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Abstract: The Autonomous Underwater Vehicle (AUV) is capable of autonomously conducting
underwater cruising tasks. When combined with docking operations, the AUV can replenish its
electric power after long-distance travel, enabling it to achieve long-range autonomous monitoring.
This paper proposes a positioning method for the cruising and docking stages of AUVs. Firstly,
a vision guidance algorithm based on monocular vision and threshold segmentation is studied to
address the issue of regional noise that commonly occurs during underwater docking. A solution
for regional noise based on threshold segmentation and proportional circle selection is proposed.
Secondly, in order to enhance the positioning accuracy during the cruising stage, a fusion positioning
algorithm based on particle filtering is presented, incorporating the Doppler Velocity Log (DVL) and
GPS carried by the AUV. In simulation, this algorithm improves positioning accuracy by over 56.0%
compared to using individual sensors alone. Finally, experiments for cruising and docking were
conducted in Qingjiang, Hubei, China. The effectiveness of both methods is demonstrated, with
successful docking achieved in four out of five attempts.

Keywords: autonomous underwater vehicle; docking; visual guidance

1. Introduction

Throughout the 21st century, human demand for Earth’s resources has been steadily
increasing. With mature land resource extraction technologies, significant amounts have
been developed and utilized, prompting an urgent need to explore new resources. The
ocean, covering approximately 3.6 million square kilometers, constitutes over 71% of the
Earth’s surface area, more than twice that of land. Furthermore, it harbors rich water,
mineral, and oil and gas resources, making it a crucial reservoir of essential resources.
Currently, Autonomous Underwater Vehicles (AUVs) and seabed observatories represent
the primary methods for oceanic observation. Seabed observatories operate as a static
observation system [1], utilizing watertight sea cables for power transmission and data
exchange with onshore facilities or mother ships, enabling long-term real-time observation.
However, their limited operational range and high geographical requirements are draw-
backs. AUVs, on the other hand, are autonomous underwater robots equipped with their
own energy and sensor systems, capable of independent navigation and task completion in
seawater [2,3].

Due to constraints related to the AUV’s internal space and battery technology, its
current endurance is insufficient to support prolonged underwater operations, necessi-
tating regular retrieval by mother ships and incurring significant costs. To maximize
the advantages of both observation methods, current underwater observation systems
typically combine AUVs and seabed observatories to form a three-dimensional seabed
observation network.

In order to leverage the flexibility and extensive observation range of AUVs and
the long-term stable observation capability of seabed observatories, researchers have
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proposed an underwater docking technology [4,5]. This technology consists of several
key components: AUVs autonomously returning to the underwater docking station after
completing assigned tasks, the station providing underwater recharging using specific
techniques, and data exchange between the AUVs and the station through a communication
system. The resulting three-dimensional ocean observation system formed by the seabed
observatory, the docking station, and AUVs fully exploits the strengths of both the seabed
observatory and AUVs. The autonomous return of AUVs to the docking station during the
docking process represents a challenging aspect of underwater docking technology and a
crucial core technology.

Depending on the distance between the AUV and the docking station, the working
stage of the AUV can be divided into the cruising stage and the docking stage. During the
cruising stage, the AUV scans the target area based on predefined waypoints. Navigation is
primarily performed using acoustics, Doppler Velocity Logs (DVLs), and inertial navigation.
Acoustic sensors often rely on Ultra-Short Baseline (USBL) systems for navigation [6]. How-
ever, these sensors typically have a slow update rate. The DVL serves as the speedometer
for the AUV [7,8], while inertial navigation measures the AUV’s acceleration and angular
velocity [9,10]. Inertial navigation is popular due to its independence from external envi-
ronmental factors, but the low accuracy of inexpensive Inertial Measurement Units (IMUs)
restricts their use to short distances. Both types of sensors require position derivation
through integration, utilizing dead reckoning. As the distance increases, errors in dead
reckoning accumulate. To address this issue, absolute positioning sensors are typically
used periodically to update and correct the cumulative errors. The integration of these
sensors is based on traditional Kalman filtering methods. In this study, we employ a GPS
and DVL for particle-filtering fusion to update the positioning during the cruising phase.

During the docking stage, higher precision navigation methods are required to in-
crease the success rate of docking. Acoustic guidance has a slow update rate and is
susceptible to reflection interference from the docking station, making it unsuitable for
close-range high-precision guidance. Additionally, electromagnetic guidance [11] and vi-
sual guidance [12–14] are utilized during the docking stage. Electromagnetic guidance has
a high update rate, but due to rapid attenuation in underwater environments, its effective
range is limited, and it is susceptible to interference from the magnetic field of the docking
station, resulting in limited application in underwater docking. Visual guidance, on the
other hand, offers a high update rate, real-time capabilities, and high accuracy, and is
gradually becoming the primary choice for the docking stage. A visual guidance technique
based on five lights has been proposed [15]. When a single camera installed at the center
of the AUV’s bow captures all the lights on the docking station simultaneously, the visual
guidance stage begins. However, due to limitations in the camera’s field of view, when the
AUV deviates significantly from the central axis or approaches the docking station closely,
not all lights can be captured, leading to the initiation of posture control, relying on inertial
motion for docking. A combination of monocular vision and binocular vision guidance
has been proposed [16]. This method symmetrically places four lights. Two cameras are
installed at the front of the AUV, and a control algorithm is activated based on the num-
ber of guiding lights detected in the two images. This approach enhances the accuracy
and reliability of the positioning results but requires higher processor performance and
increases computational time. Another visual guidance method combining multiple lights
and AR codes as beacons has been proposed [14]. This method takes into account situations
where the AUV is too close for all lights to be captured, using AR codes for positioning.
A single-light monocular visual guidance technology has also been proposed [17], with a
guiding light placed at the entrance of the docking station, and a visual guidance algorithm
mounted on the AUV head that calculates the relative position of the AUV relative to the
center of the station, using this angle as the input for the AUV control system, effectively
avoiding the problem of losing multiple lights and minimizing anomalies. To mitigate
issues such as bubbles on the lens or reflections from the docking station, corresponding
solutions have been proposed.
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The main contributions of this paper are outlined as follows:

1. To address irregular miscellaneous light interference in underwater visual guidance,
a solution based on threshold segmentation and proportional circle screening is
proposed to eliminate noise in the region.

2. A particle-filtering fusion method based on the GPS and DVL is proposed for the po-
sitioning scheme during the cruising phase. In simulations, the accuracy is improved
by over 56.0% compared to individual positioning systems.

3. Experiments conducted in the Qingjiang River involving overall cruising and docking
validate the effectiveness of the positioning method, with successful docking achieved
four out of five times.

The remainder of this paper is organized as follows: in Section 2, we introduce the
materials and methods. Section 3 discusses the results. Section 4 presents the discussion.

2. Materials and Methods

This section provides an overview of the positioning methods utilized in the AUV
system. The AUV’s tasks encompass both cruising and docking stages. During the cruising
stage, we employ a particle-filtering-based positioning method. For the docking stage, we
utilize a single-light monocular configuration scheme to determine the AUV’s orientation
relative to the docking station.

2.1. Vision Guidance
2.1.1. Monocular Single Lamp Tracking Algorithm

There are primarily two methods for camera pose estimation: monocular and binoc-
ular [18]. Currently, the mainstream underwater vehicles have a cylindrical shape with
limited space at the head, making it challenging to meet the baseline distance requirements
for binocular pose estimation cameras. Therefore, in this section, we adopt an AUV docking
guidance method based on monocular vision. The primary task of terminal visual guidance
is to guide the AUV to dock with the base station, ensuring that the AUV continuously
travels towards the base station during its return trip and meets the guidance requirements.
The AUV used in this section has a cylindrical shape, and the docking base station has
a wide trumpet-like mouth. Therefore, there are no special requirements for the AUV’s
posture during docking. Based on this, we present a visual guidance algorithm based on a
single light and monocular vision, utilizing the relative orientation information between
the AUV and the underwater docking base station to achieve visual guidance.

The guidance process, as shown in Figure 1, involves the underwater camera carried
by the AUV capturing videos, which are then transformed into images at a specific frame
rate. These images undergo feature extraction through image preprocessing. The process
begins by converting the image to grayscale, followed by image filtering to eliminate noise
caused by water flow or the movement of suspended particles. Subsequently, the image
undergoes threshold segmentation, where it is transformed into a grayscale image, filtered,
and then processed using a threshold segmentation algorithm to calculate the image’s
segmentation threshold, addressing regional noise. Lastly, the process involves extracting
image contours and obtaining centroid positions. After converting the image into a binary
image, it is essential to determine the coordinates of the image features on the image
pixel plane, necessitating contour feature extraction to obtain the coordinates of the target
features on the image plane.

Based on the camera imaging model, a monocular vision guidance model with a single
light source is established, as depicted in Figure 2. In the diagram, the camera located
at the top captures images of a blue spherical beacon, which serves as the underwater
guiding light and is positioned in front of the camera. The image pixel plane is denoted
as Op − xpyp, with the coordinate origin Op located at the top left corner of the image.
The camera’s focal length is represented by f, and the spatial coordinates of the beacon
(xs, ys, zs) project onto the image plane as imaging coordinates

(
mp, np

)
.
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In order to facilitate subsequent azimuth angle calculation and more intuitive repre-
sentation, the origin of the image pixel coordinate system is translated to the main point of
the image plane to form the Opp − xppypp pixel coordinate system, as shown in Figure 3.
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After the origin translation, the centroid coordinates of the guidance light can be
expressed as follows:

(x, y) =

(
∑L−1

x=0 ∑W−1
y=0 x f (x, y)

∑L−1
x=0 ∑W−1

y=0 f (x, y)
− L

2
,

∑L−1
x=0 ∑W−1

y=0 y f (x, y)

∑L−1
x=0 ∑W−1

y=0 f (x, y)
− W

2

)
(1)

where L and W are the length and width of the pixel plane, in pixels, and f (x, y) is the gray
value at the pixel point (x, y). Suppose the horizontal field of view angle of the horizontal
camera is 2α f , the vertical field of view angle is 2β f , α is the horizontal angle between the
AUV heading angle and the centerline of the connecting base station, and β is the vertical
angle between the AUV heading angle and the connecting base station centerline, then the
following relation can be obtained from the similarity theorem:

L

tan
(

α f

) =
2x

tan(α)
(2)

W

tan
(

β f

) =
2y

tan(β)
(3)

The orientation angle will not exceed the range of the camera’s field of view angle,
and we can obtain α ∈

[
−α f , α f

]
and β ∈

[
−β f , β f

]
.

The directional declination angle of AUV on the horizontal plane and vertical plane
describes the relative orientation between AUV and the connecting base station. After
obtaining α and β, α and β are input into the motion control system as the control quantity,
and 0 is taken as the output expectation value of the control system. AUV guides it to
approach the center line of the connecting base station by controlling the rudder plate and
propeller. In the whole process, the absolute pose is not solved, but the relative orientation
is solved to achieve guidance; it can be seen that this is a pure tracking guidance algorithm.

1. Lens bubbles. The camera mounted on the AUV requires lens encapsulation for under-
water use. However, this encapsulation introduces radial and tangential distortions.
During prolonged AUV navigation, bubbles can accumulate inside the encapsulated
housing, obstructing the camera’s field of view, as depicted in Table 1. The bubbles
exhibit irregular shapes after binarization, which is highly noticeable.
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Table 1. Typical area noise types of connection process.

Area Noise Type Raw Image Binary Image
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tively sensitive to noise and involves a large amount of computation, making it less 

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 7 of 25 
 

 

Surface reflections 

  

2.1.2. Regional Noise Removal Method Based on Threshold Segmentation and  
Proportional Circle Screening 

Based on the previous section, it is evident that after image preprocessing and bina-
rization, regional noise often consists of irregularly shaped spots, while the main target 
spots generated by underwater lights tend to have a more regular and well-defined shape 
compared to the regional noise. In response to these characteristics, this paper proposes a 
method for removing regional noise based on threshold segmentation and proportional 
circle screening. 

The current common approach for extracting guiding light spots involves using 
Hough circle detection to screen circles. However, Hough circle detection requires the pre-
definition of multiple parameters [19], and due to the diversity of each spot at different 
distances, the same parameters may yield varying detection results for spots at different 
distances, leading to suboptimal performance. This paper introduces the concept of the 
circumscribed proportional circle, and experimental results have shown that this method 
effectively filters out regional spot noise. 

Figure 4 illustrates the flow chart of the regional noise filtering algorithm proposed 
in this paper. Firstly, the camera captures the image, which then undergoes preprocessing 
such as grayscale conversion and image filtering. Subsequently, a binary image is ob-
tained through threshold segmentation, followed by the extraction of the contours of all 
spots in the binary image. If the number of contours is 0, it indicates that the AUV has not 
captured any guiding lights, and a new image should be obtained. If the number of con-
tours is not 0, the area 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖  of each spot is calculated. If the spot area is less than the 
specified spot size threshold 𝑆𝑆𝑇𝑇ℎ𝑟𝑟𝑟𝑟, it is labeled as an invalid spot and removed. Other-
wise, if 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖  > 𝑆𝑆𝑇𝑇ℎ𝑟𝑟𝑟𝑟, all spots that meet the regional size criteria are retained. 

Following the aforementioned regional area filtering, the minimum circumscribed 
circle is drawn around all the retained spots, and the area 𝑆𝑆𝑓𝑓𝑖𝑖𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑖𝑖  of each minimum cir-
cumscribed circle is calculated. After obtaining the area 𝑆𝑆𝑓𝑓𝑖𝑖𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑖𝑖  of the minimum circum-
scribed circle, the actual spot and the proportion of size of the minimum circumscribed 
circle 𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖  are calculated as follows: 

𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖 =
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖

𝑆𝑆𝑓𝑓𝑖𝑖𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟𝑖𝑖  (4) 

where 𝑖𝑖 ∈ [0,𝑁𝑁𝑚𝑚𝑓𝑓𝑥𝑥 − 1].𝑁𝑁𝑚𝑚𝑓𝑓𝑥𝑥 represents the number of contours after region area selec-
tion on the current frame image. 

After obtaining 𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖 , a comparison is made between 𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖  and the predefined pro-
portional circle threshold 𝜆𝜆𝑇𝑇ℎ𝑟𝑟𝑟𝑟. When 𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖 < 𝜆𝜆𝑇𝑇ℎ𝑟𝑟𝑟𝑟, it indicates that the spot size rela-
tive to its minimum circumscribed circle area is small, suggesting an irregular shape with 
a substantial amount of empty space, thus, leading to the removal of the spot as invalid. 
Conversely, when 𝜆𝜆𝑟𝑟𝑓𝑓𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖 ≥ 𝜆𝜆𝑇𝑇ℎ𝑟𝑟𝑟𝑟, the spot is retained as a valid feature input to the guid-
ance algorithm in the previous section, thereby determining the relative pose of the AUV. 

Prior to the proportional circle screening, image binarization segmentation is re-
quired, which can be categorized into edge-based detection and threshold-based image 
segmentation methods based on different principles [20,21]. The former method is rela-
tively sensitive to noise and involves a large amount of computation, making it less 

2. Docking station reflections. The structural components of the docking station are typi-
cally made of materials such as metal and nylon, which exhibit reflective properties,
leading to reflections. Although the brightness of underwater lights is greater than
the reflection from the docking station, in the absence of underwater lights within the
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camera’s field of view, the AUV may easily misinterpret parts of the docking station
as light sources. In these circumstances, the AUV’s determination of the relative
orientation may experience some deviation.

3. Surface reflections. When the base station is located close to the water surface, im-
ages of the underwater guiding lights captured by the camera may contain surface
reflections, as illustrated in Table 1. This aspect can be addressed by removing the
reflections caused by the upper layer of the water surface.

2.1.2. Regional Noise Removal Method Based on Threshold Segmentation and
Proportional Circle Screening

Based on the previous section, it is evident that after image preprocessing and bina-
rization, regional noise often consists of irregularly shaped spots, while the main target
spots generated by underwater lights tend to have a more regular and well-defined shape
compared to the regional noise. In response to these characteristics, this paper proposes a
method for removing regional noise based on threshold segmentation and proportional
circle screening.

The current common approach for extracting guiding light spots involves using
Hough circle detection to screen circles. However, Hough circle detection requires the
pre-definition of multiple parameters [19], and due to the diversity of each spot at different
distances, the same parameters may yield varying detection results for spots at different
distances, leading to suboptimal performance. This paper introduces the concept of the
circumscribed proportional circle, and experimental results have shown that this method
effectively filters out regional spot noise.

Figure 4 illustrates the flow chart of the regional noise filtering algorithm proposed in
this paper. Firstly, the camera captures the image, which then undergoes preprocessing
such as grayscale conversion and image filtering. Subsequently, a binary image is obtained
through threshold segmentation, followed by the extraction of the contours of all spots in
the binary image. If the number of contours is 0, it indicates that the AUV has not captured
any guiding lights, and a new image should be obtained. If the number of contours is not 0,
the area Si

f acula of each spot is calculated. If the spot area is less than the specified spot size

threshold SThre, it is labeled as an invalid spot and removed. Otherwise, if Si
f acula > SThre,

all spots that meet the regional size criteria are retained.
Following the aforementioned regional area filtering, the minimum circumscribed

circle is drawn around all the retained spots, and the area Si
circle of each minimum circum-

scribed circle is calculated. After obtaining the area Si
circle of the minimum circumscribed

circle, the actual spot and the proportion of size of the minimum circumscribed circle λi
ratio

are calculated as follows:

λi
ratio =

Si
f acula

Si
circle

(4)

where i ∈ [0, Nmax − 1].Nmax represents the number of contours after region area selection
on the current frame image.

After obtaining λi
ratio, a comparison is made between λi

ratio and the predefined pro-
portional circle threshold λThre. When λi

ratio < λThre, it indicates that the spot size relative
to its minimum circumscribed circle area is small, suggesting an irregular shape with a
substantial amount of empty space, thus, leading to the removal of the spot as invalid.
Conversely, when λi

ratio ≥ λThre, the spot is retained as a valid feature input to the guidance
algorithm in the previous section, thereby determining the relative pose of the AUV.

Prior to the proportional circle screening, image binarization segmentation is required,
which can be categorized into edge-based detection and threshold-based image segmenta-
tion methods based on different principles [20,21]. The former method is relatively sensitive
to noise and involves a large amount of computation, making it less suitable for real-time
processing, especially given the high level of noise in underwater images. Therefore, this
paper adopts a threshold-based image segmentation algorithm.
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Figure 4. Region noise removal algorithm based on threshold segmentation and proportional
circle screening.

Threshold-based image segmentation methods can be further divided into adaptive
local thresholding and global thresholding. The former is commonly used for images with
strong brightness gradients, but due to the high level of noise in underwater scenarios, this
paper opts for a global thresholding segmentation algorithm.

Let g(i, j) represent the grayscale value of a pixel v on the original image, and let δ
denote the global segmentation threshold during binarization. The global threshold δ is
determined using the efficient OTSU algorithm. The grayscale value

∼
g(i, j) after threshold

segmentation is calculated as follows:

∼
g(i, j) =

{
T0 g(i, j) ≤ δ
T1 g(i, j) > δ

(5)

where δ, T0, and T1 are within the range of [0, 255]. A grayscale value of 0 for
∼
g(i, j)

corresponds to a black pixel, while a value of 255 corresponds to a white pixel. In order
to extract image features more effectively, this paper sets the grayscale value of all pixels
with a value less than δ to 0, and the grayscale value of all pixels with a value greater than
δ to 255.

2.1.3. Confirmatory Experiment

To validate the effectiveness of the monocular visual guidance algorithm and the
region noise filtering method based on threshold segmentation and proportional circle
screening studied in this chapter, separate experiments were conducted to verify the
accuracy of the monocular visual guidance algorithm and to test the region noise filtering.

The initial experiment involved the precision verification of the monocular visual
guidance algorithm. The experiment used the UWC325 camera (Outland Technology Inc.,
Slidell, LA, USA) with 412,000 pixels, a resolution of 750 × 560, a fixed-focus lens with a 70◦
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field of view, and a power consumption of 12 V/0.11 A. The camera outputted PAL-format
AV analog video data, which needed to be converted into a USB-readable format through
a data conversion board. The data conversion board used was the AV to USB converter
(Jinyan Electronics Co., Ltd., Shenzhen, China), with a frame rate of 30FPS, MJPEG output
format, and power consumption of <0.7 W. The guiding light used was the SXDZ-056K-03
underwater illumination light, (WEIEN Electronic Technology Co., Ltd., Hangzhou, China)
with an underwater light field angle of 90◦ × 90◦ and powered by 24 V at 50 W.

As shown in Figure 5, the experimental setup included the distance ∆L between the
guiding light and the camera, the horizontal offset ∆X, and the vertical offset ∆Y. During
the experiment, the vertical offset was initially kept constant while the camera was moved
horizontally to calculate the camera’s horizontal orientation angle relative to the guiding
light using the guidance algorithm. Similarly, keeping the horizontal offset constant, the
camera was moved vertically to calculate the vertical orientation angle.
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Figure 5. Confirmatory experiment.

The experiments were repeated at distances ∆L of 2 m, 4 m, and 6 m from the camera.
Due to the limited field of view of the camera, horizontal and vertical displacements were
restricted to a certain range, with ∆X and ∆Y ∈ [0, 2000] mm. To verify the accuracy of the
guidance algorithm, angular deviations ∆θx and ∆θy were introduced, representing the
differences between the experimental calculated values and the theoretical true values for
horizontal and vertical displacements, as shown below.{

∆θx = αreal − αcal
∆θy = βreal − βcal

(6)

The experimental results are illustrated in Figures 6 and 7. The overall distribution
of ∆θx and ∆θy ranged from 0◦ to 5◦. At a distance of 6 m, the deviations were mostly
between 0◦ and 1◦, while at 4 m, the deviations were mainly between 0◦ and 2◦. As the
cursor approached the camera, the range of angular deviation increased. This outcome was
mainly attributed to the scattering nature of the guidance spot. When ∆L was small, the
spot was larger, resulting in more conspicuous scattering in the image and larger calculation
deviations in the centroid position. Conversely, when ∆L was large, the spot became more
concentrated, leading to more accurate centroid position calculations.

In actual docking operations, AUV typically activates visual guidance at distances of
10 m or more, resulting in minimal fluctuations in the azimuth angle deviation. When the
AUV is closer to the base station, the azimuth angle calculation at close range is already
relatively large, and the fluctuations at this point have minimal impact on the success rate
of docking.
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In this study, actual docking data images were used to conduct experiments on region
noise removal. The effectiveness of threshold segmentation and proportional circle filtering
depends on the selection of global segmentation threshold δ and circle filtering proportion
λThre. These two parameters directly determine the effectiveness of region noise removal.
The global segmentation threshold δ is chosen using the same method as in reference [7].

Table 2 shows several typical proportion circles that enclose region spots generated by
lens bubbles. The λi

ratio values of the main guidance spots are generally above 0.9, while
the λi

ratio values of region spot noise generated by lens bubbles range from 0.35 to 0.75.
Therefore, for this experiment, the proportional circle threshold λThre is set between 0.75
and 0.9, which effectively filters out all region spot noise caused by lens bubbles.

Table 3 displays several typical proportion circles that enclose region spots generated
by base station reflections. After binary processing, the shape of base station reflection
spots becomes highly irregular. Using the method proposed in this paper, the proportional
circle λi

ratio for each spot is calculated, and λi
ratio generally ranges from 0.1 to 0.6. By setting

the proportional circle threshold λThre between 0.6 and 0.9, all region noise caused by base
station reflections can be effectively filtered out.
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Table 2. When there is a lens bubble in the image, the external proportional circle under image
binarization.
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2.2. Fusion Localization Algorithm Based on Particle Filter

This section investigates a fusion localization algorithm based on particle filtering
which fully utilizes data from sensors such as the DVL, electronic compass, and GPS to
provide positioning information for the cruising phase of the AUV.
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2.2.1. Sensor Reading

The electronic compass obtains the current orientation by measuring the Earth’s mag-
netic field, and the angles in the navigational coordinate system can be defined as follows:

ϑx =
[
φ θ ψ

]T (7)

where φ is roll angle, θ is pitch angle, and ψ is heading angle.
DVL is an acoustic Doppler profiler that measures and records underwater velocity

using the Doppler effect. It calculates the speed relative to the seafloor by measuring the
Doppler frequency shift between the transmitted sound waves and the received seafloor
reflection waves. The obtained velocities can be defined as follows, corresponding to the
three directional velocities in the carrier coordinate system.

V =
[
vx vy vz

]T (8)

Our proposed algorithm requires a sensor that provides absolute positioning to cor-
rect the accumulated errors from dead reckoning. For an AUV, when the GPS antenna is
exposed, absolute positioning can be provided by GPS. When the AUV is fully submerged,
absolute positioning is provided by USBL. For the sake of experimental convenience,
we used GPS as an example. The fusion positioning experiments were also conducted
using GPS and DVL. GPS, as a global positioning system, provides the latitude and lon-
gitude of the AUV. Through empirical formulas, these coordinates can be converted into
planar coordinates.

Based on the above introduction, there exists a distinction between the carrier coor-
dinate system and the inertial coordinate system (used here as the navigation coordinate
system) in the data collected by each instrument. Therefore, in the actual application of
AUVs, it is necessary to unify these two coordinate systems. The carrier coordinate system
is centered on the AUV, while the navigation coordinate system is constructed with the
origin at the latitude and longitude, following the order of north, east, and down. In order
to use particle filtering to filter the positioning information of the AUV, it is first necessary
to convert the relevant information from the carrier coordinate system to the navigation
coordinate system for uniformity. φ, θ, and ψ represent the rotation angles of the carrier
coordinate system relative to the navigation coordinate system, while p, q, and r represent
the rotational angular velocities of the AUV itself in the carrier coordinate system.

The complete transformation matrix from the carrier coordinate system to the inertial
coordinate system is given by the following equation.

R =

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sθsφsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

 (9)

where c = cos(·) and s = sin(·).
According to the previous introduction, the conversion formula for transforming

the velocity data collected in the carrier coordinate system by the DVL to the navigation
coordinate system is as follows:

V′
t = Rt · Vt (10)

where Rt represents the rotation matrix derived from the real-time electronic compass angle
information, while V′

t and Vt denote the velocity of the AUV in the navigation frame and
body frame at time t, respectively. Therefore, the change in coordinates over time ∆t can be
expressed as follows:

∆X = V′ · ∆t = Rt · V · ∆t (11)

The DVL system obtains the AUV’s global positioning through continuous integration,
leading to the accumulation of certain errors.



J. Mar. Sci. Eng. 2024, 12, 1023 13 of 23

Once the AUV is equipped with positioning capabilities, it requires a navigation
algorithm to track the target point and complete autonomous cruising tasks. In this regard,
the line-of-sight (LOS) method [22] is considered as a planar navigation algorithm. It
calculates the desired heading angle based on the current position and the coordinates of
the target point, and then controls the heading angle to achieve planar navigation. The
formula for calculating the desired heading angle is presented below.

yawexpected = arctan( ytarget−ycurrent
xtarget−xcurrent

), xtarget ̸= xcurrent

yawexpected = π
2 , xtarget = xcurrent, ytarget > ycurrent

yawexpected = 3
2 π, xtarget = xcurrent, ytarget < ycurrent

(12)

where yawexpected represents the desired heading angle, (xtarget, ytarget) denotes the co-
ordinates of the target point, and (xcurrent, ycurrent) represents the current coordinates of
the AUV.

2.2.2. Data Fusion Based on Particle Filter

The DVL, in combination with the electronic compass angle, obtains positioning by
integrating velocity, leading to the issue of cumulative errors in this positioning method. As
the navigation time increases, the positioning error also increases. Typical GPS positioning
suffers from insufficient update frequency and has an error margin of several meters.
Therefore, a positioning method with sufficient update frequency and no accumulated
errors is needed. In this context, the fusion of DVL and electronic compass positioning data
with GPS positioning data using particle filtering is considered.

In addressing the AUV’s positioning problem, the observable values are the sensor
readings, while the estimated state represents the AUV’s global positioning. If we define
the sensor observation at time k as zk and the AUV position estimation at time k as xk, the
transformation relationship can be expressed as follows:

xk = fk(xk−1, vk−1) (13)

zk = hk(xk, nk) (14)

where fk denotes the state transition function at time k, and hk represents the observation
transformation function at time k. Hence, the variation process of the particle filtering can
be illustrated as shown in Figure 8.
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From the Bayesian perspective, given the observation data x1:k obtained by the sensor,
and assuming that the initial probability density function p(z0|x0) ≡ p(x0) is known, the
credibility p(zk|x1:k) of the system state zk at time k is calculated recursively. This process
can be divided into two parts: prediction and update, with the mathematical expressions
as follows:

p(zk|x1:k−1) =
∫

zk−1

p(zk|zk−1)p(zk−1|x1:k−1)dzk−1 (15)
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p(zk|x1:k) =
p(x1:k−1)

p(x1:k)
p(xk|zk)p(zk|x1:k−1) ∝ p(xk|zk)p(zk|x1:k−1) (16)

The ultimate goal is to determine the expectation of zk. For a continuous variable z, its
mathematical expectation is as follows. However, due to the lack of constraints on the linear
state space and the Gaussian distribution of noise in particle filtering, it is not possible to
obtain an analytical solution for the mathematical expectation E(z) of the variable z.

E(z) =
∫

zp(z)dz (17)

Therefore, a numerical solution is obtained using the Monte Carlo method. The Monte
Carlo method holds that by continuously random sampling the probability density of a
random variable, the weighted sum of the samples can represent the variable’s expectation.

Assuming that the variable z follows the probability density function p(z), and χ is a
sample obtained based on p(z) through random sampling, the following can be derived.

χ(i) ∼ p(z) (18)

lim
N−>∞

P{| 1
N

N−1

∑
i=0

χ(i) − E(Z)
∣∣∣< ε

}
= 1 (19)

Based on the Monte Carlo concept and the Law of Large Numbers, the mathematical
expectation of the state zk can be represented as follows:

E(zk) =
∫

zk p(zk|x1:k)dzk = lim
N−>∞

1
N

N

∑
i=0

zi
k (20)

In particle filtering, N represents the number of sampled particles, zk represents the
system state at time k, and zi

k represents the sample generated by p(zk|x1:k) at time k.
However, since an accurate p(zk|x1:k) cannot be obtained, a transformation of (22) yields
the following equation, which is the importance sampling in particle filtering.

E(zk) =
∫

zk
p(zk|x1:k)

q(zk|x1:k)
q(zk|x1:k)dzk = lim

N−>∞

1
N

N

∑
i=0

zi
k

p(zi
k

∣∣x1:k)

q(zi
k

∣∣x1:k)
(21)

where q(zk|x1:k) represents the importance density, and since q(zk|x1:k) can be specified,

samples can be relatively easily collected from q(zk|x1:k) . Let
p(zi

k|x1:k)

q(zi
k|x1:k)

be denoted as wi
k,

then the following equation can be obtained.

E(zk) = lim
N−>∞

1
N

N

∑
i=0

zi
kwi

k (22)

In order to calculate the weight wi
k, the expression of wi

k is simplified, and two as-
sumptions are used during the simplification process. One is the assumption of obser-
vation independence, that is, the observation at time k is only related to the state at time
k, expressed as p(xk|z1:k, x1:k−1) = p(xk|zk) ; the other is the assumption of Markov pro-
cess, that is, the state at time k is only related to the state at time k − 1, expressed as
p(zk|z1:k, x1:k) = p(zk|zk−1) . The process is as follows:

q(zk|x1:k) = q(zk|x1:k, zk−1)q(zk−1|x1:k−1) (23)
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p(zk|x1:k) = p(zk ,x1:k)
p(x1:k)

=
p(xk |zk ,x1:k−1)p(zk |x1:k−1)

p(xk |x1:k−1)

=
p(xk |zk ,x1:k−1)p(zk |zk−1,x1:k−1)p(zk−1|x1:k−1)

p(xk |x1:k−1)

=
p(xk |zk)p(zk |zk−1)p(zk−1|x1:k−1)

p(xk |x1:k−1)

∝ p(xk|zk)p(zk|zk−1)p(zk−1|x1:k−1)

(24)

By substituting the above two equations into the expression of wi
k, the following can

be obtained.

wi
k ∝

p(xk

∣∣∣zi
k)p(zi

k

∣∣∣zi
k−1)p(zi

k−1

∣∣∣x1:k−1)

q(zi
k

∣∣∣zi
k−1, x1:k)q(zi

k−1

∣∣∣x1:k−1)
(25)

Observing that
p(zi

k−1|x1:k−1)

q(zi
k−1|x1:k−1)

is wi
k−1, further simplification of wi

k yields the following.

wi
k ∝ wi

k−1 ·
p(xk

∣∣∣zi
k)p(zi

k

∣∣∣zi
k−1)

q(zi
k

∣∣∣zi
k−1, x1:k)

(26)

Since the q distribution is a self-selected distribution, q distribution can be chosen to sat-
isfy q(zi

k

∣∣∣zi
k−1, x1:k) = p(zi

k

∣∣∣zi
k−1) , thus, obtaining the recursive expression of wi

k as follows:

wi
k ∝ wi

k−1 · p(xk

∣∣∣zi
k) (27)

In addition, after importance sampling, the weights are normalized as follows:

wi
k =

wi
k

N
∑

j=1
wj

k

(28)

Therefore, the simplified weight expression can be obtained as follows:

wi
k = wi

k−1 · p(xk

∣∣∣zi
k) (29)

After obtaining the weights of the particles, the estimation of the state is calculated
using the Law of Large Numbers, thereby completing the update of the state estimation,
with the expression as follows:

ẑk =
1
N

N

∑
i=1

zi
k (30)

According to the above formula reasoning, with the continuous update of the particles,
the weights of the particles with larger weights will continue to increase, while the weights
of the particles with smaller weights will continue to decrease. This will lead to the
problem of weight degeneracy, causing the particles to not effectively reflect the overall
distribution of the sampling points, hence the introduction of resampling. Setting the
particle degeneracy index Ne f f is as follows:

Ne f f =
1

N
∑

i=1
(wi

k)
2

(31)

When its value is less than the set threshold Nth, resampling is conducted, discarding
low-weight particles and replicating high-weight particles, thereby mitigating the problem
of particle degeneracy. Thus, the entire process of particle filtering is completed.
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2.2.3. Confirmatory Experiment

Figure 9 illustrates the specific fusion framework, which uses GPS positioning data as
the observation value, DVL output velocity values, and electronic compass output heading
angles as the state transition values to construct the particle-filtering framework. The
corresponding expressions are then deduced from a theoretical perspective.
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Using the data from DVL and the electronic compass as input vk, it is defined as
follows:

vk =
[
vx vy vz φ θ ψ

]T (32)

Taking the AUV’s three-dimensional position coordinates as the state variable, it is
defined as follows:

xk =
[
x y z

]T (33)

Based on the principles of kinematics and discretizing the expressions, the state
transition equation for the AUV can be derived as shown below. Here, vk includes sensor
noise and Rk−1 represents the rotation matrix at time k − 1.

xk = I3×3xk−1 + Bk−1vk−1∆t (34)

Bk−1 = [Rk−1, 03×3] (35)

Simultaneously, the observation function is expressed as follows:

zk = h(xk, nk) = I3×3 x̂k (36)

where xk represents the true value at time k, nk represents the noise at time k, and x̂k
represents the noisy observed value at time k.

The implementation process of the fusion positioning algorithm is then introduced
as follows:

1. Determine the number of particles: N.
2. Particle initialization: all particles are distributed near the origin in a standard distri-

bution manner.
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3. Weight update: utilize the observed coordinates input by GPS to calculate the new
weights of the particles using a two-dimensional Gaussian distribution for calculation.
The specific calculation formula is as follows:

wi
k = e

− 1
2 (

(xgps−xi
k−1)

2

σ2
1

+
(ygps−yi

k−1)
2

σ2
2

)
(37)

where wi
k represents the weight of the ith particle at time k, (xgps, ygps) represents the

observed coordinate from GPS, (xi
k−1, yi

k−1) represents the coordinate of the ith particle at
time k − 1, and σ1 and σ2 represent the standard deviations of the horizontal and vertical
coordinates, respectively.

4. State transition: complete the state transition of the particles based on (36).
5. Particle resampling: discard particles with smaller weights and replicate particles

with larger weights.

This completes the theoretical reasoning of the fusion positioning algorithm.
To validate the effectiveness of this method, the navigation positioning of the AUV

was simulated using the ROS (Robot Operating System) [23] and Gazebo [24] simulation
platform and the corresponding DVL velocity data, electronic compass angle data, and GPS
positioning information were recorded. In the simulation, appropriate noise was added
to each sensor, and true value data were retained for comparison. The simulator used
in the simulation is the AUV Simulator [25] developed as part of the European ECSEL
project, which can simulate multiple underwater robots and intervention tasks using robot
manipulators. It can also simulate underwater hydrostatic and hydrodynamic effects,
thrusters, sensors, external disturbances, etc. This study combined AUV parameters and
experimental requirements to conduct simulation experiments in the simulator. In the
simulation environment, based on the actual sensor data, random errors ranging from −0.5
to 0.5 m/s were assigned to the DVL velocity data in each direction, random errors ranging
from −0.2 to 0.2 radians were assigned to the angles of the electronic compass, and random
errors ranging from −4.2 to 4.2 m were assigned to the two-dimensional GPS positioning.
In the simulation environment, a series of waypoints were set so that the AUV would
follow a certain trajectory. Starting from the origin, the designated points were [50, 0], [50,
25], [0, 25], [0, 50], [50, 75], [50, 100], [0, 100], [0, 125], [50, 125], [50, 150], and [0, 150], in
meters. During this process, PID control algorithms were used for control and the LOS
algorithm was used for navigation.

Under the condition that all the aforementioned variables contain noise similar to real-
world situations, the AUV’s positioning state values were obtained through particle filtering.
Figure 10 presents a comparison of pure DVL velocity integration, GPS positioning state
values, AUV filtered state values, and the true AUV positioning recorded in the simulation
environment. Figure 11 shows the positioning error for various methods.
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The qualitative comparison of the actual positioning results and the ground truth, as
well as the error plots for the three positioning methods, reveals that the fusion positioning
algorithm effectively reduces the positioning errors. To quantitatively demonstrate the
effectiveness of the fusion positioning algorithm, the average errors of the three positioning
methods were calculated, and the results are presented in Table 4 below.

Table 4. The average error of the three positioning methods.

GPS DVL Fusion Positioning

Average error/m 3.190 3.861 1.404

Calculation of the average errors shows that despite the presence of significant errors in
GPS, electronic compass, and DVL velocity measurements, the fusion positioning algorithm
still achieves relatively accurate positioning, with an average error of only 1.404 m. This
represents a 56.0% decrease compared to the unfiltered GPS positioning with an average
error of 3.190 m, and a 63.6% decrease compared to the dead reckoning positioning with
an average error of 3.861 m. Additionally, it is important to note that the error in DVL
measurements accumulates over time.

Therefore, the simulation results demonstrate that the fusion positioning algorithm
significantly improves accuracy compared to dead reckoning or standalone GPS positioning
methods.

3. Results

To validate the effectiveness of the research approach in this chapter, experiments on
AUV visual guidance and cruise positioning were conducted in the Qingjiang region of
Hubei, China. The underwater vehicle used in the experiment is a long cylindrical AUV,
as shown in Figure 12. The underwater camera is positioned in the head compartment to
enable visual guidance. The second section from the head is the docking compartment,
responsible for wireless charging and signal transmission between the base station and
the AUV. The third section houses the power and control unit, responsible for supplying
power to various AUV functional modules and monitoring the energy status. This section
also incorporates the main controller for the vehicle, which handles motion control and
visual algorithm computation. The fourth section is the acoustic compartment, responsible
for remote attitude determination and acoustic signal processing. Further back is the tail
section, containing rudders and motors, responsible for the underwater vehicle’s maneu-
vering function. Additionally, the AUV is equipped with side-scan sonar for underwater
terrain scanning and target detection tasks.
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Figure 12. The underwater autonomous vehicle used.

The docking station, as shown in Figure 13, has an underwater guiding light arranged
above it. In the experiment, the docking station was placed at a designated GPS coordinate
origin point, at a depth of 0.6 m. The AUV was released from the surface platform and
underwent cruising and visual guidance stages before docking. During the cruising stage,
a particle-filter-based method was utilized. Visual guidance in the horizontal direction and
depth measurement using the AUV’s depth gauge were employed for the docking stage.
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3.1. Fusion Positioning Experiment

To validate the effectiveness of integrated positioning, autonomous point searching
was conducted during AUV navigation. The designated target waypoints during the
actual operation were sequentially set as [0, 0], [−100, −100], and [−100, −140]. Since the
target points were established in the initial AUV coordinate system, their coordinates in
the global coordinate system required transformation. Moreover, with the AUV’s initial
heading angle being 0.4 radians, the transformed coordinates were [0, 0], [−131, −53.2],
and [−146.6, −90].

As depicted in Figure 14, the DVL, functioning as an acoustic device, encounters
situations where it cannot resolve velocity when underwater terrain is complex and no
echo signals are received. Under such abnormal conditions, the DVL outputs a value of 0.
Therefore, during usage, the velocity data from the DVL need to undergo outlier detection,
replacement, and filtering. The most recent valid value before the occurrence of the outlier
is used as a substitute. Examination of the preprocessed yaw data reveals occasional spikes
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and minor fluctuations in the heading angle data from the electronic compass, necessitating
similar processing. The postprocessed velocity and heading angle data are illustrated in
Figure 14, denoted as postprocessed vx, vy, and yaw, representing the sensor-measured
velocities along the x and y axes, as well as the heading angle, respectively.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 13. Layout of the docking station. 

3.1. Fusion Positioning Experiment 
To validate the effectiveness of integrated positioning, autonomous point searching 

was conducted during AUV navigation. The designated target waypoints during the ac-
tual operation were sequentially set as [0, 0], [−100, −100], and [−100, −140]. Since the target 
points were established in the initial AUV coordinate system, their coordinates in the 
global coordinate system required transformation. Moreover, with the AUV’s initial head-
ing angle being 0.4 radians, the transformed coordinates were [0, 0], [−131, −53.2], and 
[−146.6, −90]. 

As depicted in Figure 14, the DVL, functioning as an acoustic device, encounters sit-
uations where it cannot resolve velocity when underwater terrain is complex and no echo 
signals are received. Under such abnormal conditions, the DVL outputs a value of 0. 
Therefore, during usage, the velocity data from the DVL need to undergo outlier detec-
tion, replacement, and filtering. The most recent valid value before the occurrence of the 
outlier is used as a substitute. Examination of the preprocessed yaw data reveals occa-
sional spikes and minor fluctuations in the heading angle data from the electronic com-
pass, necessitating similar processing. The postprocessed velocity and heading angle data 
are illustrated in Figure 14, denoted as postprocessed vx, vy, and yaw, representing the 
sensor-measured velocities along the x and y axes, as well as the heading angle, respec-
tively. 

 
Figure 14. Comparison before and after treatment with vx, vy, and yaw. 

Docking 
station

Watertight 
optical fiber

Figure 14. Comparison before and after treatment with vx, vy, and yaw.

A comparison between the pre- and postprocessed data indicates that the processing
effectively eliminates outliers to a significant extent, resulting in smoother data, aligning
with the overall trends. Subsequently, the particle fusion positioning algorithm is applied
to the positioning data, and a comparison is made between GPS positioning data, DVL-
integrated positioning data, and fused positioning data. The comparative positioning data
results are depicted in Figure 15.
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In Figure 15, the red stars represent the target waypoints set during the actual op-
erational process. Observations reveal that the AUV’s navigation is substantially based
on the designated target waypoints, demonstrating autonomous exploration capabilities.
Furthermore, the fused positioning algorithm exhibits reduced cumulative errors compared
to DVL-integrated positioning, effectively tracking GPS positioning data while offering
smoother results without significant jumps, thus, ensuring accurate positioning data overall.
Consequently, the effectiveness of the fused positioning algorithm is validated, presenting
the potential to provide high-precision positioning data for AUV cruising.

3.2. Docking Experiment

During the docking phase, our objective is not to achieve absolute positioning, but
rather to provide guidance using relative orientation. If absolute positioning is required,
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multiple lights need to be installed at the docking station. In fact, the relative orientation
provided by a single light can enable successful docking of the AUV. Five visual guidance
tasks were conducted, with four successful dockings. Throughout the docking process,
the AUV only utilized the horizontal deviation angle from the visual guidance algorithm,
while depth data measured by the depth sensor were used to maintain a consistent depth
with the center of the docking station.

The effective range of the navigation lights varies with changes in ambient light and
water quality. In dim conditions, the camera’s recognizable distance reaches 16–20 m, but
diminishes to 5–12 m in brighter ambient light. The horizontal field of view of the camera
used in the experiment is 110◦, while the vertical field of view is 70◦. When the AUV
is more than 10 m away from the base station, the lateral correction distance for optical
guidance exceeds 5 m.

Figure 16 illustrates the temporal variation in the visual guidance heading angle
during typical end-point visual docking tasks in the experiment. Tasks one, two, three,
and four all achieved successful docking. Throughout successful docking processes, the
resolved heading angle from visual guidance continually adjusted the AUV’s heading. As
the AUV approached the docking station, the polarity of the heading angle continuously
changed, indicating that the AUV control system constantly adjusted its own posture under
the guidance of the resolved angle from visual guidance to achieve docking. As the AUV
continued to approach the docking station, the pixel deviation obtained in the horizontal
direction gradually increased, as shown by the increasing trend in the angle curve in the
graph, which aligns with the actual situation.
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However, task five did not result in successful docking, as the AUV grazed past the
right side of the base station due to reverse flow in the Qing River during the task. At
the moment of switching from acoustic to visual guidance, the AUV’s heading angle was
approximately 15.6◦, whereas during successful docking tasks, the heading angle at the
time of the switch was generally within 10◦. This indicates that during task four, at the
beginning of visual guidance, the AUV deviated significantly from the axis of the base
station, and the AUV motion control system did not have sufficient time to adjust, resulting
in the missed docking and failure. The variation in heading angle for task five is depicted
in Figure 17.
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4. Discussion

This study presents research on AUV-based particle-filter-based navigation and vi-
sual denoising for docking positioning. We address the issue of area noise interference
commonly encountered during underwater docking. Specifically, we propose a solution
for irregular ambient light interference based on threshold segmentation and proportional
circle selection, and experimentally validate the method using actual docking image data.
These proposed methods effectively eliminate errors caused by lens bubbles and reflections
from the docking station. We also investigate a monocular-vision-based visual guidance
algorithm and verify its effectiveness through precision validation experiments. Addi-
tionally, we explore a particle-filter fusion positioning framework that integrates GPS,
electronic compass, and DVL data, and conduct simulation validation in the ROS and
Gazebo environments. The simulation results show that the fusion positioning method
improves positioning accuracy by over 56% compared to standalone methods. Subse-
quently, we conducted comprehensive lake trials in the Qingjiang River. During visual
guidance experiments, we achieved successful docking in four out of five attempts. Even
in the unsuccessful docking task, the positioning data remained reasonable. The control
effectiveness was actually disrupted by underwater currents, but the positioning data
accurately reflected the real conditions.

The visual guidance experiments conducted in this study revealed the significant
influence of water quality and ambient light on the visual range. Future improvements
could involve the use of cameras with enhanced sensitivity to extend the visual range.
The fish-eye lens, with its larger field of view, can be further studied for its application in
underwater docking in our future work.
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