples that
are more important for performance improvement.

2.3. Improved YOLOv8 Object Detection Network

In response to the actual situation of ROV, firstly, due to the perspective effect of
underwater scenes and the influence of target distance, DCN v3 is adopted in the model to
more effectively capture the shape deformation and subtle features of underwater targets.
Secondly, considering the complexity of model parameters, only the convolutional layer of
the ninth layer was adjusted, and SPPFCSPC was introduced to enhance the recognition
ability of multi-scale targets. Ultimately, to mitigate the possible influence of subpar
underwater picture quality on model performance, a unique loss function, called WIoU,
was implemented in place of the traditional CIoU loss function. This enhanced the feature
expression by combining low-level textural qualities with high-level semantic information.
Figure 11 depicts the network architecture of the YOLOv8s model following these focused
enhancements.

1 
 

 
 

 

Figure 11. Improved YOLOv8 network structure diagram.

3. Experiments and Analysis
3.1. Datasets and Experimental Environment

The URPC (Underwater Robot Professional Challenge) dataset is used in this paper.
As shown in Figure 12, in this study, we compiled photographs of echinus, holothurian,
scallops, and starfish from the network as an enlarged dataset, totaling 5543 underwater tar-
get images. The URPC dataset has been published by the Underwater Robotics Professional
Competition Organization since 2017, with the aim of promoting research into and the
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development of underwater vision technology for use in research areas such as underwater
target detection, recognition, and classification. The collection contains photographs of a
variety of underwater environments, such as muddy seas and clean seawater.
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This dataset contains multiple types of objects, as shown in Figure 13a. Among them,
sea urchins have the highest number, followed by starfish, scallops, and sea cucumbers.
The bounding box size distribution is shown in Figure 13b, where the majority of the items
have sizes that are concentrated in the range of 0.0 to 0.2. In order to promote sufficient
learning of the designed model on the dataset, a training set and a validation set comprised
9:1 of the dataset, respectively.
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The following is the experimental setup used for this article: GPU, NVIDIA GeForce
GTX 3060; CPU, Intel (R) Core (TM) i9-12900; memory, 16.00 GB; graphics memory, 6 GB.
The development environment is PyCharm, the programming language is Python, and the
operating system and software environment are Windows11 + CUDA11.7 + Python 3.10 +
pytorch 1.12.1. Table 1 shows the fundamental parameter settings.



Electronics 2024, 13, 3374 12 of 19

Table 1. Fundamental parameter configurations.

Parameter Value

Batch size 4
Learning rate 0.01

Optimizer SGD
Weight attention factor 0.0005
Confidence threshold 0.5

3.2. Underwater Robot Experimental Platform

This experimental platform uses a 20-kg-class ROV (remotely operated vehicle) un-
derwater robotic system, which mainly consists of an aquatic console and an underwater
motion unit. The above-water console is equipped with a NVIDIA 3080 high-performance
image processor to ensure efficient and accurate image processing. The underwater motion
unit is equipped with a 1080p high-definition low-light camera, capable of clear imaging
within a range of 3 m, and is directly connected to the industrial control computer. The
underwater robot system is shown in Figure 14.
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3.3. Evaluation Indicators

This paper provides a comprehensive evaluation of the underwater target-identification
performance of object detection algorithms using frames per second (FPS), mean average
precision (mAP), and average precision (AP).

Precision, sometimes called detection precision, is the number of samples with positive
predictions represented as a percentage of the actual number of positive samples. The
formula is as follows:

Precision =
TP

TP + FP
(13)

Recall (R) is the proportion of correctly identified positive samples. The following is
the formula:

Recall =
TP

TP + FN
(14)

A higher score denotes better model performance. The F1 score is the harmonic mean
of recall and accuracy. A high F1 score indicates good recall and accuracy performance of
the model. An F1 score may be computed using the formula below:

F1 =
2 ∗ precision ∗ recall

precision + recall
=

2TP
2TP + FP + FN

(15)
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For every undersea category, AP stands for average probability of correct prediction.
The formula is as follows:

AP =
∫ 1

0
PdR (16)

where R stands for recall. The average and sum of the AP indicators for each category is
known as mAP. This is a complete indicator that considers both Precision and Recall. The
model’s accuracy is often assessed using mAP@0.5, where the model’s accuracy is set to 0.5
and the average of all categories is computed. The following is the formula:

mAP =

N
∑

i=1
APi

N
(17)

where N symbolizes the entire quantity of categories. The algorithm’s speed in detecting
objects is indicated by the number of frames broadcast per second, or FPS.

3.4. Experimental Results and Analysis
3.4.1. Verification of the Enhanced YOLOv8 Object Detection Algorithm

Figure 15 displays the Precision–Recall curve of the model before and after the im-
provement, and it can be seen from the figure that the mAP@50 of the improved model
reached 86.5%, an increase of 2.2% compared with that before the improvement, among
which the color of the sea urchin was obvious, the AP value of the echinus was 92.1%, and
the AP value of holothurian was 76.5% due to its color and background. Figure 16 displays
the F1 value curve of the model before and after the improvement, and it can be seen that
the improved model also increased compared with the original model.
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Figure 17 displays the parameter curves of the new model, the mAP value of the model,
which is 2.1% higher than the prior model, at 86.5%, and the loss curves for the training
and validation sets. The findings demonstrate that the enhanced model outperforms the
original YOLO v8 model in terms of detecting effect.

Figure 18 displays the prediction graph for the validation set of the enhanced model.
Underwater target identification accuracy is significantly increased by the enhanced
model’s capacity to identify unlabeled targets through analysis and comparison with
the labeled dataset. This ability is a reflection of the model’s adaptability and network fea-
ture extraction capability. When compared to the old model, it is evident that the upgraded
model performs better in the target identification of submerged objects.
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3.4.2. Evaluation of Several Object Detection Models’ Detection Capabilities in Comparison

Previous research demonstrated that target identification techniques, including SSD,
YOLOv5, RetinaNet, and Faster R-CNN, yield better detection results when used in under-
water target detection. Thus, we used the same dataset to compare the YOLOv8s model
with the Faster R-CNN, SSD, RetinaNet, and YOLOv5 models in order to assess the per-
formance and advantages of the suggested techniques. The detection results are shown in
Table 2.
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Table 2. Results of the comparison of the AP, mAP, and FPS values with those of other main-
stream models.

Model Name
AP (%)

MAP (%) FPS (Hz)
Sea Urchin Sea Cucumber Starfish Scallop

SSD 74.7 69.9 75.2 60.2 70.0 21
YOLOv5s 91.3 75.1 85.0 84.4 83.9 97
RetinaNet 77.2 68.1 78.3 61.2 71.2 26

Faster R-CNN 87.4 69.4 80.5 61.3 74.4 12
YOLOv8s 90.1 74.7 87.3 85.5 84.4 96
Improve

YOLOv8s 92.1 76.5 90.2 87.2 86.5 85

The enhanced YOLOv8s method suggested in this paper for underwater object iden-
tification tasks outperforms the widely used two-stage object detection network, Faster
RCNN, in terms of detection speed and accuracy, as indicated by the data in the table.
Meanwhile, the benefits of the suggested model are further supported by the improved
YOLOv8s algorithm’s notable advantages in mAP.

3.4.3. Ablation Experiment

The results of ablation tests are presented in this document to verify the functionality
of many of the submodules. By progressively adding many modules and assessing each
module’s enhanced impact on the overall performance of the model using the ablation
tests, the efficacy of the procedure suggested in this study was confirmed. The results of
the experiment are shown in Table 3. B represents the results obtained by using the dataset
in the YOLOv8s model, S represents the use of SPPCSPC in YOLOv8s, D represents the use
of deformable convolution DCNv3 in YOLOv8s, and W represents the use of WIoU.
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Table 3. Results of ablation experiments on underwater datasets.

Model B S D W MAP (%) FPS FLOPs (G) Parameter Quantity (M)

1
√

84.9 96.3 28.4 11.1
2

√
85.2 90.2 31.6 14.5

3
√ √

86.3 87.9 33.2 17.6
4

√ √ √
86.5 85.7 33.2 17.6

The findings show that while Model 1’s FPS decreased by 6, Model 2’s floating-point
operations (FLOPs) and parameter count increased somewhat. Compared with Model 4,
Model 3 only changed the loss function, and the floating-point operations (FLOPs) and
parameter count did not show significant changes. In comparison to Model 1, Model 4
exhibited a 1.6% rise in mAP, while FPS satisfied the actual demand. It is evident that the
suggested approach works.

3.4.4. Underwater Robot Prototype Grasping Experiment and Result Analysis

(1) Artificial water tank experiment

Figure 19 shows the outcomes of the detection tests conducted in this artificial pool
experiment. The experimental findings show that in addition to a large number of species,
as well as frequent obstruction and overlap in multi-target recognition, the ROV can detect
many targets at once.
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(2) Natural water experiments

To validate the advantages of the study’s algorithm concerning detection effectiveness,
typical scenes in various environments with complex underwater backgrounds, occluded
environments, and multiple dense targets were selected. The network was tested and
compared using YOLOv8s, as Figures 20–22 illustrate.
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Figure 22. Comparison of underwater multi-class dense target detection. (a) The before effect; (b) the
after effect.

The background of Figure 20 is mainly composed of rocks, which are similar in color
to sea cucumbers. The white spots on the rocks resemble scallops. This background
poses significant difficulties for the detection of sea cucumbers. The original YOLOv8s
model network made detection errors in complex backgrounds, incorrectly detecting sea
cucumbers with similar background colors. The improved YOLOv8s model can effectively
solve this problem. The enhanced SPP structure may interact and fuse features from
several phases in an efficient manner, increasing the model’s detection accuracy. Figure 21
shows underwater photographs that are obstructed and fuzzy, and the initial model missed
certain detections. However, the updated model is able to identify them with success. The
enhanced model is more resilient and broadly applicable, since its deformable convolution
can be closer to the size and shape of the item being sampled. When facing multiple dense
images, as shown in Figure 22, the YOLOv8s network experiences missed detections, while
the improved model can more accurately identify overlapping and small targets.

4. Conclusions

The present study presents an enhanced method for underwater robot object detection,
utilizing YOLOv8s, in order to tackle the challenges of inadequate image quality and low
recognition accuracy. Considering the issue of model parameters, only the convolution of
the ninth layer is modified, and the deformable convolution is designed to be adaptive.
Certain parts of the original convolution were replaced with DCN v3, in order to address
the issue of the deformation of underwater photographs with fewer parameters and more
effectively capture the deformation and intricate details of underwater targets. We utilized
SPPFCSPC to improve multi-scale target recognition and to improve feature expression by
combining high-level semantic features with low-level shallow features. Lastly, when WIoU
loss v3 was substituted for the CIoU loss function, the overall performance of the model
improved. According to the test results, the method suggested in this paper performs
exceptionally well regarding underwater target recognition in challenging situations.
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Abbreviations

ROV Remotely Operated Vehicle
CNN Convolutional Neural Network
R-CNN Region-Based Convolutional Neural Network
Fast R-CNN Fast Region-Based Convolutional Neural Network
Faster R-CNN Faster Region-Based Convolutional Neural Network
SSD Single Shot MultiBox Detector
YOLO You Only Look Once
Resnet Residual Network
SPPF Spatial Pyramid Pooling-Fast
SPPFCSPC Spatial Pyramid Pooling-Fast and Cross-Stage Partial Connection
WIoU loss Weighted Intersection over Union Loss
CIoU loss Complete Intersection over Union Loss
DCNv3 Deformable ConvNet v3
URPC Underwater Robot Professional Challenge
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