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Abstract: Autonomous underwater vehicles (AUVs) have been widely used in ocean missions. When
they fail in the ocean, it is important to predict their trajectory. Existing methods rely heavily on
historical trajectory data while overlooking the influence of the ocean environment on an AUV’s
trajectory. At the same time, these methods fail to use the dependency between variables in the
trajectory. To address these challenges, this paper proposes an AUV trajectory prediction model
known as the nonlinear Kepler optimization algorithm–bidirectional long short-term memory–time-
variable attention (NKOA-BiLSTM-TVA) model. This paper introduces opposition-based learning
during the initialization process of the KOA and improves the algorithm by incorporating a nonlinear
factor into the planet position update process. We designed an attention mechanism layer that spans
both time and variable dimensions, called TVA. TVA can extract features from both the time and
variable dimensions of the trajectory and use the dependency between trajectory variables to predict
the trajectory. First, the model uses a convolutional neural network (CNN) to extract spatial features
from the trajectory. Next, it combines a BiLSTM network with TVA to predict the AUV’s trajectory.
Finally, the improved NKOA is used to optimize the model’s hyperparameters. Experimental results
show that the NKOA-BiLSTM-TVA model has an excellent parameter optimization effect and higher
prediction accuracy in AUV trajectory prediction tasks. It also achieves excellent results in ship
trajectory prediction.

Keywords: trajectory prediction; AUV; BiLSTM; time-variable attention (TVA); nonlinear Kepler
optimization algorithm (NKOA)

1. Introduction

An AUV is an autonomous underwater vehicle that is widely used in marine engineer-
ing, military, and civil fields [1,2]. Due to its importance, there are several research topics
based on AUVs, including trajectory prediction, path planning, trajectory control, etc. [3,4].
The safety of AUVs is a hot research topic. It is important to predict the possible emergence
or sinking points when they fail, salvage and recover AUVs, and study the causes of failure
and their subsequent solutions. AUV trajectory prediction involves using mathematical
models, physical models, and machine learning algorithms to predict the drift trajectory
of an AUV. The goal is to predict the future trajectory based on historical trajectory data
and ocean environment data. Historical trajectory data include longitude, latitude, depth,
etc., while ocean environmental factors include the speed of the ocean current, oxygen
concentration, salinity, etc.

AUV trajectory prediction faces many challenges. First, the ocean environment in
which AUVs operate is complex and variable. These factors can affect the AUV’s trajectory,
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making prediction more difficult. Second, sensor measurements contain errors and noise,
affecting the accuracy and completeness of the data. Trajectory prediction methods are
mainly divided into physics-based methods and data-driven methods [5]. Physics-based
methods establish the AUV’s motion equations based on Newtonian mechanics and predict
its trajectory through numerical solutions. They are usually developed for specific envi-
ronments and have poor adaptability. When environmental conditions change, the model
needs to be readjusted or rebuilt. Additionally, accurate physical models often require
complex numerical simulations, making it difficult to meet the needs of real-time prediction.
Data-driven methods use deep learning methods to capture features in the trajectory data
and ocean environment data for prediction. Existing deep learning methods usually rely on
historical trajectory data to predict the trajectory while overlooking the impact of complex
ocean environmental factors on the AUV’s trajectory. Additionally, these methods often use
a simple attention mechanism to extract trajectory features in the time dimension, ignoring
the feature dependency between trajectory variables.

To address these challenges, this paper proposes an AUV trajectory prediction model
known as NKOA-BiLSTM-TVA. First, the model uses a CNN layer to extract spatial features
between trajectories and then inputs them into the BiLSTM network to capture the feature
dependency at different time steps. Next, the model uses the TVA layer to extract the
dependency between the time and variable dimensions in the AUV’s trajectory. This allows
the model to focus on the time steps and spatial locations that have a significant impact
on the predicted trajectory. At the same time, the NKOA is used to optimize the model’s
hyperparameters. This avoids the need to manually set the model hyperparameters and
improves the model’s generalization ability and stability. The main contributions of this
paper are as follows:

1. This paper combines AUV trajectory data with marine environment data to predict
an AUV’s trajectory. Our model first uses the CNN model to extract spatial features between
trajectories before predicting the trajectory.

2. This study proposes a fusion attention layer across time and variable dimensions.
This layer can extract the dependency between time and variable dimensions in historical
trajectory data. Additionally, it can be applied to other model structures.

3. This study first initializes the KOA using opposition-based learning and integrates
a nonlinear convergence factor into the algorithm to improve it. This improves the model’s
generalization capability and prediction accuracy.

4. This paper proposes the NKOA-BiLSTM-TVA model for AUV trajectory prediction,
which combines a time-variable attention layer, a BiLSTM network, and the NKOA. This
model introduces a new idea and method for AUV trajectory prediction.

The rest of this paper is structured as follows. Section 3 introduces the NKOA process
and describes the proposed model; Section 4 analyzes the model’s prediction results; and
Section 5 presents the conclusions of this paper and possible prospects for further research.

2. Related Works

In early trajectory prediction research, physics-based methods included dynamics mod-
eling, physical modeling, Kalman filtering, fitting polynomials, etc. [6,7]. Perera et al. [8]
proposed extended Kalman filtering as an adaptive filtering algorithm for estimating the
position, velocity, and acceleration in ship trajectory prediction. They achieved accurate
results in predicting ship trajectories. Luo et al. [9] introduced and compared three algo-
rithms used in ship trajectory prediction: the extended Kalman filter (EKF), least-squares
support vector regression (LSSVR), and the improved LSSVR predictor.

However, due to the complex marine environment in which AUVs move, physics-
based methods perform poorly. With the development of deep learning, neural network-
based trajectory prediction methods have shown superior performance [10,11]. Recurrent
neural networks (RNNs) have performed well in processing time-series data and are widely
used in machine translation and speech recognition. At the same time, they have also been
successfully applied to trajectory prediction tasks [12–15]. However, as the prediction task
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complexity increases, RNNs face issues such as long-term dependence, gradient vanishing,
and gradient explosion. As a result, improved RNN models and attention mechanism-
based models have been developed to address these problems [16]. These models have
achieved better results compared to traditional RNNs in trajectory prediction tasks. Li
et al. [17] designed a CNN-LSTM model for short-term AUV trajectory prediction and
verified its accuracy and robustness by comparing it with RNN, gated recurrent unit (GRU),
and LSTM models. Jameer et al. [18] used a deep convolutional neural network and long
short-term memory (DCNN-LSTM) network with a multi-stage structure and convolutional
blocks to recognize human behavior. Meanwhile, Zhu et al. [19] proposed an attention-
based DCNN-LSTM method for predicting seedling transplanting time. They used a
DCNN to extract spatial feature information and LSTM to capture temporal correlations in
the samples. Chen et al. [20] developed a deep learning path prediction model based on
BiLSTM. They achieved better performance and higher prediction accuracy compared to
other network models. Jia et al. [21] proposed a 4D trajectory prediction model based on
attention mechanism and LSTM. The LSTM network extracts the sequence features of the
trajectory, while the attention mechanism assigns more weight to factors influencing the
trajectory. Liu et al. [5] proposed an Attention-BiLSTM model to predict the drift trajectory
of AUVs, combining a soft attention mechanism and BiLSTM. Yang et al. [22] proposed
a multiple regression model known as CNN-BiLSTM-Attention for multi-level feature
extraction of UAVs. This model uses CNN-BiLSTM as a feature extractor and enhances
the model’s ability to learn key information through the attention mechanism. Sun et
al. [23] combined temporal pattern attention (TPA) with BiLSTM to propose a method
for predicting short-term exhaust gas temperatures. They used the BiLSTM network to
capture the interrelationships between different input feature variables. At the same time,
they used a temporal pattern attention mechanism to capture the nonlinear dependency
between different time steps and sequences.

Finding the optimal hyperparameters for a model is key to improving prediction
accuracy in AUV trajectory prediction tasks. Traditional methods require numerous ex-
periments to find the best hyperparameters, which is inefficient and can lead the model to
local optima. This paper improves the Kepler optimization algorithm to optimize model
hyperparameters [24]. Mokhtar et al. [25] improved the Kepler optimization algorithm
to solve stochastic optimal power flow (SOPF) problems. The improved algorithm can
prevent the model from falling into local optima, and the experimental results validated
the effectiveness of the new algorithm. Abdel et al. [26] improved the Kepler optimization
algorithm by combining a CNN with alternative image segmentation techniques. The CNN-
IKOA model achieved excellent results in image segmentation compared to other models.
Mohamed et al. [27] improved the Kepler optimization algorithm with a ranking-based
update and exploitation improvement mechanisms. The improved algorithm reduced
the possibility of the model falling into local optimal and converged to the approximate
optimal solution more quickly.

Due to the lack of an attention mechanism, BiLSTM and DCNN-LSTM models cannot
capture the contextual information between different trajectory points. While the CNN-
BiLSTM-Attention and TPA-BiLSTM models use an attention mechanism, they overlook the
feature dependencies between the trajectory variables. However, the TVA layer designed
in this paper can extract features in both the time and variable dimensions. In addition,
these models require extensive experiments to determine their parameters. Other KOAs
only focus on improvements during the optimization process, without improving the
initialization process. At the same time, these algorithms do not improve the planet
position update process. This paper uses opposition-based learning during the KOA’s
initialization process and improves the algorithm with a nonlinear factor in the planet
position update process.



J. Mar. Sci. Eng. 2024, 12, 1115 4 of 20

3. Research Methods and Proposed Model

This section describes the methods used in our work. First, we define the AUV
trajectory prediction problem and then describe the improvements to the KOA and the TVA
attention layer in detail. Finally, we introduce the proposed NKOA-BiLSTM-TVA model
and the process of model prediction trajectory.

3.1. Problem Definition

AUV trajectory data include latitude, longitude, and depth, which describe the precise
position of the AUV in three-dimensional space. The data also include the pitch angle and
roll angle, which determine the AUV’s attitude. Marine environmental data include the
seawater salinity, oxygen concentration, speed of the ocean currents, etc. To predict the
AUV’s trajectory, the trajectory data we selected include the longitude, latitude, depth,
pitch angle, and roll angle. The marine environment data we selected include the seawater
salinity, speed of the ocean currents, and oxygen concentration. These data are used to
predict the longitude, latitude, depth, pitch angle, and roll angle of the trajectory. The
trajectory data at time t can be defined as follows:

F(t) = {lont, latt, altt, pitcht, rollt, saltyt, oxygent, speedt} (1)

where lont, latt, altt, pitcht, rollt, saltyt, oxygent, and speedt represent the longitude, latitude,
depth, pitch angle, and roll angle of the trajectory at time t, along with the salinity, oxygen
concentration of the seawater, and speed of the ocean currents. The model’s output at time
t + 1 can be described as follows:

O(t + 1) = {lont+1, latt+1, altt+1, pitcht+1, rollt+1} = M({C(t − k + 1), · · · , C(t − 1), C(t)}) (2)

where M represents our model. The model uses k historical trajectory data to predict the
future position of the AUV. The model predicts only five variables (lon, lat, alt, pitch, and
roll), which can determine the position and status of the AUV.

There is a temporal dependency between data points at different times in the AUV’s
trajectory. In addition, there is a dependency between different variables in the trajectory.
Taking full advantage of the dependency between time steps and variables can lead to
more accurate trajectory prediction for AUVs.

3.2. Nonlinear Kepler Optimization Algorithm

The Kepler optimization algorithm is a recently proposed optimization algorithm
based on Kepler’s laws of planetary motion. In this paper, we first use opposition-based
learning to initialize the KOA and introduce a time-varying nonlinear convergence factor
to optimize the model’s hyperparameters. The process of the NKOA is described below.

Step 1: Initialization The KOA randomly initializes N planets as candidate solutions in
the search space. Each planet includes d dimensions representing the problem’s dimensions
to be optimized. The formula for random initialization is:

Xi,j = XL
i,j × (1 − r) + r × XU

i,j (3)

where i ∈ [1, N] , j ∈ [1, d] ,Xi,j denotes the ith candidate solution. XL
i,j and XU

i,j denote the
upper and lower bounds of the parameter range to be optimized for the jth parameter of
the ith candidate solution, and r is a random number between 0 and 1.

Step 2: Defining Gravity The changes in the position and velocity of the planets are
influenced by the gravitational force between the Sun and the planets. The gravitational
force of the Sun XSun and any planet Xi can be defined as follows:

Fgi(t) = ei × µ(t)× MSun × mi

R2
i + λ

+ r1 (4)
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where ei is the eccentricity, MSun and mi are the masses of the Sun and the planets, and r1 is
a random number between 0 and 1. Ri is the normalized value of the Euclidean distance
Ri(t) between the Sun and the planets at time t, and µ(t) is an exponential function of time
t used to limit the search accuracy.

Step 3: Planetary Velocity Update The size of the planets’ velocity is closely related to
their distance from the Sun; when the planets are farther away from the Sun, the velocity
between them is relatively small, and when the distance between them becomes smaller,
the velocity between them becomes larger. According to this principle, the formula for
updating the planets’ velocity is as follows:

−→
Vi (t) =

 ℓ×
(

2r4
−→
X i −

−→
X b

)
+ ℓ̈×

(−→
X a −

−→
X b

)
+ (1 − Ri−norm(t))× F ×−→

U 1 ×−→r5 ×
(−→

X U
i −−→

X L
i

)
, i f Ri−norm(t) ≤ 0.5

r4 × L ×
(−→

X a −
−→
X i

)
+ (1 − Ri−norm(t))× F × U2 ×−→r5 ×

(
r3
−→
X U

i −−→
X L

i

)
, Else

(5)

F =

{
1 i f r4 ≤ 0.5
−1 Else

(6)

where
−→
Vi (t) is the velocity of planet i at time t. r3 and r4 are random numbers between

0 and 1, and −→r5 and −→r6 are randomly generated vectors between 0 and 1. F represents a
parametric factor that can change the direction of planetary motion.

−→
X a and

−→
X b denote

randomly selected initial solutions within the population.
Step 4: Elimination of Local Optimal Solutions The algorithm sets a parameter

factor F that changes the search direction, which can prevent the algorithm from becoming
trapped in the local optimal solution. It also allows the algorithm to better search for the
optimal solution in the entire search space.

Step 5: Updating the Planet’s Position With the planet’s velocity update formula, the
planet’s position update formula is as follows:

−→
X i(t + 1) =

−→
X i(t) + F ×−→

Vi (t) +
(

Fgi(t) + |r|
)
×−→

U ×
(−→

X Sun(t)−
−→
X i (t)

)
(7)

Step 6: Updating distance from the Sun The algorithm has two phases—exploration
and exploitation (see Figure 1)—simulating the changing distance between the Sun and
the planets over time. When a planet is close to the sun, the algorithm is in the exploita-
tion phase, optimizing the exploitation operator. When a planet is far from the Sun, the
algorithm is in the exploration phase, optimizing the exploration operator. This process
depends on a tuning parameter h. This process can be defined as follows:

−→
X i(t + 1) =

−→
X i(t)×

−→
U 1 +

(
1 −−→

U 1

)
×

(−→
X i(t)+

−→
X Sun+

−→
X a(t)

3 + h ×
(−→

X i(t)+
−→
X Sun+

−→
X a(t)

3 −−→
X b(t)

))
(8)

Figure 1. Two states of exploration and exploitation.

Step 7: Position Updating Policy To ensure that the Sun and planets are in optimal
positions, the algorithm adopts a position-updating policy, which is defined as follows:

−→
X i,new(t + 1) =

{ −→
X i(t + 1) i f f

(−→
X i(t + 1)

)
≤ f

(−→
X i(t)

)
−→
X i(t) Else

(9)
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3.2.1. Opposition-Based Learning Population Initialization

Opposition-based learning [28] is a population initialization method. For a single
solution, it can generate an opposite solution in the solution space, allowing the algorithm
to consider both the current solution and its opposite solution during optimization. If the
opposite solution is better than the current solution, it can be chosen as a new candidate
solution. By considering the initial solution and its opposite solution, the search process
can cover a wider range of the solution space. This diversity helps reduce the possibility of
the algorithm falling into a local optimum. The introduction of opposition-based learning
enhances the algorithm’s global search capability and accelerates its convergence. For
the jth parameter of the ith planet, a reverse solution Xi,j

′ can be generated based on
Equation (10).

Xi,j
′ = XL

i,j + XU
i,j − Xi,j (10)

If the opposite solution is better than the current solution, it can be selected as a new
candidate solution. This approach allows the algorithm to quickly move toward more
promising search regions.

3.2.2. Nonlinear Convergence Factor

The parameter factor F in the KOA can change the search direction, preventing the
algorithm from becoming trapped in the local optimal solution. However, its principle
only changes the direction of a planet’s movement to avoid the local optimum. To further
enhance the local optimization ability of the KOA, we integrated a time-varying nonlinear
convergence factor into it. This integration allows the algorithm to efficiently and accurately
find the global optimum during both the exploration and exploitation phases. The formula
for the nonlinear convergence factor is as follows:

a = 1 − (ν + e)
(

t
Tmax

)λ

+ θφ (11)

where e represents Euler’s constant; ν , λ , and φ are constant term coefficients; and θ is
a constant term between 0 and 1. t and T denote the current iteration and the maximum
iteration of the algorithm.

As seen in the formula, the nonlinear convergence factor decreases nonlinearly with
the number of iterations. This can be combined with Equation (7). Thus, the nonlinear
convergence factor helps the algorithm balance the breadth and depth of the search during
the exploration and exploitation phases. At the beginning of the algorithm, the planets
can move further, allowing the algorithm to better explore and reach the global optimal
solution during the exploration phase. As the number of iterations increases, the planets
move slower, allowing the algorithm to more accurately reach the local optimal solutions
during the exploitation phase. The formula for updating a planet’s position in the NKOA
is as follows:

−→
X i(t + 1) =

−→
X i(t) + F ×−→

Vi (t)× α +
(

Fgi(t) + |r|
)
×−→

U ×
(−→

X Sun(t)−
−→
X i (t)

)
(12)

We initialize the KOA’s population using opposition-based learning and integrate
a nonlinear convergence factor into the KOA. The NKOA uses Equations (3) and (10) to
initialize the population and Equation (12) to update a planet’s position.

3.3. BiLSTM Model

A RNN is a model used for processing sequence data. As shown in Figure 2, long short-
term memory (LSTM) is an improvement of the RNN model with internal mechanisms,
including forget gates, input gates, and output gates [29]. The forget gate handles the
current input and the output of the previous hidden state; the input gate determines which
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information is input into the network; and the output gate determines which information
from the cell state needs to be output.

Figure 2. LSTM model structure diagram.

In Figure 2, It is the input data at time t, fgt is the forget gate, igt is the input gate, ogt
is the output gate, ht is the current hidden state, Ct is the output at the current time, and C̃t
is the temporary state of the cell. Their formulas are as follows:

fgt = σ
(

W f h · ht−1 + W f I · It + b f

)
(13)

igt = σ(Wih · ht−1 + WiI · It + bi) (14)

ogt = σ(Woh · ht−1 + WoI · It + bo) (15)

ht = ogt ∗ tanh(Ct) (16)

C̃t = tanh(WCh · ht−1 + WCI · It + bC) (17)

Ct = fgt ∗ Ct−1 + igt ∗ C̃t (18)

where W is the weight matrix the network learns, b is the bias parameter; and σ(z) is the
sigmoid activation function. The formulas for σ(z) and tanh(x) are as follows:

σ(z) =
1

1 − e−z (19)

tanh(x) =
ex − e−x

ex + e−x (20)

BiLSTM can use information from both past and future moments, effectively exploiting
the dependency between historical and future time-step data [30–32]. Figure 3 shows the
structure of the BiLSTM network.

Figure 3. BiLSTM network structure.
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The backward layer of BiLSTM captures the dependency on future time-step data.
The forward layer allows the model to integrate historical and future time-step data for
prediction. Thus, BiLSTM enhances the feature representation capability and can extract
richer sequence features.

3.4. Time-Variable Attention Layer
3.4.1. Multi-Head attention

The multi-head attention mechanism learns different weight parameters by stacking
the self-attention mechanism multiple times [33,34]. For the same input X, multiple sets of
different parameter matrices are used to perform dot-product operations with the input to
obtain different attention matrices: Q, K, and V. Then, the outputs of each attention head
are concatenated and linearly transformed [35]. This process can be represented as follows:

MHA(Q, K, V) = Concat(Head1 . . . Headn)Wo (21)

where each Headi is a single self-attention mechanism. Figure 4 shows the model structures
of the multi-head attention and self-attention.

Figure 4. (left) Multi-head attention mechanism structure; (right) self-attention mechanism structure.

Existing trajectory prediction methods often use an attention mechanism to capture
temporal dependency [36,37]. These methods embed data into vectors in the temporal
dimension and then analyze the dependency between vectors. However, this approach
does not consider the dependency among different variables and the influence of the marine
environment on the trajectory. In our work, we propose a time-variable attention layer to
solve these issues. Figure 5 shows the structure of the TVA layer.

Figure 5. Time-variable attention layer structure. (left) Time dimension attention. (right) Variable
dimension attention.
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The TVA layer consists of a time dimension attention and a variable dimension atten-
tion. The time dimension attention mainly captures dependency between trajectories at
different time steps. The variable dimension attention captures the dependency between
different variables. The input data are first processed through a multi-head attention
mechanism, and the output is then fed into a normalization layer. The normalization layer
and the attention layer are combined through the residual connection. Then, the output
is fed into the multi-layer perceptron (MLP) layer. The final result is output through a
normalization layer.

3.4.2. Time Dimension Attention

In the time dimension attention stage, the input of the TVA layer is a given two-
dimensional tensor OC ∈ RS×D. Here, S represents the input time steps, and D represents
the number of input trajectory variable dimensions. OC

i,: denotes all variable dimensions
of the ith time step, where as OC

:,d denotes all time steps in the dth variable dimension. OC

denotes the information output from the BiLSTM hidden layer. The process of extracting the
trajectory feature dependency in the time dimension through the time dimension attention
can be defined as follows:

ÔT = LayerNorm(MHAT(OC
:,d, OC

:,d, OC
:,d) + OC

:,d) (22)

OT = LayerNorm(MLP(ÔT) + ÔT) (23)

where MHAT() uses the multi-head attention mechanism to capture the dependency in
the time dimension. OT is the output of the time dimension attention. All variables
share the attention parameter. LayerNorm performs the normalization operation, and the
MLP represents the forward fully connected layer. When extracting the time dimension
dependency, all variables are embedded into a feature vector to extract the dependency for
each time step. Thus, the model can extract the complete dependency of trajectory data in
the time dimension.

3.4.3. Variable Dimension Attention

The variable dimension attention takes the output of the time dimension attention
and the original features as input. For each variable, it extracts the feature dependency
across all time dimensions of a sliding window. This enables a complete extraction of
the dependency between different trajectory variables. The variable dimension attention
assigns more weight to trajectory variables that significantly impact the AUV’s future
trajectory. In addition, the marine environment can be fully used to predict the AUV’s
trajectory. The process of the variable dimension attention can be defined as follows:

ÔV = LayerNorm(MHAV(OT
i,:, OT

i,:, OC
i,:) + OC

i,:) (24)

OV = LayerNorm(MLP(ÔV) + ÔV) (25)

where MHAV() uses multi-head attention to capture the feature dependencies in trajectory
variables. OV is the output after temporal and variable dimension dependency extraction.
The process of the TVA layer can be expressed as follows:

Y = OV = TVA(OC) (26)

where OC and Y denote the inputs and outputs of the TVA layer.

3.5. BiLSTM-TVA

This paper combines BiLSTM with the TVA layer to construct the BiLSTM-TVA model
for predicting the AUV’s drift trajectory and also adds a CNN layer to the model (see
Figure 6). The BiLSTM-TVA model includes the input layer, the CNN layer, the BiLSTM
layer, the TVA layer, and the output layer. First, the input layer preprocesses the AUV
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trajectory data and creates a dataset according to the sliding window principle. Next, these
data are input into the CNN layer to extract the spatial features of the AUV’s trajectory.
After extracting the spatial features between trajectories with the CNN network, the BiLSTM
network captures the temporal dependency within the trajectory. The output of the BiLSTM
hidden layer serves as the input to the TVA layer, which focuses on both time and variable
dimensions. Finally, the fully connected layer predicts the AUV’s drift trajectory.

Figure 6. The structure of the BiLSTM-TVA model

3.6. NKOA-BiLSTM-TVA

This study uses the NKOA to optimize the parameters of the BiLSTM-TVA model.
First, the upper and lower bounds of the hyperparameters of the BiLSTM-TVA model
are determined, and then the NKOA optimizes the hyperparameters of the BiLSTM-TVA
model. The optimized hyperparameters are used for model training and testing. The mean
squared error (MSE) between the predicted trajectory and the real trajectory is calculated
and fed back to the NKOA as the fitness value for algorithm iteration. Eventually, a set of
optimal hyperparameters for the model is obtained. Figure 7 shows the detailed steps of
the NKOA for optimizing the hyperparameters of the BiLSTM-TVA model.

Figure 7. NKOA process

The process of the NKOA is as follows:
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(1) Determine and construct the BiLSTM-TVA model. Use the CNN model to capture
the spatial feature dependency in the trajectory.

(2) Initialize the NKOA and its parameters, including the maximum number of it-
erations, the number of parameters to be optimized, the upper and lower bounds of the
parameters, and the fitness function. Randomly initialize the algorithm population using
opposition-based learning.

(3) Calculate the fitness values and retain the current global optimal fitness values and
the current optimal parameters.

(4) Calculate the speed of the planets and the gravitational force between the planets
and the Sun. Generate two random numbers r and r1. If r ≥ r1, update the planet’s position
using Equations (5) and (12). Otherwise, update the distance between the planets and the
Sun using Equation (8).

(5) Use Equation (9) to decide whether to update the planet’s position or the distance
between the planets and the Sun.

(6) Repeat steps (3)–(5) and check whether the algorithm has met the termination
condition. The termination condition can be either reaching the number of iterations or the
fitness value converging to a sufficiently small value. If the algorithm meets the termination
condition, stop the optimization; otherwise, continue iterating the algorithm.

(7) After the algorithm ends, use the optimized hyperparameters to train the model on
the training set. Then, validate the trained model on the test set to evaluate its performance.

(8) Save the model’s predicted results, analyze them, and compare them with the
prediction results of other models.

4. Experiments and Results

The section mainly analyzes the experimental results. First, it introduces the trajectory
data preprocessing process and experimental evaluation metrics. Then, it analyzes the
BiLSTM-TVA model parameter optimization results. Finally, we compare the experimental
results of the proposed model with those of other models and analyze the results.

4.1. Data Preprocessing and Experimental Configuration

The AUV trajectory data used in the experiment come from the Autonomous Under-
water Vehicle Monterey Bay Time-Series Dataset [38]. This dataset contains trajectory data
measured by various sensors and positioning systems on the AUV. The trajectory data
used in the experiments include the longitude, latitude, depth, pitch angle, and roll angle.
The selected ocean environment data include the seawater salinity, ocean current speed,
and oxygen concentration. First, the required trajectory features are separated from the
original trajectory data, and outliers are removed from the trajectory data. Following this,
the moving average method is employed to fill in missing values by taking the average of
the data points within a certain time window. Lastly, the AUV trajectory is combined with
marine environmental factors to construct the experimental dataset. To accelerate model
convergence and improve prediction accuracy, normalization is applied to the data, scaling
it within the [0, 1] range. The formula is as follows:

X′ =
X − Xmin

Xmax − Xmin
(27)

The dataset used consists of 10,000 records, with each record collected at one-minute
intervals. The first 80% of the AUV trajectory data is used to train, while the remaining 20%
is used to test. First, the model uses the NKOA to determine the optimal hyperparameters,
and then it trains on the training set using these parameters. The sliding window size used
in the experiment is 8. Since the longitude, latitude, and depth of the AUV can determine its
position in three-dimensional space and the pitch angle and roll angle describe its attitude,
the experiment in this paper predicts only these five trajectory variables. On the training
set, the model’s input and output sizes are (7991, 8, 8) and (7991, 5), respectively, and on
the test set, they are (1991, 8, 8) and (1991, 5), respectively.
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4.2. Model Evaluation Index

In order to objectively evaluate the prediction performance of the models, this paper
uses two evaluation metrics in the experiment: root mean square error (RMSE) and mean
absolute error (MAE). Their calculation formulas are as follows:

RMSE =

√√√√ 1
N

N

∑
n=1

(ŷn − yn)

2

(28)

MAE =
1
N

N

∑
n=1

|ŷn − yn| (29)

where N represents the total sample size of the AUV trajectory dataset, yn represents the
nth true trajectory value, and ŷn is the trajectory value predicted by the model. For these
two evaluation metrics, the closer their values are to 0, the smaller the prediction error,
indicating greater accuracy of models.

4.3. Analysis of NKOA Hyperparameter Optimization Results

In this experiment, we used the NKOA to optimize the hyperparameters of the model.
These hyperparameters included the learning rate, batch size, number of epochs, number
of neurons in the first and second layers of the BiLSTM hidden layer, and number of fully
connected layers. The number of iterations of the NKOA was set to 10. Figure 8 shows
the optimization curve of the BiLSTM-TVA model parameters by the NKOA. From these
optimization curves, we can observe the change in each parameter during each iteration.
The horizontal coordinate represents the number of iterations of the NKOA, and the vertical
coordinate represents the changes in model parameter values. Table 1 shows the range and
final values of each parameter in the BiLSTM-TVA model. The parameters were optimized
based on the fitness value of the NKOA. When the fitness value approaches its minimum
and stability, it shows that the model parameters have been optimized to their best values.
The fitness value of the NKOA stabilized after six iterations and finally settled at 0.00088.
The learning rate converged from the range [0.001, 0.01] to 0.0023; the batch size from
[8, 128] to 16; and the number of epochs from [10, 200] to 82. The number of neurons in
the first hidden layer in the BiLSTM model converged from [1, 30] to 8; the number of
neurons in the second hidden layer from [1, 30] to 7; and the number of neurons in the fully
connected layer from [1, 100] to 65.

Table 1. Results of the NKOA’s optimization of model parameters.

Hyperparameter Range of Parameter Optimal Value

Learning rate [0.001, 0.01] 0.0023
Batch size [8, 128] 16

Epoch [10, 200] 82
Hidden layer 1 [1, 30] 8
Hidden layer 2 [1, 30] 7

Fully connected layer [1, 100] 65
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(a) (b) (c)

(d) (e) (f)

Figure 8. NKOA-BiLSTM-TVA optimal parameters: (a) optimization result for the learning rate;
(b) optimization result for the batch size; (c) optimization result for the epochs; (d) number of
nodes in the first hidden layer; (e) number of nodes in the second hidden layer; (f) number of fully
connected layers.

4.4. Analysis of AUV Trajectory Prediction Results

After obtaining the optimized hyperparameters, the model first utilized the optimal
hyperparameters to train on the training dataset and saved the trained model. Then, it used
the trained model to perform model trajectory prediction testing on the test dataset. The
experimental results for the NKOA-BiLSTM-TVA model on the test set were compared with
those of the BiLSTM, DCNN-LSTM, CNN-BiLSTM-Attention, and TPA-BiLSTM models.
Our experimental trajectory data were measured in a real ocean environment, so the
model’s predicted AUV trajectories could be compared with real data. For each model’s
prediction results, we demonstrated the curve fitting between the true and predicted values
of the five trajectory variables and calculated the MAE and RMSE between them to verify
the effectiveness of the predictions numerically. Since the experimental data were real and
have been validated in practical applications, the reliability of the model’s predictions could
be confirmed. Figures 9–14 show the curve fitting between the true and the predicted values
for the five trajectory variables, reflecting the model’s prediction performance. Figure 9
shows the predicted longitude and latitude of the AUV’s trajectory by the NKOA-BiLSTM-
TVA model on the test set. Figures 10 and 11, respectively, compare the prediction results
by several models for longitude and latitude. It can be observed in Figures 10 and 11 that
all models correctly predicted the trend of longitude and latitude changes in the AUV’s
trajectory. However, some models without attention mechanisms did not predict a smooth
curve. This is because these models do not use the feature dependency between trajectory
points in their predictions. When the changes in longitude and latitude of the AUV’s
trajectory were small (as shown in the enlarged area in Figures 10 and 11), our model
better fit the real trajectory due to its use of the feature dependency between trajectory
variables. In contrast, models that do not consider the dependency between trajectory
variables exhibited poorer prediction results.
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(a) Longitude (b) Latitude

Figure 9. Trajectory predicted by the NKOA-BiLSTM-TVA model for longitude and latitude.

Figure 10. Trajectory predicted by the five models for longitude.

Figure 11. Trajectory predicted by the five models for latitude.

Figure 12 shows the prediction results for the AUV’s altitude by the five models;
Figure 13 shows the prediction results for the AUV’s pitch angle; and Figure 14 shows
the prediction results for the AUV’s roll angle. Figure 15 shows a 3D image of the AUV’s
predicted drift trajectory by the NKOA-BiLSTM-TVA model on the test set.
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(a) BiLSTM (b) DCNN-LSTM

(c) CNN-BiLSTM-Attention (d) TPA-BiLSTM (e) NKOA-BiLSTM-TVA

Figure 12. The predicted trajectories of the five models for the AUV’s altitude: (a) Trajectory predicted
by the BiLSTM model for the altitude; (b) Trajectory predicted by the DCNN-LSTM model for the
altitude; (c) Trajectory predicted by the CNN-BiLSTM-Attention model for the altitude; (d) Trajectory
predicted by the TPA-BiLSTM model for the altitude; (e) Trajectory predicted by the NKOA-BiLSTM-
TVA model for the altitude.

(a) BiLSTM (b) DCNN-LSTM

(c) CNN-BiLSTM-Attention (d) TPA-BiLSTM (e) NKOA-BiLSTM-TVA

Figure 13. The predicted trajectories of the five models for the AUV’s pitch angle: (a) Trajectory
predicted by the BiLSTM model for the pitch angle; (b) Trajectory predicted by the DCNN-LSTM
model for the pitch angle; (c) Trajectory predicted by the CNN-BiLSTM-Attention model for the pitch
angle; (d) Trajectory predicted by the TPA-BiLSTM model for the pitch angle; (e) Trajectory predicted
by the NKOA-BiLSTM-TVA model for the pitch angle.
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(a) BiLSTM (b) DCNN-LSTM

(c) CNN-BiLSTM-Attention (d) TPA-BiLSTM (e) NKOA-BiLSTM-TVA

Figure 14. The predicted trajectories of the five models for the AUV’s roll angle: (a) Trajectory
predicted by the BiLSTM model for the roll angle; (b) Trajectory predicted by the DCNN-LSTM model
for the roll angle; (c) Trajectory predicted by the CNN-BiLSTM-Attention model for the roll angle;
(d) Trajectory predicted by the TPA-BiLSTM model for the roll angle; (e) Trajectory predicted by the
NKOA-BiLSTM-TVA model for the roll angle.

Figure 15. The NKOA-BiLSTM-TVA model’s prediction of the AUV’s 3D trajectory on the test set.
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In Table 2, we present the calculated RMSE and MAE values between the predicted
trajectory values and the true trajectory values on the AUV test set using Equations (28)
and (29). For the four baseline models, the minimum MAE and RMSE for longitude are
0.0057 and 0.0072, respectively, while those of our model are 0.0038 and 0.0042. Similarly,
for the four baseline models, the minimum MAE and RMSE for latitude are 0.0058 and
0.0069, while those of our model are 0.0044 and 0.0047. For the four baseline models, the
minimum MAE and RMSE for altitude are 0.0816 and 0.0969, while those of our model
are 0.0591 and 0.0703. For the four baseline models, the minimum MAE and RMSE for the
pitch angle are 0.0218 and 0.0353, while those of our model are 0.0155 and 0.0205. Finally,
for the four baseline models, the minimum MAE and RMSE for the roll angle are 0.0414
and 0.0543, while those of our model are 0.0212 and 0.0331.

Table 2. Comparison of RMSE and MAE values between all models on the AUV trajectory dataset.

Model Metric Longitude
(°E)

Latitude
(°N)

Altitude
(m) Pitch (°) Roll (°)

BiLSTM MAE 0.0332 0.0364 0.1314 0.0539 0.0551
RMSE 0.0364 0.0455 0.1539 0.0661 0.0764

DCNN-LSTM MAE 0.0193 0.0224 0.1023 0.0524 0.0711
RMSE 0.0220 0.0279 0.1174 0.0643 0.0940

CNN-BiLSTM-
Attention

MAE 0.0187 0.0251 0.0864 0.0386 0.0588
RMSE 0.0240 0.0355 0.1083 0.0513 0.0835

TPA-BiLSTM MAE 0.0057 0.0058 0.0816 0.0218 0.0414
RMSE 0.0072 0.0069 0.0969 0.0353 0.0543

NKOA-BiLSTM-
TVA

MAE 0.0038 0.0044 0.0591 0.0155 0.0212
RMSE 0.0042 0.0047 0.0703 0.0205 0.0331

In Table 2, we can see that the order of these models in terms of prediction performance
is NKOA-BiLSTM-TVA > TPA-BiLSTM > CNN-BiLSTM-Attention > DCNN-LSTM > BiLSTM.
Moreover, Table 2 shows that the NKOA-BiLSTM-TVA model performs the best in pre-
dicting the five trajectory variables. Because the changes in the AUV drift trajectory’s
longitude and latitude are small, the TPA-BiLSTM model and NKOA-BiLSTM-TVA model
have similar prediction performance, but NKOA-BiLSTM-TVA performs better in the other
three variables. The results for the five models show that the model without an attention
mechanism has significant trajectory jitter and a poorer fit to the actual AUV trajectory.
The experimental results for the BiLSTM and DCNN-LSTM models compared to those
for the other three models confirm the importance of attention mechanisms in predicting
AUV drift trajectories. Models without attention mechanisms fail to give more weight to
time steps that are critical for predicting future trajectories. The experimental results for
the CNN-BiLSTM-Attention, TPA-BiLSTM, and NKOA-BiLSTM-TVA models confirm the
impact of different attention mechanisms on AUV trajectory prediction. This validates
the effectiveness of the TVA attention layer developed in this paper. It also confirms the
importance of the dependency between different variables in predicting AUV trajectories.

4.5. Prediction Results for Ship Trajectories

To verify the effectiveness of the TVA layer, we continued to conduct experiments
on the ship trajectory dataset. We used GRU, LSTM, and BiLSTM models to predict ship
trajectories, and then added the TVA layer to these base models to form the following
combined models: GRU-TVA, LSTM-TVA, and BiLSTM-TVA. In Table 3, we present the
calculated RMSE and MAE values between the predicted trajectory values and the true
trajectory values on the ship test set using Equations (28) and (29). The experimental results
(Table 3) show that the combined models with the TVA layer perform better in terms of
prediction accuracy compared to the base models. Additionally, among the three models,
the BiLSTM model performs better than the GRU and LSTM models.
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Table 3. Comparison of RMSE and MAE values on the ship trajectory dataset.

Model
Longitude (°E) Latitude (°N)

MAE RMSE MAE RMSE

GRU 0.0433 0.0668 0.0458 0.0721
GRU-TVA 0.0386 0.0528 0.0413 0.0653

LSTM 0.0302 0.0494 0.0393 0.0641
LSTM-TVA 0.0147 0.0392 0.0148 0.0417

BiLSTM 0.0209 0.0394 0.0183 0.0538
BiLSTM-TVA 0.0091 0.0159 0.0096 0.0166

5. Conclusions

To improve the performance of AUV trajectory prediction, this paper combined a
CNN, BiLSTM, and a TVA layer to propose a high-accuracy AUV trajectory prediction
method. This study used an improved Kepler optimization algorithm to optimize the
model’s hyperparameters. Our model used ocean environmental factors in the AUV
trajectory prediction process, achieving multivariable AUV trajectory prediction. The
improved NKOA shows an excellent parameter optimization effect. In the sixth iteration,
the NKOA’s fitness value reached a minimum of 0.00088, proving that the nonlinear factor
accelerated the algorithm’s convergence speed and enhanced the model’s local search
capability. We compared the prediction results of our model with those of the BiLSTM,
DCNN-LSTM, CNN-BiLSTM-Attention, and TPA-BiLSTM models. The RMSE values of
our model for the longitude, latitude, depth, pitch angle, and roll angle were 0.0042, 0.0047,
0.0703, 0.0205, and 0.0331, respectively. The prediction errors of our model were lower
than those of other models, which proves the performance advantage of our model. In
contrast, models without attention mechanisms have a very large jitter in their predicted
trajectory curves, which also proves the importance of attention mechanisms in trajectory
prediction. The TVA in our model effectively captured the dependency in both the time
and variable dimensions of the trajectory, thereby improving the prediction accuracy by
using the dependency between trajectory variables.

The limitation of this method lies in the need for a relatively large number of trajectory
variables to extract the feature dependency. In future studies, we plan to combine the TVA
layer with graph neural network models to extract richer trajectory features and achieve
multi-step AUV trajectory prediction tasks while using fewer trajectory features to obtain
better prediction results.
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