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Abstract

Being cost effective, safe and portable, Unmanned Underwater Vehicle (UUV)s are
becoming popular for underwater exploration. Navigation in underwater environ-
ments is challenging due to the fact that electromagnetic waves do not transmit
far underwater. Vision based navigation and mapping can be very useful in this
environment for being cheap and easily accessible. In this project, the feasibility
of using a self-supervised based method for scene depth and robot pose learning
from underwater videos has been studied. Three different depth prediction mod-
els Dispnet, Udepth and Dispnet Mvit have been trained with two different input
spaces (Red-Green-Blue (RGB) and Red-Max-Intensity (RMI)) along with a pose
prediction model. The models have been trained on 3 different years (2016, 2018
and 2020) data from the underwater Eiffel tower dataset and have been tested
with data from the year 2015 of that same dataset. For testing the model’s gener-
alizability the trained model is also tested with the Varos dataset. The predicted
depths has been used to enhance images using the SeaThru pipeline. The udepth
model with RMI input space has achieved the best depth prediction result on the
eiffel tower dataset with an Root Mean Squared Error (RMSE) of 2.5583m when
the maximum depth has been capped at 40m. While on varos dataset the dispnet
mvit model with RGB input space performed the best with RMSE of 8.1343m
when the maximum depth has been capped at 60m depth. For underwater image
enhancement using SeaThru pipeline the dispnet with RMI input space achieved
the best performance in terms of Underwater Image Quality Measure (UIQM) of
1.66 which is an 26.68% increase compared to the original images in the eiffel
tower dataset. However, in the varos dataset the dispnet model with RGB input
space achieved an UIQM of 0.50, a 305.03% of increase from the original im-
ages. The Varos dataset being a simulated dataset retains pixel level information
even in the shadows of the images, which aids in enhancing the images using the
SeaThru pipeline. This makes the enhanced images gain a 305.03% increase in
UIQM compared to the original images. To get a better understanding of the image
enhancement performance, a new dataset SeaThru-Nerf, consisting of real under-
water images, has been used. On the SeaThru-Nerf dataset the dispnet model with
RGB input space performed best for image enhancement in all scenes in terms of
UIQM. It achieved UIQM of 2.06 a16.09% increase in Curasao scene, 2.01 an in-
crease of 22.27% in Panama scene, 1.21 a 36.32% increase in IUI3-RedSea scene
and 1.67 a increase of 29.43% in JapaneseGradens-RedSea scene. The predicted
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depths from the Udepth (RMI) model on the Eiffel-Tower dataset are used in RGB-
D SLAM pipeline in the ORB-SLAM3 framework as a depth sensor. The estimated
trajectory from the SLAM yielded an RMSE of 9.79m Absolute Trajectory Error
(ATE) when averaged over 3 different runs, which is 2.14% of the total trajectory
length. For the pose net when trained with Dispnet along with RMI input space
achieved an Absolute Trajectory Error (ATE) of 1532.216m which is 0.311m per
frame in the Eiffel tower dataset when a 5-frame snippet has been used to align
and scale the trajectory. In Varos dataset the best performing pose net was trained
with Dispnet mVit with RMI input space. It achieved a total ATE of 25.84997m
and mean ATE of 0.0042m per frame. From the experiments, it can be said the
self-supervised learning based scene depth and ego motion learning from videos,
which was originally proposed for airborne vision, can be applied in underwater
environments where the visual appearance of the scene is significantly different
and this also changes with the viewpoint of the camera. Moreover, it can be also
concluded that the predicted depths can be used in several application where
the depth is required and not readily available from the sensor, like a pseudo
depth sensor in RGB-D SLAM and underwater image enhancement techniques
like SeaThru.
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Chapter 1

Introduction

1.1 Background

In the realm of autonomous robotics, Simultaneous Localization and Mapping
(SLAM) has become a pivotal focus in the 21st century. The ever growing import-
ance of applied research on autonomous positioning for mobile robots has driven
the exploration of innovative solutions, especially in environments where tradi-
tional methods like the Global Navigation Satellite System (GNSS) may fall short.
SLAM is a method that empowers robots to navigate and map unknown environ-
ments concurrently, offering a cost-effective and versatile alternative in various
applications[1, 2].

Unmanned Underwater Vehicle (UUV)s have gained widespread popularity for
underwater exploration, owing to their safety, portability, and cost-effectiveness.
These vehicles fall into two main categories: Remotely Operated Vehicles (ROV)s
and Autonomous Underwater Vehicle (AUV). UUVs play a crucial role in marine
resource investigation, undersea biology research, underwater structure detec-
tion, and marine data collection. Knowing the position of the vessel accurately
is of utmost importance in these applications. However, achieving precise posi-
tioning and navigation for underwater vehicles is challenging due to the rapid
attenuation of electromagnetic signals, such as Global Positioning System (GPS),
by the underwater environment. Additionally, the inertial navigation approach is
susceptible to accumulating errors overtime rendering it useless on it’s own[3].
Traditional underwater acoustic positioning methods like Short Baseline (SBL)
and Ultrashort Baseline (USBL) involve installing a base array or periodic AUV
position corrections. While effective, these methods are expensive, have limited
exploration range due to beacons, and often require frequent surfacing, leading
to increased exertion for the vehicles[1, 4]. To tackle these issues, researchers are
exploring the application of SLAM techniques in the underwater domain, open-
ing up new possibilities for autonomous positioning and navigation of underwater
vehicles.[5]

1
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Underwater SLAM can be broadly categorized into Light Detection and Ran-
ging (LiDAR) SLAM, sonar SLAM, and Visual Simultaneous Localization and Map-
ping (VSLAM) based on sensors used. LiDARs and sonars are expensive, limiting
their use for civil robots. Moreover, LiDARs underwater range is restricted due to
laser absorption and scattering by particles in the water, resulting in maps lacking
semantic information[6]. Although, sonar can be a suitable choice for underwater
SLAM, yet it is influenced by water flow, seismic activity, and other factors, posing
challenges. Specially in enclosed environments where sonar signals gets reflected
and interfere with each other[7]. In contrast, recently the low-cost and portable
vision based systems have gained prominence. Although it faces issues with sus-
pended particles in water and scene illumination, it can be mitigated by various
underwater image enhancement algorithms [6, 8, 9]. Enhancing the underwater
images is an important step of using underwater images in different computer
vision application such as SLAM. Despite the advantages of VSLAM, adaptation
in general is low in the context of underwater scenario. A reason for this low ad-
aptation is the lack of suitable annotated dataset with ground truth pose of the
camera in the GPS denied environment [10]. Another reason being the lack of
ambient light in the deep sea and the UUVs need to bring their own light source
for illuminating the scene. As a result, when the vessel is further away from the
object of interest the illumination changes and that often causes the traditional vis-
ion based of the shelf systems like feature matching and estimating fundamental
matrix between images to fail. Recent developments in the field of deep learn-
ing based computer vision has addressed the problem of lack of annotated data
by using self supervised learning. [11] first introduced this method for learning
scene depth and camera pose simultaneously from unannotated videos. Later on
research like [12–15] improved upon the results.

1.2 Objective

In this project, the objective is to investigate the validity of adapting the self su-
pervised method of learning scene depth and robot pose in the world for lever-
aging the power of Deep Learning in the deep sea underwater videos captured by
ROVs. In this regard the method proposed by [12] will be used for learning pose
and scale consistent depth. To improve upon the results, various depth prediction
models will be tested within the learning pipeline. The models will be evaluated
on a different dataset to check their generalizability to different scenes. Finally
the estimated depths will be used in two different applications: improving the
underwater image quality and in traditional VSLAM algorithms.

1.3 Scope

In the context of the objective described in the previous section the scopes of the
project are:
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• Review of relevant theory and existing work on underwater image forma-
tion, photogrammetric camera modelling as well as self supervised learning
of scene depth and camera pose.
• Collect suitable underwater datasets to train and test the model on.
• Experiment with suitable network architectures for underwater applications.
• Applying the prediction of the depth network in the state of the art VSLAM

system ORB-SLAM3 and compare the performances.
• Using the predicted depths in the image enhancement pipelines for improv-

ing the image quality.

1.4 Outline

The rest of the thesis is structured as: Chapter 2 contains relevant literature review.
Chapter 3 contains a detailed discussion on the materials and methods used in the
research. Chapter 4 presents and discusses the result of the research. Chapter 5
summarizes the result and concludes the project objective.

Parts of the chapter 1, chapter 2 and chapter 3.1.2 has been taken from the
project report of the course TMR4510 Marine Control Systems, Specialization Pro-
ject.





Chapter 2

Related Works

In this chapter, a comprehensive review of relevant works is presented that con-
tributed to our methods.

2.1 Traditional VSLAM

The Visual SLAM can be widely categorized in direct and indirect methods. The
direct methods use the images directly for estimating map points and poses of the
robot where indirect methods include an extra step of computing features from
the images before going to the estimation step. Again based on the sensors used in
the Visual SLAM it can be categorized in Monocular, Stereo, RGB-D, Monocular-
Inertial SLAM [1].
[6] suggested that, in underwater environments, optical flow based direct

methods are impractical for visual SLAM due to disturbance and unstable light
sources. Feature point methods, specifically those employing key points, are com-
monly used for front-end calculations in underwater visual SLAM. Notable feature
detection and matching methods include SIFT, SURF, and ORB, each designed
to identify key points with robustness to image scaling and rotation. ORB is re-
commended for high real-time requirements, while SIFT and SURF are suitable
for high-performance scenarios[16]. Selecting appropriate features is crucial for
SLAM problem-solving, with local image feature detection and matching meth-
ods enhancing efficiency[17]. Segmenting the target image into background and
Region of Interest (RoI) and performing detection and matching solely in the RoI
region is an effective approach for local image feature enhancement[18].

Early visual SLAM algorithms utilized filtering methods like Extended Kalman
Filter (EKF), Particle Filter (PF), and Extended Information Filter (EIF)[19–21].
The optimization visual SLAM algorithms, considering historical pose and land-
mark data, excels in large-scale and prolonged scenes[22]. Methods like graph
optimization, pose graph, factor graphs, tightly coupled nonlinear optimization,
are utilized by ORB-SLAM [23] and its upgrades. Factor graphs model the SLAM
problem and are optimized through nonlinear least squares. Approaches such as
[24] and [25] integrate data from various sensors in the cost function, optimizing

5
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the system with a tightly coupled nonlinear method. ORB-SLAM2 introduces pose
constraints in the estimation process [26], while based on ORB-SLAM3, [27] in-
corporates visual-acoustic joint optimization in both tracking and local mapping
threads, replacing the original vision-only bundle adjustment(BA).
[28] demonstrated that ORB-SLAM could be used effectively under the condi-
tions of a sufficient illumination, low flicker, and rich scene features.[29] used
OpenVSLAM algorithm, an algorithm inspired by indirect, sparse graph-based V-
SLAM algorithms ORB-SLAM, ORB-SLAM2, ProSLAM, and UcoSLAM, and con-
cluded that Bag of Words Bag of Words (BoW) based methods are not suitable for
loop closing underwater due to susceptibility to lighting condition.

2.2 Deep Learning Based Camera Pose Estimation

[30] introduced a Deep Convolutional Neural Network (CNN) model called posenet
for predicting a camera pose from a single image. They showed the network learns
to compute features which can be easily mapped to pose and generalize to unseen
new scenes with a few additional training samples. [31] proposed a geometric-
ally formed loss function in order to improve the performance of the posenet.
[32] proposed a method for combining different loss functions to simultaneously
learn multiple objectives. [33] concluded that despite being less accurate, these
methods are far more robust to noise and easy to use. [34–37] combine the best
of both purely geometry based methods and deep learning based methods for the
camera pose estimation problem. [38] presented a method to predict robot to ro-
bot relative pose for underwater robots. [39] introduced a homography based loss
function to properly weight the translation and rotation components in the final
error in the pose prediction problem. They compute the error in SE(3)which does
not require prior initialization and depends on intuitive parameters.

2.3 Monocular Depth Estimation

[40] introduced an approach for estimating depth from single monocular images
using sensor captured depths like Light Detection and Ranging (LiDAR) or RGB-D
camera. First they estimated the global structure of the scene and then refined
it using local information. [41] introduced new loss function incorporating prior
knowledge of the ambiguity in the relation of dual pixel images with scene depth.
[42, 43] introduced a new network architecture for improving depth prediction
performance. While these methods achieve great performance, it is expensive to
capture ground truth data in real world scenario specially in underwater envir-
onment. The sensors required for collecting the data are expensive and it is also
very expensive to conduct such missions of capturing large scale datasets.
[44] proposed to generate scene depth using Structure From Motion (SFM)

on internet videos. [45] addressed the problem of recovering dense geometry in a
dynamic scene and proposed a method to predict accurate and dense depth from
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videos where both camera and objects in the scene are naturally moving. Later
they used the generated data to train a network. [46] used SFM and Multi View
Stereo (MVS) to automatically generate depth on internet data and also intro-
duced a new loss function for training depth networks to compensate for the fact
that MVS does not tend to reconstruct dynamic objects in the scene. [47] proposed
a network architecture to leverage stereo videos for training and predicting depths
from monocular sequential frames with non rigid objects during inference time.
They also introduced a new loss function to train with unknown camera paramet-
ers which outperforms previously used ordinal losses. Although using SFM and
MVS can help obtaining cheap ground truth data, there usually exists domain gap
between the collected data and the desired scene [12]. It is also difficult to gen-
eralize the scale information on different scenes. As a result the models predict
relative depth. This causes inconsistency in the depths predicted on a video.

2.4 Depth Estimation on Underwater Images

Due to the number of constraints normally being less than the number of unknown
variables, underwater image restoration and depth prediction are an ambiguous
problem[48]. [49] uses a CNN to estimate depth map which in turn is used to
perform image dehazing based on an atmospheric scattering model.
[50] proposed a new joint learning framework for underwater depth estima-

tion and color correction in order to exploit the correlations between them and
possibly benefit both tasks at the same time. [51] proposed a Generative Ad-
versarial Network (GAN) based model to predict depth and use that to enhance
underwater images. [52] showed that instead of using the Red-Green-Blue (RGB)
images, if the input space is changed to Red-Max-Intensity (RMI) it assists in the
task of predicting depth in the underwater images. The authors argue that, the
difference of the intensities between the red channel and the maximum of blue
and green channels encodes the scene depth information and can be exploited in
the depth prediction for getting better depth estimation from the network.

2.5 Self-Supervised Depth and Pose Estimation

[11] first introduced a method to learn scene depth and pose simultaneously on
unlabeled videos. [13] proposed a new model called GLNet to solve the inter-
related tasks of monocular depth prediction, optical flow, camera pose and in-
trinsic estimation. [14] introduced a new appearance matching loss for address-
ing the problem of occluded pixels, an auto masking approach for ignoring pixels
where no relative camera motion is observed and a multi scale appearance match-
ing loss to perform all image sampling at the input resolution for reducing depth
artifacts. [15] showed it is possible to train deep networks to predict camera
intrinsic parameters including lens distortion in an unsupervised manner from
videos. They also addressed the occlusion problem directly in a geometric way
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from the predicted depth. [53] introduced a new CNN model for high resolu-
tion self-supervised depth estimation with new packing and unpacking blocks that
jointly leverage 3D convolutions to learn representations that maximally propag-
ate dense appearance and geometric information while being able to run real-
time. They also introduced a new loss function to leverage the camera’s velocity
when available to solve the inherent scale ambiguity in monocular vision. [54] ad-
dressed the problem of dynamic objects using semantic guidance. [55] proposed
a method to remove the pose net architecture by proposing a novel system that
solves the fundamental matrix directly from dense optical flow correspondence
and makes use of a two view triangulation module for recovering up to scale 3D
structure. [12] introduced a geometric consistency loss in order to encourage the
networks to predict scale consistent depths with higher accuracy. They penalize
the pixel wise inconsistency in the predicted depths between adjacent frames dur-
ing training. They also introduced a self-discovered mask for handling dynamic
objects during training to be consistent with the assumption of static scene.

In this work, the method proposed by [12] is used to learn scale consistent
scene depth and camera pose in an underwater environment.



Chapter 3

Materials & Methods

3.1 Datasets

3.1.1 Eiffel Tower

Eiffel Tower dataset was created to aid the long term visual localization task in
a deep-sea environment. This dataset includes images of the same hydrothermal
vent edifice, Eiffel Tower, located at 1700 m beneath the surface, taken during
four visits over five years (2015, 2016, 2018 and 2020).[56]

Figure 3.1: Image of the same place (south-east facade of the vent) in different
years[56]

The Dataset includes the following:

1. Images taken of the vent during each four visits.
2. Position (latitude, longitude and altitude) of the camera during each image

captured

9
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3. 3D models of the vent site recreated for each year of visits using Structure
From Motion (SFM).

4. A single, combined 3D model showing the entire vent site with all the images
positioned in a consistent reference frame.

The dataset presents changes over time related to all the challenges in under-
water imaging (light and color absorption, turbidity and back-scattering, strong
differences in illumination depending on the distance of the robot and the scene
due to the onboard artificial lighting system).

Figure 3.2: Pixel intensities histogram over different year for red, blue and green
channel

The figure 3.1 shows the evolution of South-East facade of the hydrothermal
vent. The significant change of the scene that happened over the years can be no-
ticed in the figure. Figure 3.2 shows the differences of pixel intensities distribution
of red, green, blue channels over the years. These changes overtime makes it dif-
ficult for traditional SLAM based algorithms to detect and match features among
cross year images.

Figure 3.3: Area covered by the dataset images around the hydrothermal vent in
different years[56]

Figure 3.3 shows the area covered by the image sequences in the dataset
around the hydrothermal vent in different years. The author concluded from the
figure that the total area covered in 2016, 2018 and 2020 images, contains almost
all the area covered in 2015[56]. Hence, In this study the data from 2016, 2018
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and 2020 are used to train the model and the data from 2015 are used to test the
model.

3.1.2 Varos

To evaluate the model’s performance in an unseen dataset we used the simulated
underwater dataset Varos[57]. The dataset consists of 4 type of images, Underwa-
ter monocular RGB images, Uniformly illuminated monocular RGB images, Sur-
face normal images, Depth images, along with Inertial Measurement Unit (IMU)
data and Depth gauge data and ground truth trajectory. The image sequences con-
tains 4714 images. Figure 3.4 shows different types of images of the same scene
of the dataset.

Figure 3.4: Different images of same scene in the Varos Dataset

The camera model and lens parameters used to export the images are given
in table 3.1.

Parameters Value
Render resolution (pixel) 1280 X 720

Sensor width [mm] 4.416
Sensor height [mm] 2.484

Shutter type Global shutter
Focal length [mm] 3.4

Aperture 1.7

Table 3.1: Camera and lens parameters. [57]

From the given the camera parameters the intrinsic camera matrix calculated
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is in shown in equation 3.1

K =





985.5072 0 640
0 985.5072 360
0 0 1



 (3.1)

3.1.3 SeaThru-Nerf

Figure 3.5: Example images of different scenes from SeaThru-Nerf Dataset

In order to evaluate model performance in a real world dataset, SeaThru-
Nerf[58] dataset has been used. The dataset contains real world images of 4 scenes
namely Panama, Curacao, IUI3-RedSea and JapaneseGradens-RedSea along with
the SFM Model and respective image poses. Figure 3.11 shows example images
from different scene of the dataset. The total number of images in each scene are
18, 21, 29 and 20 respectively.

3.2 SC-SFMLearner

3.2.1 Framework Overview

The aim of SFMLearner is to train depth and pose Convolutional Neural Network
(CNN) using unlabeled image sequences. Figure 3.6 illustrates the SFMLearner
pipeline. The process involves sampling two adjacent frames (Ia, Ib) from a video
and estimating their depth maps (Da, Db) and relative 6Degrees of Freedom (DOF)
camera pose Pab using dedicated CNNs. With the predicted depth and pose, a
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Figure 3.6: Illustration of the SFMLearner pipeline

reference image I
′

a is synthesized from the source image Ib through differentiable
warping. The network is then supervised by comparing the real image Ia with the
synthesized image I

′

a using a photometric loss Lp. To ensure scale-consistent depth
predictions between adjacent frames,a geometry consistency loss LG is introduced.
For smoothness in the predicted depth, a depth smoothness loss Ls is also used.
Additionally, to handle cases like static frames and dynamic objects, two masks:
a self-discovered mask Ms to assess depth consistency and an auto-mask (Ma) to
exclude stationary points in image pairs with no camera movement.[12] The auto
mask is calculated as,

Ma(p) =

�

1 : ||Ia(p)− I
′

a(p)||1 < ||Ia(p)− Ib(p)||1
0 : otherwise

(3.2)

The masks are applied to the photometric and geometric consistency loss functions
as,

L =
1
|V |

∑

pεV

(Ms(p).Ma(p)L(p)) (3.3)

Where V is the set of all valid points and L represents photometric and geometric
consistency loss function.

L = αLp + β Ls + γLG (3.4)

The loss function L combines photometric loss, smoothness loss, and geometric
consistency loss, with weighting terms α, β , and γ respectively. The loss is aver-
aged over valid points determined by the auto-mask. The The next section delves
into the photometric loss and smoothness loss first, followed by an explanation of
the geometric consistency loss in subsequent sections.
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3.2.2 Photometric and Smoothness Loss

Classical dense correspondence algorithms often incorporate brightness constancy
and spatial smoothness priors. Recent methods, such as SFMLearner[11], SC SFM-
Learner[12], utilize photometric loss for unsupervised network training, compar-
ing a warped frame with a reference frame. Through the synthesis of image I

′

a via
warping Ib based on predicted depth Da and pose Pab, an objective function Lp is
formulated. Lp combines L1 loss and Structural Similarity Index Measure (SSIM)
to effectively handle illumination changes. The loss function is formulated as,

Lp =
1
|V |

∑

pεV

(λ||Ia(p)− I
′

a(p)||1) + (1−λ)(
1− SSI Maa′ (p)

2
)) (3.5)

where V is the set of valid points successfully projected from Ia to the image
plane of Ib, p stands for a generic point in V . Here the L1 norm is chosen due to
the robustness property against outliers. The SSI Maa′ is the structural similarity
index between Ia and I

′

a. where SSI M is calculated as,

SSI M(x , y) =
(2µxµy + C1)(2σx y + C2)

(µ2
x +µ2

y + C1)(σ2
x +σ2

y + C2)
(3.6)

where x , y stands for two 3× 3 patches around the central pixel. C1 and C2
are constants. µ and σ are local statistics of the image color. As [12] the value
of C1 = 0.0001 and C2 = 0.0009 are used and λ = 0.15. Due to the photometric
loss not being informative in low texture regions, an edge aware smoothness loss
is used,

Ls =
∑

p

(exp−∇Ia(p) .∇Da(p))
2 (3.7)

3.2.3 Geometry Consistency Loss

In [12] the author proposed a differentiable depth inconsistency for computing
pixel wise inconsistency between two depth maps. The inconsistency Ddi f f (p) for
each pixel pεV is calculated as,

Ddi f f (p) =
|Da

b(p)− D
′

b(p)|

Da
b(p) + D′b(p)

(3.8)

Where, Da
b is the synthesized depth for Ib, which is generated by Da and pose

Pab with the underlying rigid transformation. D
′

b is an interpolation of Db for
aligning and comparing with Da

b . The geometry consistency loss is then,

LG =
1
|V |

∑

pεV

Ddi f f (p) (3.9)

The self discovered mask Ms is calculated from Ddi f f as,

Ms = 1− Ddi f f (3.10)
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where the Ms is in [0, 1] and it attentively assign low weights for geometrically
inconsistent pixels and high weights for consistent pixels.

3.2.4 Model architecture

For the pose network the model proposed in [12] is used. It takes 2 frames and
outputs the 6 Degrees of Freedom (DOF) pose between the frames. It is based on
Resnet18[59] with modified first layer to accept 2 frames.

For depth network three different models and 2 different input space, RGB and
RMI have been used and compared to find the best performing model. The model
proposed in the [11] is called the dispnet, a specially designed depth network for
underwater images udepth[52] and a hybrid of these two models called dispnet
mvit have been used.

Posenet

The pose network used here is the one proposed by [12]. It is a Resnet18 based
encoder to extract features from images. The features are then fed to a number of
convolutional regression layers to recover relative 6-DOF pose between frames.
The first layer of the Resnet18 encoder is modified to be able to take 2 images as
input.

Dispnet

Figure 3.7: Illustration of the dispnet architecture[11]

In the figure 3.7 the network architecture of the dispnet used in [11] is il-
lustrated. The model is an encoder-decoder based model. It takes an image as
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input and outputs the range map corresponding to the image. The network out-
puts depth in 4 different layers to be able to be used in multi scale supervision.
However, in this study only the last output layer of the network has been used as
this provides the best result compared to the multi scale supervision[11].

Udepth

Figure 3.8: Illustration of the udepth architecture

Figure 3.8 illustrates the network architecture of the udepth model. The model
is an encoder decoder network with a MobileNetV2 backbone. The output of the
decoder is fed to the mVit module which is a vision transformer. The output atten-
tion maps from the mVit module are then fed to the convolutional regression layer
to get the output depth map. The output of the original udepth network is half the
size of the original image. To accomodate in the SFMLearner pipeline, after the
network an upscale layer has been added to make the depth outputs same shape
as the input images.

Dispnet mVit

Figure 3.9: Illustration of the Dispnet mVit architecture

Figure 3.9 illustrates the network architecture of the Dispnet mVit model. The
main backbone of the model is from Dispnet but the last convolutional layer is
replaced by the mVit module followed by the convolutional regression module
from Udepth.

3.2.5 RMI input space

The author of udepth[52] suggested that instead of using RGB underwater im-
ages directly, using RMI input space gives better result in underwater monocular
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depth estimation. Although the light attenuates rapidly underwater not all the
wavelengths of light attenuate at the same rate. Although the red colour attenu-
ates more aggressively, depending on the physical and chemical property of water
green and blue colours attenuate at different rates. As a result [52] showed the re-
lative difference between the intensity values of the R channel and the maximum
of the {G,B} channel encodes information about the scene depth.

The RMI input space is derived from the RGB images as, the Red channel
staying the same, for the M, a pixel wise maximum is calculated between B and
G channels and the I is the grayscale intensities of the image.

In the SFMLearner pipeline, the RMI input space is only used in the depth
network. The pose network receives the regular RGB images.

3.3 ORB-SLAM3

ORB-SLAM3 is an indirect visual SLAM system which relies on ORB features ex-
tracted from the image frames. ORB-SLAM3 fully relies on Maximum-a-Posteriori
(MAP) estimation [60]. It is a multi map system. Whenever the system is lost dur-
ing tracking it starts a new map which will be merged with the previous map if
any part of the existing map is visited again. For underwater visual SLAM systems
this property is very useful as it is quite easy for the SLAM system to lose the
tracking due the quality of the underwater images. Figure 3.10 shows the overall

Figure 3.10: System Overview of ORB-SLAM3 [60]

system overview of ORB-SLAM3. There are 3 threads running simultaneously. The
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tracking thread continuously processes sensor information to determine the pose
of the current frame relative to an active map in real-time. This is achieved by
minimizing the reprojection error of matched map features. Additionally, the sys-
tem determines whether the current frame should be designated as a keyframe.
In cases where tracking is lost, the tracking thread attempts to relocalize the cur-
rent frame within all available maps. If successful, tracking is resumed, potentially
switching the active map. If relocalization fails within a specified timeframe, the
current active map is stored as non-active, and a new active map is initialized
from scratch [60].

The local mapping thread plays a crucial role in updating the active map by
integrating new keyframes and points, while also removing redundant elements.
This process of map refinement employs visual or visual-inertial bundle adjust-
ment within a localized window of keyframes near the current frame. [60]. Loop
and map merging thread detects common regions between the active map and the
whole Atlas at keyframe rate. If the common area belongs to the active map, it per-
forms loop correction; if it belongs to a different map, both maps are seamlessly
merged into a single one, that becomes the active map. After a loop correction,
a full BA is launched in an independent thread to further refine the map without
affecting real-time performance [60].

In this application, the RGB-D SLAM mode is used to evaluate and compare
the model predicted depth and the ground truth depth obtained using SFM in
Eiffel-Tower data set.

3.4 Sea-Thru

The Sea-Thru[61] method is designed to efficiently remove the effects of water
in underwater imaging, facilitating analysis of large datasets. It operates by es-
timating backscatter in RGBD images. Additionally, it leverages the known range
map to estimate the range dependent attenuation coefficient. This estimation is
facilitated by an optimization framework, utilizing an illumination map generated
from local space average color as input.[61]

In our application,the RGB image with the corresponding predicted depth
from the network is used in the Sea-Thru pipeline. The depth is normalized as,

Dnormalized =
D−min(D)

max(D)−min(D)
(3.11)

Where, D is the predicted depth, Dnormalized is the normalized depth, min(D) is
the minimum of the predicted depth and max(D) is the maximum of the pre-
dicted depth. The predicted normalized depth is first masked at the 40 percent of
the maximum predicted depth in order to avoid calculation in the deep dark re-
gion where the depth is too large. Then this masked depth is fed to the Sea-Thru
pipeline along with the histogram equalized RGB image to recover the image.
Figure 3.11 shows the pipeline of Sea-Thru in this work. In this work the imple-
mentation found in [62] repository.
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Figure 3.11: Sea-Thru Pipeline

3.5 Evaluation Metrics

3.5.1 Depth Prediction Evaluation

To evaluate the depth estimation of the network, the predicted depth has been
compared with the ground truth depth of the dataset. In case of the Varos dataset
the ground truth depth provided is generated from the scene geometry of the
simulated environment and for the Eiffel-Tower dataset the ground truth depth
has been generated from the Structure From Motion (SFM) model provided with
the dataset. The predicted depth by the model has been scaled using the median
value to match the scale of the ground truth, which can be written as,

Dscaled = Dpred ∗
median(Dg t)

median(Dpred)
(3.12)

where Dg t is the ground truth depth, Dpred is the predicted depth by the network
and Dscaled is the scaled depth. The following metrics have been used to evaluate
the depth prediction network,

Abs Rel =
1
N

∑

dεD

|d∗ − d|
d∗

(3.13)

Sq Rel =
1
N

∑

dεD

|d∗ − d|2

d∗
(3.14)

RMSE =

√

√

√

1
N

∑

dεD

|d∗ − d|2 (3.15)

RMSE log =

√

√

√

1
N

∑

dεD

|log d∗ − log d|2 (3.16)



20 Rahman@IMT: Self Supervised Depth and Ego-motion Learning for underwater robots

δ =
1
N

max(
d∗

d
,

d
d∗
)< threshold (3.17)

Where d, d∗ and N denote the scaled depth value, the corresponding ground truth
depth value and the number of pixels. Here Abs Rel, Sq Rel, RMSE, RMSElog are
error metrics and ai(δ < 1.25i , i = 1, 2,3) is accuracy metrics.

3.5.2 Pose Prediction Evaluation

For evaluating the pose estimation network, the pose net was applied on the test
data to predict poses and then these poses were compared to the ground truth
poses from the dataset to calculate the error. In order to overcome the scale ambi-
guity during evaluation, we first optimize the scaling factor and align the predicted
pose with the ground truth pose using least squares estimation of transformation
parameters [63] using the code from [64], and then measure the Absolute Traject-
ory Error (ATE) as the metric. The alignment is done on every 5-frame snippets
and then ATE is computed and averaged over the full sequence. The ATE is calcu-
lated as,

AT E(X̂ , X ) =
1
n

n
∑

i=1

|| t rans(X̂ i)− t rans(X i) || (3.18)

where, X̂ = { x̂1, x̂2, ..., x̂n} and X = {x1, x2, ..., xn} and trans(X) represents
the translation part of X.

3.5.3 Image Enhancement evaluation

The following metrics have been used to evaluate the image enhancement result
quantitatively.

Underwater Image Quality Measure (UIQM)[65]

The Underwater Image Quality Measure (UIQM) comprises of three attribute
measures, namely, Underwater Image Colorfulness Measure (UICM), Underwa-
ter Image Sharpness Measure (UISM) and Underwater Image Contrast Measure
(UIConM). The overall underwater image quality measure is given by,

U IQM = c1 × U IC M + c2 × U ISM + c3 × U IConM (3.19)

The default value used for the parameters c1, c2 and c3 in the paper are c1 =
0.0282, c2 = 0.2953 and c3 = 3.5753. Higher UIQM value is obtained from an
image with a better quality, and the authors suggest that a 10% increase in terms
of the UIQM measure value leads to a visually distinguishable improvement.
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Underwater Colour Image Quality Evaluation (UCIQE)[66]

The Underwater Colour Image Quality Evaluation (UCIQE) is computed in the
CIElab color space. UCIQE is calculated as,

UC IQE = c1 ×σc + c2 × con1 + c3 ×µs (3.20)

where, σc is the standard deviation of chroma, con1 is the contrast of lumin-
ance and µ2 is the average of saturation, and c1, c2 and c3 are weighted coeffi-
cients. The values used here are c1= 0.4680, c2= 0.2745 and c3= 0.2576.





Chapter 4

Results and Discussions

In this chapter the validity of adapting self supervised method of learning scale
consistent scene depth and robot pose has been examined along with the usability
of the predicted depth in applications like image enhancement and RGB-D SLAM
has been studied on Eiffel-Tower, Varos and SeaThru Nerf datasets.

4.1 Experimental details

All the depth models have been separately trained with both RGB and RMI input
space images. The pose network is kept the same with all the depth networks. All
the models have been trained with same hyper parameters listed in table 4.1

Name Value
Optimizer Adam

Learning Rate 1e−4

Momentum 0.9
Photometric Loss weight 1

Geometric Consistency Loss weight 0.5
Smoothness loss weight 0.1

Sequence Length 3

Table 4.1: Training hyper parameters

In all the training early stopping callback has been used. Table 4.2 shows the
total parameters in the models used and the inference time of the models on
image size (256 × 464). The inference time has been calculated as the average
time taken over 100 inferences with batch size 1. The NVIDIA RTX 3090 GPU
is used to calculate inference time. The Dispnet achieves an FPS of 26.328 on
CPU and 180.031 FPS on GPU. The Udepth achieves an FPS of 11.53 on CPU and
34.583 on GPU. The proposed Dispnet mVit model achieves FPS of 19.8967 on
CPU and 23.299 on GPU. The pose net achieves an FPS of 31.942 on CPU and
192.863 on GPU

23
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Model Total Parameters
Inference Time(s)

(CPU)
FPS

(CPU)
Inference Time(s)

(GPU)
FPS

(GPU)
Dispnet 31.59M 0.0379 26.328 0.0055 180.031
Dispnet

mVit
32.57M 0.0502 19.896 0.0429 23.299

Udepth 15.59M 0.0867 11.530 0.0289 34.583
PoseNet 13.01M 0.0313 31.942 0.0051 192.863

Table 4.2: Model parameters and inference time of the models on CPU and GPU.

4.2 Depth Evaluation

In this section the performance of the depth models have been evaluated.

4.2.1 Eiffel-Tower

Figure 4.1: Qualitative Depth Evaluation Result on Eiffel-Tower dataset. The
lighter the colour represents points further from the camera and the darker col-
ours represent the points closer the camera. The black regions in the ground truth
does not have information in the SFM model used to generate the depths.

In this section the depth models have been used to predict depth on the Eiffel
Tower dataset. The predicted depth is then evaluated against the ground truth
depth generated from SFM model. Figure 4.1 shows the qualitative evaluation
of the predicted depths from the model on 6 sample images of the Eiffel-Tower
dataset along with the ground truth depth generated from the SFM model.

Figure 4.2 shows the RMSE error changing with respect to the clipping of
the maximum predicted depth. The predicted depth is masked at different depths
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Figure 4.2: Eiffel tower depth result

Figure 4.3: Eiffel tower depth distribution

after scaling it with the ground truth depth using the median value of the predicted
and the ground truth depth and the RMSE is calculated between them. It can be
seen that with the increase of the maximum depth the error increases which is
expected as the light attenuates and the image quality degrades with the increase
of scene depth. In figure 4.3 the distribution of the ground truth depth maps have
been shown. It can be noticed that most of the depths are less than 40m. Due
to the nature of light attenuation with distance in underwater environment, the
images retain very limited information in the pixels where the scene depth is far.
So the problem becomes ill posed in these areas. In order to evaluate and compare
the models the maximum predicted depth is clipped at 40 meters and the pixels
that has depth more than 40m are excluded in the calculation of the evaluation
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model abs rel ↓ sq rel ↓ rmse ↓ rmse log ↓ a1 ↑ a2 ↑ a3 ↑
dispnet

pretrained[[11]] 0.3676 3.5174 7.4628 0.4402 0.4159 0.7031 0.8599

udepth(rmi)
pretrained[52] 0.4558 6.2990 9.8530 0.6866 0.3415 0.5911 0.7403

udepth(rgb)
pretrained[52] 0.3981 5.1354 8.7217 0.5774 0.3994 0.6603 0.8008

dispnet
(rgb)

0.0970 0.5132 2.9087 0.1416 0.9043 0.9702 0.9876

dispnet
(rmi)

0.1667 1.2071 4.4417 0.2502 0.7645 0.9066 0.9501

dispnet mvit
(rgb)

0.0872 0.4076 2.6474 0.1300 0.9195 0.9763 0.9906

dispnet mvit
(rmi)

0.0928 0.4286 2.7503 0.1367 0.9087 0.9745 0.9902

udepth
(rgb)

0.0852 0.3975 2.6424 0.1285 0.9218 0.9765 0.9907

udepth
(rmi)

0.0847 0.3886 2.5583 0.1251 0.9234 0.9785 0.9920

Table 4.3: Depth evaluation result on Eiffel-Tower (2015) Dataset. The abs rel,
sq rel, rmse, rmse log are error metrics while a1, a2 and a3 are accuracy met-
rics. The ↑ meaning the higher value corresponds to better results while the ↓
meaning the lower value corresponds to better results. In each metric the best
performing model result is highlighted with bold font face and the second best
model is highlighted with underline.

metrics. The result of the evaluation metrics are tabulated in Table 4.3. From this
we can see that the udepth model with RMI input space performs best in all the
metrics achieving a RMSE of 2.5583m while the second best performing model is
the Udepth with RGB input space. This is an significant improvement compared
to the pretrained Dispnet provided by [11] and the pretrained Udepth models
provided by the [52]. The pretrained Dispnet is trained on airborne dataset in a
self supervised manner while the pretrained Udepth is trained with underwater
images in supervised manner.
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4.2.2 Varos

model abs rel ↓ sq rel ↓ rmse ↓ rmse log ↓ a1 ↑ a2 ↑ a3 ↑
dispnet

pretrained[[11]] 0.2054 2.9053 10.1250 0.2623 0.6408 0.8945 0.9783

udepth(rmi)
pretrained[52] 0.3773 8.6647 17.5038 0.4951 0.3897 0.6628 0.8205

udepth(rgb)
pretrained[52] 0.3469 7.5390 15.8752 0.4288 0.4297 0.7142 0.8686

dispnet
(rgb)

0.1736 1.8128 8.2968 0.2055 0.7179 0.9668 0.9967

dispnet
(rmi)

0.2040 2.6860 9.9274 0.2456 0.6618 0.9153 0.9845

dispnet mvit
(rgb)

0.1682 1.7901 8.1343 0.2009 0.7563 0.9602 0.9950

dispnet mvit
(rmi)

0.1835 2.1831 9.0834 0.2139 0.7260 0.9529 0.9942

udepth
(rgb)

0.2211 3.6371 10.9784 0.3374 0.6048 0.8038 0.9142

udepth
(rmi)

0.2180 3.5606 11.7003 0.2539 0.6659 0.9112 0.9825

Table 4.4: Depth evaluation result on Varos Dataset. The abs rel, sq rel, rmse,
rmse log are error metrics while a1, a2 and a3 are accuracy metrics. The ↑mean-
ing the higher value corresponds to better results while the ↓ meaning the lower
value corresponds to better results. In each metric the best performing model
result is highlighted with bold font face and the second best model is highlighted
with underline.

Figure 4.5 shows the qualitative evaluation of the predicted depths from the
models on some sample images of the Varos dataset along with the ground truth
depths given in the dataset.

Figure 4.6 shows the RMSE error changing with respect to the clipping of the
maximum predicted depth. From the figure it can be noticed that, in the short
range the dispnet model with RMI input space works better altough the perform-
ance degrades rapidly with the increase of the maximum depth allowed in the
calculation.

In figure 4.4 the depth distribution of the varos dataset can be seen. Compared
to the distribution of the Eiffel-Tower dataset, most of the points are not below
40m level. So it will not justify to clip the depth at 40m in Varos dataset as well.
At the same time allowing too much depth also does not give a clear picture of
the result as it is too far and the points are too dark in the images for the model
to predict any usable good depths. Hence, 60m is selected empirically in Varos
dataset to mask the depth error calculation after scaling the depth using median
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Figure 4.4: Varos depth distribution

Figure 4.5: Qualitative Depth Evaluation Result on Varos dataset. The lighter the
colour represents points further from the camera and the darker colours represent
the points closer the camera.

values of the predicted and the groundtruth depth. Table 4.4 shows the depth
evaluation result on Varos dataset where the error and accuracy calculation has
been masked and clipped at 60m. It can be observed that, for all the error metrics
as well as the a1 metrics the dispnet mvit model with RGB input space gives the
best performance while for a2 and a3 the dispnet with RGB input space gives
the best result. The second best performing model in terms of error metrics is the
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Figure 4.6: Varos depth result

dispnet with RGB input space while for a1 the dispnet mvit model with RMI input
space and for a2 and a3 the dispnet mvit with RGB input space is the second best
performing model. In Varos dataset as well, this is an significant improvement
over the pretrained Dispnet and Udepth model provided by [11] and [52].
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4.3 Pose Evaluation

In this section the pose prediction result of the pose net trained with different
depth models are evaluated. The predicted pose from the model are aligned and
scaled with the ground truth using 5 frame snippets as described in section 3.5.2.

Depth Model Name Total ATE (m) ↓ Mean ATE (m) ↓
udepth (rmi) 1614.966 0.328
udepth (rgb) 1598.573 0.325

dispnet mvit (rmi) 1594.794 0.324
dispnet mvit (rgb) 1588.771 0.323

dispnet (rmi) 1532.216 0.311
dispnet (rgb) 1624.323 0.330

Table 4.5: Pose evaluation result on Eiffel Tower (2015) dataset. The ↓ meaning
the lower value corresponds to better results. The best result is highlighted with
bold font face and the second best result is highlighted with underline

Figure 4.7: 3D plot of the best two performing pose network on Eiffel-Tower
(2015) Dataset.

Table 4.5 shows and compares the total ATE and mean ATE achieved by the
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(a) Pose evaluation result on Eiffel-Tower (2015) Dataset.

(b) Pose evaluation result on Eiffel-Tower (2015) Dataset
focused on frame 1800-1900.

Figure 4.8: Pose evaluation results on the Eiffel-Tower (2015) Dataset. (a) Full
sequence. (b) Focused on frame 1800-1900.
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pose net trained with different depth models on the eiffel tower dataset. The pose
net trained with dispnet along with RMI input space performed the best with total
ATE of 1532.216m and mean ATE of 0.311m. The second best performing pose
net is the one trained with the dispnet mvit depth model along with RGB input
space. It achieved a total ATE of 1588.717m and mean ATE of 0.323m.

Figure 4.8 shows the pose net evaluation result on the Eiffel-Tower dataset
in the 2015 sequence. The x , y and z components of the predicted trajectories
has been plotted in the figure with the corresponding ground truths. Figure 4.8a
shows the result on the whole sequence. For getting a more detailed view on the
the differences among different models the Figure 4.8b focuses on the frames from
1800-1900 in the sequence. It can be seen that all the models have been able to
track the ground truth trajectory in a fairly good accuracy as suggested from table
4.5. Figure 4.7 shows the 3D trajectory of the predicted pose from the two best
performing models and the ground truth.

Depth Model Name Total ATE (m) ↓ Mean ATE (m) ↓
udepth (rmi) 30.56375 0.0064
udepth (rgb) 45.51164 0.0096

dispnet mvit (rmi) 20.21493 0.0042
dispnet mvit (rgb) 25.84997 0.0054

dispnet (rmi) 28.69131 0.0060
dispnet (rgb) 50.04694 0.0106

Table 4.6: Pose evaluation result on Varos dataset. The ↓meaning the lower value
corresponds to better results. The best result is highlighted with bold font face and
the second best result is highlighted with underline

Table 4.6 shows and compares the total ATE and mean ATE achieved by the
pose net trained with different depth models on the Varos dataset. The pose net
trained with dispnet mvit along with RMI input space performed the best with
total ATE of 20.21493m and mean ATE of 0.0042m. The second best performing
pose net is the one trained with the dispnet mvit depth model along with RGB
input space. It achieved a total ATE of 25.84997m and mean ATE of 0.0054m.

Figure 4.9 shows the pose net evaluation result on the Varos dataset. The x ,
y and z components of the predicted trajectories has been plotted in the figure
with the corresponding ground truths. Figure 4.9a shows the result on the whole
sequence. For getting a more detailed view on the the differences among different
models the Figure 4.9b focuses on the frames from 1500-1700 in the sequence. It
can be seen that all the models has been able to track the ground truth trajectory
in a fairly good accuracy as suggested from table 4.6. Figure 4.10 shows the 3D
trajectory of the predicted pose from the two best performing models from table
4.6 and the ground truth.

From the pose net result both on Eiffel-Tower dataset and Varos dataset it can
be noticed that the model performed much better on the Varos dataset with the
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(a) Pose evaluation result on Varos Dataset.

(b) Pose evaluation result on Varos Dataset focused on
frame 1500-1700.

Figure 4.9: Pose evaluation results on the Varos Dataset. (a) Full sequence. (b)
Focused on frame 1500-1700.
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Figure 4.10: 3D plot of the best two performing pose network on Varos Dataset.

dispnet mvit (rmi) model achieving mean ATE of 0.0042m in Varos dataset com-
pared to the mean ATE of 0.311m in the dispnet (rmi) model in the Eiffel-Tower
dataset even though the model was not trained on Varos.

If we look into the trajectory of the both dataset, it can be noticed that the
Eiffel-tower trajectory has more abrupt changes in the robots position while the
Varos dataset being a simulated dataset has a smoother trajectory. This may have
contributed to the results of the pose evaluation being better in the Varos dataset.
The pose net also needs to be validated on a real underwater image dataset to get
a better understanding on the models generalizability.
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4.4 ORB-SLAM3 Result

In this section the predicted depth from the best performing depth model Udepth
with RMI input space and the ground truth depth from the SFM model have been
used and compared as a depth sensor in the RGB-D SLAM pipeline for the Eiffel-
Tower Dataset. For comparing and calculating the result only the first 1000 frames
from the year 2015 have been used. The total length of the ground truth trajectory
of the first 1000 frame is 455.476m. To minimize the influence of coincidental
outcomes, ORB-SLAM3 RGB-D SLAM was run three times with each of the depth
(SFM,Udepth(RMI)), ensuring a comprehensive assessment and enhancing the
robustness of the findings.

Depth RMSE ATE (m) ↓ Median Error (m) ↓ Max Error (m) ↓

SFM
9.58 8.27 18.86
9.82 8.54 19.07
9.78 7.96 19.80

Avg 9.73 8.26 19.24

Udepth (RMI)
9.25 7.64 21.36

10.07 9.36 19.52
10.05 8.74 20.82

Avg 9.79 8.58 20.57

Table 4.7: RGB-D SLAM result on Eiffel-Tower Dataset. The ↓ represents that
lower value corresponds to better result. The best performing Depth has been
highlighted with bold font face. The best performing run on each depth type has
been highlighted with underline.

Figure 4.11: RGB-D SLAM result on the Eiffel-Tower Dataset.

Figure 4.11 shows the trajectory of the best of the 3 runs in terms of RMSE
error on both the depths. It plots the x , y and z component of the predicted
trajectory from the RGB-D SLAM with the ground truth trajectory. Table 4.7 shows
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the absolute trajectory error of the RGB-D SLAM. The errors are calculated using
the predicted trajectory and the ground truth trajectory. The predicted trajectories
are scaled and aligned with the ground truth trajectory before calculating the
errors. From the table it can be noticed that the ground truth depth from the SFM
model gives overall better performance when averaged over three different runs
with an average RMSE ATE of 9.73 m compared to the 9.79m of the Udepth (RMI)
model predicted depths. The model predicted depth achieved an average of 2.14%
RMSE compared to the total length of the ground truth trajectory.
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4.5 Image Enhancement Result

In this section, the image enhancement performance using the predicted depth
from the depth network using the SeaThru pipeline has been evaluated. All the
predicted depths have been normalized using equation 3.11 and masked at the
40% of the maximum predicted depth before being used in the SeaThru pipeline.

4.5.1 Eiffel-Tower

Figure 4.12 shows the qualitative result of the image enhancement procedure on
Eiffel-Tower (2015) dataset. The first row shows the input images from the data-
set, while the subsequent rows are the predicted depths, the 40% of the maximum
depth mask and the enhanced image. The different columns represent the result
from the different models being used.

Figure 4.12: Qualitative image enhancement result on Eiffel (2015) Dataset. The
light colors in the depth maps represents the areas that are closer and the dark
colors represent the areas that are far from the camera. In the mask the yellow
colored points are valid points based on the mask.

Table 4.8 shows the quantitative results of the image enhancement method
on the Eiffel-Tower dataset. The mean UIQM and UCIQE on the original dataset
before image enhancement are 1.31 and 29.89 respectively. From table 4.8 it can
be seen that even though all the models led to an increase of the image quality
based on UIQM and UCIQE on the Eiffel Tower dataset, the Dispnet with RMI input
space performed best in term of UIQM metric. The model achieved an UIQM of
1.66 which is an 26.68% increase from the raw dataset images. In terms of UCIQE
the dispnet with RGB input space performed best with UCIQE of 31.44, an increase
of 4.94% from the raw dataset. We can notice that the predicted depth resulted
in better image enhancement than the SFM model predicted ground truth depth.
This may have been a result of not using the full range of depth and using only
upto 40% of the maximum depth.
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model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original image 1.32 0 28.89 0
Ground Truth

Depth
1.48 12.24 30.98 3.53

dispnet mvit
(rgb)

1.509 15.79 31.31 4.62

dispnet mvit
(rmi)

1.508 14.02 31.19 4.20

dispnet
(rgb)

1.63 23.89 31.44 4.94

dispnet
(rmi)

1.66 26.68 31.41 4.84

udepth
(rgb)

1.53 16.27 31.34 4.63

udepth
(rmi)

1.55 17.66 31.35 4.68

Table 4.8: Quantitative image enhancement result on Eiffel-Tower dataset. The
↑ means the higher the value of the metric is the better the model’s performance.
The best performing models are highlighted with bold face fonts.

4.5.2 Varos

Figure 4.13 shows the qualitative result of the image enhancement procedure on
the Varos dataset. The first row shows the input images from the dataset, while
the subsequent rows are the predicted depths, the 40% of the maximum depth
mask and the enhanced image. The different columns represent the result from
the different models being used. From the enhanced images in figure 4.13 we can
notice that the method recovers parts of the images where it is too dark to identify
anything even with human eye. One reason of this can be, the Varos dataset being a
simulated dataset, retains some information even after adding the effects of water
while exporting the images. As a result the SeaThru can exploit this information
in combination with the depth map to bring out details in the shadows.

Table 4.9 shows the quantitative results on the image enhancement on the
Varos dataset. The mean UIQM and UCIQE on the original dataset before image
enhancement are 0.12 and 29.52 respectively. Table 4.9 shows significant better
image enhancement on the Varos dataset compared to the Eiffel-Tower dataset
for all the models even though the model was not trained on the Varos dataset.
Table 4.9 shows that the Dispnet with RGB performed the best in terms of UIQM
with an value of 0.50 which is 305.03% increase from the raw dataset. In terms of
UCIQE the Dispnet with RMI input space performed best among the models with
an UCIQE of 31.75 and increase of 6.94% from raw images. It can be noticed that
the predicted depth resulted in better image enhancement than the ground truth
depth. This may have been a result of not using the full range of depth and using
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Figure 4.13: Qualitative image enhancement result on Varos Dataset. The light
colors in the depth maps represents the areas that are closer and the dark colors
represent the areas that are far from the camera. In the mask the yellow colored
points are valid points based on the mask.

only upto 40% of the maximum depth.

4.5.3 SeaThru-Nerf

As the image enhancement result on the Varos is much better than the image en-
hancement on the Eiffel-Tower Dataset, it is important to evaluate the model with
a real world dataset for getting a better understanding of the model’s ability to
generalize. For this purpose the method is evaluated on the SeaThru-Nerf dataset
with 4 different scenes namely Curasao, Panama, IUI3 - RedSea and JapaneseG-
radens - RedSea.

Curasao

Figure 4.14: Qualitative image enhancement result on SeaThru-Nerf (Curasao)
Dataset. The light colors in the depth maps represents the areas that are closer
and the dark colors represent the areas that are far from the camera. In the mask
the yellow colored points are valid points based on the mask.
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model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original Image 0.12 0 29.52 0
Ground Truth

Depth
0.4234 252.83 30.5205 3.3892

dispnet mvit
(rgb)

0.17 38.99 29.95 1.43

dispnet mvit
(rmi)

0.35 183.83 30.81 4.21

dispnet
(rgb)

0.50 305.03 30.39 2.87

dispnet
(rmi)

0.27 113.49 31.75 6.94

udepth
(rgb)

0.18 46.75 30.32 2.61

udepth
(rmi)

0.32 156.64 30.71 3.88

Table 4.9: Image enhancement result on Varos. The ↑means the higher the value
of the metric is the better the model’s performance. The best performing models
are highlighted with bold face fonts

Figure 4.14 shows the qualitative result of the image enhancement procedure
on the Curasao scene of the dataset. The first row shows the input images from
the dataset, while the subsequent rows are the predicted depths, the 40% of the
maximum depth mask and the enhanced image. The different columns represent
the result from the different models being used.

The mean UIQM and UCIQE on the original dataset before image enhance-
ment are 1.78 and 28.99 respectively. Table 4.10 shows the Dispnet with RGB in-
put space performs best in terms of UIQM. The model achieves an UIQM of 2.06
with 16.09% increase. While the model Dispnet with RMI input space performs
best in terms of UCIQE. It achieves an UCIQE of 32.62 with increase of 7.44%.

Panama

Figure 4.15 shows qualitative result of the image enhancement procedure on the
Panama scene of the dataset.

The mean UIQM and UCIQE on the original dataset before image enhance-
ment are 1.64 and 28.63 respectively. Table 4.11 shows that the Dispnet model
with RGB input space performed best on the scene based on both UIQM and
UCIQE metric. The model achieved UIQM of 2.01 with a 22.27% increase and
UCIQE of 30.39 with a 5.80% increase from the raw images.



Chapter 4: Results and Discussions 41

model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original Image 1.78 0 28.99 0
dispnet mvit

(rgb)
1.80 1.25 29.59 2.02

dispnet mvit
(rmi)

2.02 13.61 30.72 5.62

dispnet
(rgb)

2.06 16.09 31.30 7.37

dispnet
(rmi)

2.04 14.99 31.32 7.44

udepth
(rgb)

1.94 9.07 30.67 5.45

udepth
(rmi)

1.98 11.25 30.59 5.22

Table 4.10: Image enhancement result on Curasao. The ↑ means the higher the
value of the metric is the better the model’s performance. The best performing
models are highlighted with bold face fonts

Figure 4.15: Qualitative image enhancement result on SeaThru-Nerf (Panama)
Dataset. The light colors in the depth maps represents the areas that are closer
and the dark colors represent the areas that are far from the camera. In the mask
the yellow colored points are valid points based on the mask.

IUI3-RedSea

Figure 4.16 shows qualitative result of the image enhancement procedure on the
IUI3-RedSea scene of the dataset.

The mean UIQM and UCIQE on the original dataset before image enhance-
ment are 0.89 and 30.96 respectively. Table 4.12 shows the Dispnet with RGB
input space performs best in terms of both UIQM and UCIQE achieving 1.21 and
32.62 respectively. This is a 36.32% and 5.07% percent increase from the raw
dataset.
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model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original Image 1.64 0 28.63 0
dispnet mvit

(rgb)
1.82 10.66 29.87 4.15

dispnet mvit
(rmi)

1.97 19.97 30.30 5.50

dispnet
(rgb)

2.01 22.27 30.39 5.80

dispnet
(rmi)

1.86 13.10 30.28 5.45

udepth
(rgb)

1.73 5.02 29.76 3.78

udepth
(rmi)

1.86 13.32 30.27 5.42

Table 4.11: Image enhancement result on Panama. The ↑ means the higher the
value of the metric is the better the model’s performance. The best performing
models are highlighted with bold face fonts.

Figure 4.16: Qualitative image enhancement result on SeaThru-Nerf (IUI3-
RedSea) Dataset. The light colors in the depth maps represents the areas that
are closer and the dark colors represent the areas that are far from the camera.
In the mask the yellow colored points are valid points based on the mask.

JapaneseGradens-RedSea

Figure 4.17 shows the qualitative result of the image enhancement on the Japan-
eseGradens - RedSea scene of the dataset.

The mean UIQM and UCIQE on the original dataset before image enhance-
ment are 1.29 and 29.94 respectively. Table 4.13 shows that the Dispnet with
RGB input space works best in terms of UIQM with a value of 1.21, an increase of
36.32%. However, the dispnet mvit model with RMI input space performs best in
terms of UCIQE metric, achieving 31.22 and increase of 4.10%.

From the results of the image enhancement it can be concluded that the im-
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model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original Image 0.88 0 30.96 0
dispnet mvit

(rgb)
0.96 8.55 32.18 3.79

dispnet mvit
(rmi)

1.08 21.98 32.52 4.79

dispnet
(rgb)

1.21 36.32 32.62 5.07

dispnet
(rmi)

1.19 33.80 31.88 2.88

udepth
(rgb)

1.00 13.19 32.32 4.22

udepth
(rmi)

1.06 18.97 32.52 4.81

Table 4.12: Image enhancement result on IUI3-RedSea. The ↑ means the higher
the value of the metric is the better the model’s performance. The best performing
models are highlighted with bold face fonts.

Figure 4.17: Qualitative image enhancement result on SeaThru-Nerf (Japane-
seGradens - RedSea) Dataset. The light colors in the depth maps represents the
areas that are closer and the dark colors represent the areas that are far from the
camera. In the mask the yellow colored points are valid points based on the mask.

age enhancement of the SeaThru-Nerf dataset produced similar results to that of
Eiffel-Tower dataset in terms of UIQM and UCIQE values. But in case of the Varos
dataset, it achieved far more superior result due to it’s being a simulated dataset
and containing enough information in the shadows for the SeaThru to exploit.
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model uiqm ↑ uiqm increase (%) ↑ uciqe ↑ uciqe increase (%) ↑
Original Image 1.29 0 29.94 0
dispnet mvit

(rgb)
1.42 10.01 30.85 2.92

dispnet mvit
(rmi)

1.65 27.91 31.22 4.10

dispnet
(rgb)

1.67 29.43 31.21 4.06

dispnet
(rmi)

1.44 11.32 30.97 3.32

udepth
(rgb)

1.48 14.53 30.85 2.94

udepth
(rmi)

1.56 20.41 31.14 3.83

Table 4.13: Image enhancement result on JapaneseGradens-RedSea. The ↑
means the higher the value of the metric is the better the model’s performance.
The best performing models are highlighted with bold face fonts.
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Conclusion

In this thesis, the feasibility of using a self supervised learning based method for
predicting scene depth and robot pose from underwater videos has been studied.
In this regard, different depth prediction models along with two different input
space for the images RMI and RGB have been used and compared. Additionally,
the predicted depths has been used to enhance the underwater image quality.

From the results it can be concluded that, the self supervised learning based
ego motion learning along with depth learning can be adapted for the underwa-
ter imagery, which can potentially solve the problems faced in underwater nav-
igation. The predicted depths can also be used to enhance underwater images
using methods such as SeaThru[61] or Sucre[67]. The models are learned with
unlabeled videos which solves the problem of scarcity of dataset labeled with pose
and depths.

The models are trained with the 3 scenes of Eiffel-Tower dataset and have
been evaluated with a different scene from the Eiffel-Tower dataset along with
a simulated dataset Varos and a real world dataset SeaThru-Nerf to find out the
generalization capability of the models. While there is room for improvement,
it is seen that the models could generalize the performance on unseen different
datasets satisfactorily. It is seen that in the simulated dataset Varos the image en-
hancement using the predicted depths worked much better than the Eiffel-Tower
dataset, which may have been the result of it being a simulated dataset and it
retains some pixel level information even in the shadows of the images. However,
in the SeaThru-Nerf dataset we can see that the image enhancement performance
was similar to that on the Eiffel-Tower dataset.

SLAM in underwater environments is a challenging task (due to the drastic
attenuation of electro magnetic signals underwater and the physical properties of
the water) which has not yet been solved. Although the method used in this thesis
performs quite well in predicting the scene depth and robot pose, the problem
of underwater scene reconstruction is not fully solved yet. The current method
does not predict scale consistent pose of the robot because during training small
snippets consisting of 3 sequential images from the image sequence has been used
in every batch. This results in the model not being able to predict consistent pose
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for frames that are far away from each other and creates ambiguity. As a result
the poses predicted by the network can not be directly used in the SLAM problem.
While the predicted depth is scale consistent throughout the scene it is not scaled
to the ground truth depths. To solve these problems, one method can be to use
the pre-integrated Inertial Measurement Unit (IMU) data in the model for the
model to learn the pose and depth that can be directly used in the SLAM problem.
Another method of getting consistent pose can be to fine tune the pose network
with longer snippets of training data after the initial training has been done.
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Appendix A

Additional Material

The code for the project is available in this github repository:
https://github.com/AyonRRahman/Thesis

55

https://github.com/AyonRRahman/Thesis



	Abstract
	Preface
	Contents
	Figures
	Tables
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Scope
	1.4 Outline

	2 Related Works
	2.1 Traditional vslam
	2.2 Deep Learning Based Camera Pose Estimation
	2.3 Monocular Depth Estimation
	2.4 Depth Estimation on Underwater Images
	2.5 Self-Supervised Depth and Pose Estimation

	3 Materials & Methods
	3.1 Datasets
	3.1.1 Eiffel Tower
	3.1.2 Varos
	3.1.3 SeaThru-Nerf

	3.2 SC-SFMLearner
	3.2.1 Framework Overview
	3.2.2 Photometric and Smoothness Loss
	3.2.3 Geometry Consistency Loss
	3.2.4 Model architecture
	3.2.5 RMI input space

	3.3 ORB-SLAM3
	3.4 Sea-Thru
	3.5 Evaluation Metrics
	3.5.1 Depth Prediction Evaluation
	3.5.2 Pose Prediction Evaluation
	3.5.3 Image Enhancement evaluation


	4 Results and Discussions
	4.1 Experimental details
	4.2 Depth Evaluation
	4.2.1 Eiffel-Tower
	4.2.2 Varos

	4.3 Pose Evaluation
	4.4 ORB-SLAM3 Result
	4.5 Image Enhancement Result
	4.5.1 Eiffel-Tower
	4.5.2 Varos
	4.5.3 SeaThru-Nerf


	5 Conclusion
	Bibliography
	A Additional Material

