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Abstract: The accurate prediction of drift trajectories holds paramount significance for disaster
response and navigational safety. The future positions of underwater drifters in the ocean are closely
related to their historical drift patterns. Additionally, leveraging the complex dependencies between
drift trajectories and ocean currents can enhance the accuracy of predictions. Building upon this
foundation, we propose a Transformer model based on double-branch adaptive span attention
(DBASformer), aimed at capturing the multivariate time-series relationships within drift history
data and predicting drift trajectories in future periods. DBASformer can predict drift trajectories
more accurately. The proposed adaptive span attention mechanism exhibits enhanced flexibility in
the computation of attention weights, and the double-branch attention structure can capture the
cross-time and cross-dimension dependencies in the sequences. Finally, our method was evaluated
using datasets containing buoy data with ocean current velocities and Autonomous Underwater
Vehicle (AUV) data. The raw data underwent cleaning and alignment processes. Comparative results
with five alternative methods demonstrate that DBASformer improves prediction accuracy.

Keywords: drift trajectory prediction; transformer; attention mechanism; multidimensional series;
buoy trajectory data

1. Introduction

With the evolution of ocean exploration processes, researchers have increasingly
focused their attention on the drifting phenomena in the ocean. Drift includes not only nat-
ural elements such as animals and plants, but also artificial entities including buoys, ships,
and Autonomous Underwater Vehicles (AUVs). Understanding and predicting these drift
trajectories significantly affect marine ecology, resource management, disaster response,
and navigation safety [1]. When an underwater object is lost, the trajectory prediction
can help personnel take timely remedial actions. There are fewer studies on underwater
drifters. Underwater drifters are affected by currents due to their size and shape. Klein [2]
noted that it is an effect that must be considered during dead reckoning, and numerical
modeling is used to obtain an estimate of this effect. Previous trajectory-prediction research
has been based on the method of numerical simulation [3–5], but these methods cannot
effectively address long-term continuous prediction problems. Nowadays, methods based
on deep learning exhibit stronger applicability and computational efficiency in trajectory
prediction [6–9], mainly because they are data-driven. The task of drift trajectory prediction
is typically defined as predicting the trajectory within a future period based on a series of
historical drift data. Drift trajectory data commonly contain information about the position
of drifters over time. Throughout drift, currents also fluctuate. The direction and velocity
of the current influence the trajectory of the drifters [2].
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The position of underwater drifters continuously changes over time, with the speed of
currents determining the rate of this change. In this case, we are faced with the challeng-
ing task of effectively capturing both the temporal characteristics of underwater drifters’
positions and the influence of currents. Conventional memory models may struggle to
effectively capture these dynamic features [7]. Transformer is a deep learning model based
on an attention mechanism, consisting of an encoder and a decoder, capable of processing
and computing data in parallel. The Transformer has been used for trajectory prediction
with great success [8–11] due to the Transformer’s ability to capture long-term depen-
dencies from its distinctive architectural design and attention mechanism. The attention
mechanism maps the input into three different spaces: query, key, and value. It calculates
the similarity between a query and a set of keys and uses this similarity to weigh the
corresponding values. This process enables the model to dynamically focus on different
pieces of information. In the Transformer framework, pivotal feature extraction can be
attained through the design of diverse forms of attention mechanisms, thereby enhancing
prediction accuracy. Particularly, the lookback window of the historical series is crucial for
generating accurate forecasts. Therefore, the problem of choosing the size of the attention
span is not negligible when capturing local information; inadequately setting the span size
may result in the dissolution of implicit sequence dependencies.

To address the above problems, we propose a drift-trajectory-prediction Transformer
model based on a double-branch adaptive span attention mechanism, named DBASformer,
which employs novel attention to capture complex dependencies between multivariate
sequences of drift trajectories. The novel attention mechanism consists of two parts: adap-
tive span attention and double-branch attention, which aim to enhance attention flexibility
using learnable spans. The double-branch attention structure enhances the model’s feature
extraction capability while capturing both cross-time and cross-dimension dependency
within multivariate sequences. DBASformer can effectively reveal the temporal characteris-
tics of drift trajectories and the effect of currents, thus achieving more accurate and efficient
prediction of underwater drifters’ trajectories.

The contributions of our work are summarized as follows:

• Successfully applying the DBASformer model to the prediction of drift trajectories
in the ocean, fully considering the effect of current velocity on drift. Experiments
conducted on real datasets strongly confirm the efficacy of DBASformer in enhancing
prediction accuracy.

• A novel adaptive span attention is proposed. The proposal aims to improve attention
flexibility by using a learnable attention span. This approach enables a more flexible
distribution of accurate attention weights.

• A double-branch attention structure is developed to effectively integrate sequence
information into the model. This improvement enhances the model’s understanding
of the relationships between the components in the input sequence, thereby improving
its capability to extract multidimensional features.

The rest of this paper is organized as follows: Section 2 describes the problem definition
and related work, reviewing and summarizing previous research results. The proposed
methodology is described in detail in Section 3. Section 4 describes the work conducted in
the experimental phase and analyzes the experimental results. Section 5 further discusses
the contribution of this paper and future work.

2. Related Work

In previous drift-trajectory-prediction tasks, historical drift trajectories and variables
influencing the drift are used as the basis for prediction. These historical data can form
sequences that change over time. Assuming there are d variables influencing the drift, these
variables form a multidimensional sequence Z1:t0+τ ,d, and historical trajectory sequences
are defined as X1:t0 . We use these sequences to predict the trajectory of drifters Xt0 :t0+τ

within the next period τ. Additionally, a natural assumption is that the variables are
correlated, which helps improve prediction accuracy. Formally, this can be achieved by
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decomposing the probability over the period into the product of conditional probabilities
at each time point:

p
(

Xt0 :t0+τ | X1:t0 , Z1:t0+τ ,d
)
=

t0+τ

∏
t=t0+1

p(Xt | X1:t−1, Z1:t,d), (1)

where p represents a probability function, Xt is the position state of the drifter at time t,
X1:t−1 is the trajectory sequences before time t, and Z1:t,d is the multidimensional variables
sequence at time t and before.

Drift trajectory prediction needs to take into account the temporal characteristics of
historical data. Building upon existing trajectory-prediction methodologies, numerous re-
searchers have trained neural network models to predict future positions. Zhou et al. [12]
employed a back-propagation neural network approach to predict ship trajectories by learn-
ing the observations of ships. Xu et al. [13] introduced an improved complex-valued neural
network to predict the drift positions of the buoys, and experimental results corroborated that
the neural network effectively mitigates errors stemming from coordinate transformations.

Due to the typical time series characteristics inherent in trajectory sequences, the pre-
cision of trajectory prediction is constantly improved with the advancement of neural
network technologies. Researchers continue to improve neural network architectures
to adapt to the specificity of the trajectory-prediction task [14–16]. Nguyen et al. [17]
proposed a novel neural network for predicting the trajectories of ships. The network
uses data streams containing coordinates to extract the movement patterns of the vessels.
Capobianco et al. [18] employed a Recurrent Neural Network (RNN) to predict the future
trajectories of ships, training the model based on historical observations. RNNs excel in cor-
relating contextual information along the temporal axis [19] yet encounter challenges such
as vanishing gradients or explosion with prolonged sequence information. The Long Short-
Term Memory (LSTM) network cleverly mitigates the challenges posed by this long-term
dependency by utilizing a complex gating mechanism [20]. Venskus et al. [21] proposed a
novel unsupervised trajectory-prediction method that focuses on learning and capturing
the temporal patterns of ship trajectories. Yang et al. [6] introduced a method for predicting
ship trajectories through AIS data denoising and employing a bidirectional LSTM model, re-
sulting in substantial error reduction in long-distance ship trajectory prediction. Li et al. [7]
addressed the problem of long-distance trajectory prediction by designing a hybrid CNN-
LSTM neural network model, effectively addressing delay issues in multi-AUV formations.
This model leverages time-series attributes from the formation leader’s historical trajectory
data to predict the short-term trajectories of subsequent AUVs. While LSTM networks
excel in sequence prediction, they lack the ability to process time series data in parallel
and easily forget previously extracted meaningful information, thereby presenting clear
limitations in addressing multidimensional long sequence problems.

The attention mechanism enhances the neural network to pay attention to specific
parts of the input data [22], which facilitates the neural network to dynamically attend
to key features under different behaviors in multidimensional trajectory data. The stan-
dard attention mechanism enables parallel data processing with refined sensory fields.
These advantages are beneficial for sequence modeling, particularly with time-series data,
where hidden subsequences often exhibit diverse forms of dependencies. Zeng et al. [23]
introduced a model for the drift prediction of buoys that combines ResNet-GRU with the
attention mechanism. By leveraging the weight allocation of GRU and the attention mecha-
nism, the model can utilize the latitude, longitude, tidal value, water velocity, and wind
speed as the inputs of the model feature, thereby accurately predicting the short-term drift
of the target. In recent years, the Transformer has made significant achievements in various
fields [24–30], largely because the attention mechanism plays a key role in the Transformer.
The extraction of local and dimensional features is paramount for sequence prediction,
wherein features of varying dimensions can complement one another. Recent studies
in trajectory prediction have introduced TrAISformer [10], which employs a probabilis-
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tic Transformer structure to discern intricate patterns in ship trajectories, enhancing the
model’s capability to capture features of multidimensional data through enhanced high-
dimensional sparse representations of AIS data. TRFM-LS [11] proposed a time-window
translational smoothing filtering method of AIS trajectory data to construct a fixed-step time
window. This model integrates LSTM to enhance the model to extract temporal features
and employs the attention mechanism to give more weight to the key information in the
input vectors, enhancing the model’s capacity to handle sequences of varying lengths.

The methods described above have the capability to generate future trajectory se-
quences based on historical ones. However, these methods are inefficient and have a lower
prediction accuracy when handling multivariate time series. This limitation arises from
the models’ insufficient flexibility in extracting multidimensional features to capture the
complex dependencies in the sequences.

3. Methods

This section introduces the DBASformer model for drift trajectory prediction, incor-
porating the proposed double-branch adaptive span attention mechanism. In Section 3.1,
the overall framework of DBASformer is delineated. Section 3.2 offers a comprehensive de-
scription of the proposed adaptive span attention mechanism and proposes a new masking
function to enhance the flexibility of attention. Section 3.3 further explains the double-
branch attention structure and refines the computation of attention scores to capture both
temporal and dimensional features.

3.1. Framework

A drift trajectory sequence comprises multiple variables, and the proposed DBAS-
former model aims at capturing both the cross-time and cross-dimension dependency in
the multivariate sequences, thereby enhancing the accuracy of drift trajectory prediction.

In the DBASformer architecture, the encoder and decoder follow the canonical Trans-
former architecture [31]. The encoder is composed of multiple encoder blocks, each con-
sisting of an attention layer and Feedforward Networks (FFNs). In the attention layer,
we replace the traditional global attention mechanism with a double-branch adaptive
span attention mechanism. Similarly, the decoder is made up of multiple decoder blocks.
Each module includes a masked attention layer, a multihead attention layer, and FNNs.
In the masked attention layer, we employ a masked dual-branch adaptive span attention
mechanism instead of the original masked global attention. The multihead attention layer
computes cross-attention to integrate information from both the encoder and decoder. This
involves using the encoder’s output as the key and value, and the decoder’s previous
output as the query. The prediction layer generates predicted values based on potential
representations acquired through training. Figure 1 illustrates the framework diagram
of DBASformer. The proposed attention mechanism comprises two branches for extract-
ing temporal and dimensional features, respectively. The first branch conducts adaptive
span attention across the time steps within the same dimension, while the second branch
conducts adaptive span attention across multiple dimensions. The final attention score is
calculated through the weighted summation of the outputs from the two branches.

Inspired by Crossformer [32], we segment the input sequence into a series of parts
before embedding them as vectors. The data in each dimension are combined into segments
of length Lseg and then embedded via segments into a token independently:

xt,d → hi,d , (2)

where 1 ≤ i ≤ k, k = L/Lseg, 1 ≤ d ≤ D, xt,d is the data at t position in dimension d
sequence, hi,d is the segment at i position in dimension d with length Lseg, and L is the
length of the input sequence.
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Figure 1. Frameworkof DBASformer.

In sequential data, adjacent data points have similar attention weights, thereby offering
limited information regarding the value at a singular time step. This segmented embedding
primes the model for capturing multivariate time series relationships in subsequent steps by
furnishing a more structured representation of the model inputs, reflecting the correlation
and enhancing the computational efficiency of the model.

3.2. Adaptive Span Attention

In previous trajectory sequence prediction scenarios employing a canonical attention
mechanism, predicting all future time steps involved computing a weighted sum of the
entire historical sequence. This canonical cross-attention mechanism endeavors to compute
all possible key-value pairs. However, utilizing information from the entire sequence does
not necessarily improve prediction accuracy, but rather increases computational complexity.
This holds particularly true when dealing with time series data characterized by evolving
feature distributions, among which trajectory sequences are included.

Traditional global attention has O
(
n2) time and memory complexity, where n is the

length of the sequence, severely constraining the length of the input sequence. Despite
the use of segmented embedding, global attention demonstrates a notably low efficiency.
Relying solely on local attention can cause the loss of valuable information from distant
positions. Consequently, existing attention mechanisms exhibit inflexibility.

Figure 2 illustrates two attention patterns. In the global attention pattern, each token
computes attention with every other token. In the local attention pattern, each token only
computes attention with its neighboring tokens.

The attention layer is a key part of the Transformer network. For the attention head,
for a token located at position t within the sequence, the similarity with other tokens within
a historical range of w is calculated:

Scoretr = h⊤t,dW⊤
q (Wkhr,d), (3)
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where ht,d is the vector of the current token, h⊤t,d is the vector transpose, and hr,d is the
vectors of the other tokens in the range w. Wk and W⊤

q are the weight matrices of the key
and query, respectively.

Figure 2. Two attention patterns are depicted: white areas signify empty attention, light blue areas
represent low attention, and dark blue indicates high attention from each token to itself.

Subsequently, a softmax function is applied to these attention scores to derive the
resulting attention weights:

atr =
exp(Scoretr)

t−1
∑

p=t−w
exp

(
Scoretp

) , (4)

where exp( ) is the natural exponential function and is used for nonlinear transformation.
In DBASformer, the model adopts a multilayer structure. To enhance the model’s

flexibility in capturing local information in series, this paper proposes an adaptive mecha-
nism to regulate the attention span, enabling the attention heads to autonomously learn the
minimal required span. Specifically, a masking function with learnable parameters is added
to restrict the attention span during the computation of attention weights. In this masking
function, the hard 0/1 masking probability is replaced with a soft masking probability
that aims to interpolate the distance between the history token and the target between
[0, 1]. Moreover, the adaptive span S is a trainable parameter in the masking function,
and different mask matrices can be generated according to the varying span S, thereby
assigning zero probability to irrelevant information. Throughout model training, the span
S is automatically fine-tuned by the optimizer to minimize the loss function. Specifically,
the adaptive span S does not increase but only decreases by 1 segment length unit at a time.

The masking function is defined as a piecewise function, wherein the soft mask
component is specified as a sigmoid-like function. The function is expressed by the follow-
ing formula:

M(ltr) =

{
1

1+exp(ltr/S−1) , ltr ≤ S
0 , ltr > S,

(5)

where ltr is the distance between position r and the current position t in the sequence, and
S is the adaptive span of attention.

Then, compute the attention weights based on an adaptive span:

atr =
M(t − r)exp(Scoretr)

t−1
∑

p=t−s
M(t − p) exp

(
Scoretp

) , (6)

where s is the attention span and M(t − p) is the masking probability at position p.
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Finally, the attention weight outputs from different heads are concatenated for the
next computation.

Traditional attention mechanisms compute attention scores over a fixed range, but cer-
tain information within this range may lack relevance. Adaptive span attention improves
the flexibility of the attention mechanism through a novel masking function. Following
computing the attention scores within the original range, the model automatically retains
a certain range of attention scores for computing attention weights during the training
phase. This process aims to maximize the retention of useful information while mitigating
the influence of irrelevant or noisy data. This dynamic methodology enables the model to
capture critical features with greater precision.

3.3. Double-Branch Attention

Drift trajectories are the result of a combination of influences. In the case of drift data
featuring multivariate variables, numerous variables exhibit temporal interdependence
or correlation. It is worth noting that neighboring trajectory points exhibit higher corre-
lations during temporal changes, and alterations in the characteristics of other variables
can improve the accuracy of predicting the current trajectory point. In summary, univari-
ate sequences display temporal dependence, whereas multivariate variables demonstrate
dimensional dependence. Building upon this observation, double-branch attention is in-
troduced, which is a pivotal difference from existing methods. As illustrated in Figure 3,
the two branches operate concurrently, with one capturing the cross-time dependency
of sequences while the other focuses on the cross-dimension dependency between differ-
ent variables.

Figure 3. Double-branch attention mechanism: yellow represents the drift trajectory, green and blue
represent the variables that affect the drift.

Temporal attention module: Time series data are usually considered to be generated
from a conditional distribution of historical values, wherein adjacent data points have
similar values. Thus, utilizing the dependencies between periods in the same dimension
can help in calculating the attention weight of tokens. However, employing the global
attention mechanism directly on the embedding vector Z ∈ RK×D will result in a secondary
computational complexity (O

(
K2) memory usage) when computing the attention scores

between each pair of segments.
The temporal attention module is based on adaptive span attention, which considers

the correlation of sequence data during temporal evolution. Meanwhile, adaptive span
attention permits the computation of similarity solely between tokens within the attention
span. Calculating the attention score by applying the following formula:

Scoretime
ij = h⊤i,dW⊤

q

(
Wkhj,d

)
, (7)

where hi,d is the vector of tokens at the current position and hj,d is the vector of other tokens
in the same dimension in the span.
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Unlike global attention, the temporal attention module focuses on localized regions in
the same dimension (Figure 4), and the range of attention is determined by the adaptive
attention span. The temporal attention module measures the importance of data points
by relative time during modeling sequences, thereby effectively capturing the temporal
relevance of sequences and rationally allocating attention weights.

(a)

(b)

Figure 4. Forms of temporal attention: (a) high span and (b) low span, dashed line represents the
range of attention, yellow indicates the historical token, and orange represents the current position
within the token.

Dimensional attention module: Previous studies [33–36] have demonstrated the cor-
relation among sequences of different variables within the same process during changes,
which serves as a foundation for predicting future periods. Due to variations in the degrees
of redundancy or potential conflicts within different sequences, it is unwise to directly
splice and fuse the multidimensional information. The existence of complex relationships
between multiple variables cannot be ignored in the task of predicting drift trajectories.

The proposed double-branch attention structure incorporates dimensional attention
branching to thoroughly leverage the interdependencies among different variables. When
conducting dimensional attention, adaptive span attention is employed on the vector
Z ∈ RK×D, wherein the range of targets is dictated by the attention span. Notably, this
attention span is still divided according to the time-step relationship (Figure 5) to compute
the similarity between tokens in different dimensions:

Scoredim
ij = h⊤i,d1

W⊤
q

(
Wkhj,d2

)
, (8)

where d1,d2 are different dimensions, and hj,d2 denotes other tokens with different dimen-
sions than the one in which hi,d1 is located.

Lastly, the weighted sum of Scoretime
ij and Scoredim

ij is calculated:

Scoreij = wtime Scoretime
ij + wdim Scoredim

ij , (9)

where wtime and wdim are the weights of the two forms of attention, which are updated
following the model learning.

Then, compute the attention weights based on the adaptive span:
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aij =
M(i − j)exp

(
Scoreij

)
i−1
∑

p=i−s
M(i − p) exp

(
Scoreip

) , (10)

The dimensional attention module calculates the correlation among different dimen-
sional tokens, thereby improving the model’s capability to extract multidimensional fea-
tures. In contrast to previous methods, the double-branch attention mechanism distin-
guishes between temporal and dimensional correlations during attention weight com-
putation. Tokens within the same dimension are assigned higher weights for temporal
correlation, while tokens across different dimensions are given higher weights for di-
mensional correlation. The weighted summation approach can combine temporal and
dimensional attention scores to utilize information from both in a balanced way, resulting
in a more comprehensive and accurate attention score.

(a)

(b)

Figure 5. Forms of dimensional attention: (a) high span and (b) low span, dashed line represents
the range of attention, yellow indicates historical token in the same dimension as orange, green
represents token from another dimension, red indicates token that is not included in the attention
calculation.

4. Experiments

This section comprises the following components: dataset preparation, experimental
hyperparameters setting, selection of evaluation metrics, experiments of the proposed
method, and comparison experiments. The drift trajectory dataset and the underwater
vehicle dataset presented in this section are grounded in realistic scenarios. Furthermore,
this section presents the performance of DBASformer on these two datasets, along with
comparative results against existing trajectory-prediction methods, aiming to demonstrate
that the proposed method can improve prediction accuracy.

4.1. Dataset Preparation

To ensure the predictive ability of the model, we fully considered the typical rep-
resentatives of drifters in the ocean, ultimately opting to use the trajectories of drifting
buoys and AUVs as the experimental data. The motions of buoys and AUVs are affected
by the currents. The motion trajectory data encompass time, longitude, and latitude,
with the experimental dataset additionally incorporating current flow rate information.
The drift trajectories of buoys were acquired from the Argo buoy metadata available at
the Global Data Assembly Center (GDAC) [37]. Argo buoys are deployed at a depth of
around 1000 m. The AUVs dataset was sourced from the BCO-DMO website [38], and the
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data of AUVs originate from their drifting processes at depths ranging from 1 to 30 m.
The dataset for the buoys comprises Argo buoy trajectory data spanning from January
2004 to June 2023. The raw dataset primarily includes variables such as the buoy’s ID,
timestamp, longitude, latitude, current flow rate, and Quality Control (QC) flags. Multiple
trajectory sequences can be distinguished based on the ID. Specifically, We select data with
a time interval of 10 min, and QC flags are categorized into metadata and interpolation
depending on the type of data. The quality of buoy trajectory sequences is assessed based
on the QC flags, and sequences ranked in the top 70% are chosen as the experimental
data. As shown in Table 1, the experimental data includes four parameters: time, latitude,
longitude, and ocean current velocity.

Table 1. Parameters of buoy data.

Time Lat (◦) Lon (◦) Velocity (m/s)

3 January 2016 01:10:00 41.571 −67.039 0.169206

Regarding the underwater vehicle dataset, we established a time interval of 3 min in
data and conducted data cleaning to remove redundant values and outliers. The region of
interest is a rectangle from (36.8338◦, −121.828◦) to (36.7837◦, −121.888◦). Linear interpola-
tion was employed to impute missing data at certain time points, ensuring the preservation
of valuable information to the fullest extent possible. Similarly, the experimental data of
AUVs include four parameters: time, latitude, longitude, and current velocity.

The dataset is indexed in chronological order and divided into training, validation,
and test sets in the ratio of 8:1:1. This division ensures that the models are trained on a
substantial portion of the data while also being validated and tested on unseen samples,
thereby maintaining the integrity of the evaluation process.

4.2. Experimental Hyperparameters Setting

The DBASformer model proposed in this study is implemented using PyTorch. In the
primary experiments, we employ the DBASformer architecture with four encoder blocks
and decoder blocks. The input lengths are selected from {64, 128, 192, 256, 320} based on
the varying time intervals of the data. The time interval of buoy trajectory data is 10 min,
and the length L of the input buoy historical trajectory sequence is set to 128. The time
length of input buoy data is 1280 min. As the time interval of AUV trajectory data is
3 min, the length L of the input AUV historical trajectory sequence is set to 256. The time
length of input AUV data is 768 min. Their prediction length τ is set to 32, and longer
prediction lengths reduce prediction accuracy. So, we predict the buoy drift trajectory for
the next 320 min and the AUV drift trajectory for the next 96 min. The segment length Lseg
is set to four. The predetermined attention span size S is set to 16. The Adam optimizer
is utilized for training DBASformer, with the initial learning rate selected from {5 × 10−3,
5 × 10−4, 5 × 10−5, 1 × 10−5} and updated using the Cosine Annealing Scheme throughout
the training procedure. The total number of epochs is configured as 20, and this value can
be adjusted accordingly based on the training speed.

Table 2 illustrates the computer configurations necessary for conducting the exper-
iments. It is ensured that all experiments in this paper are conducted under identical
hardware and software environments to maintain comparability and fairness.

Table 2. Experimental environment.

Name Content

Compiler Pycharm
Processor Intel Xeon Gold 6238R 2.2 GHz

RAM 32 G
GPU NVIDIA GeForce RTX 3090

Operating System Linux
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4.3. Evaluation Indicators and Comparative Models

Prediction accuracy is evaluated by computing the Mean Square Error (MSE) and Mean
Absolute Error (MAE) between the predicted trajectory data ŷi and the actual trajectory
data yi:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2, (11)

MAE =
1
n

n

∑
i=1

|ŷi − yi|. (12)

This paper compares DBASformer with five trajectory-prediction approaches. We
evaluated the performance of the original model from the reference paper on our synthetic
dataset, adopting the hyperparameters recommended in the original paper, such as the
number of layers and batch size, to approximate the model’s optimal performance. All
models have the same input length and output length. The following is a brief description
of the compared models:

BiLSTM [6]: This model comprises two bidirectional LSTM layers, totaling four LSTM
units. The hidden layer includes an LSTM layer. The input vector contains all the features,
propagated through the BiLSTM layer to obtain the output.

CNN-LSTM [7]: This model integrates CNN and LSTM through a tandem structure.
The CNN module contains convolutional, BatchNorm, Dropout, Extension, and fully
connected layers, while the LSTM module contains two LSTM layers.

RGA [23]: This model contains a ResNet layer, a fully connected layer, two GRU layers,
an attention layer, and an output layer. Notably, a 2D convolutional layer forms the core
of the residual block, while the hidden state from the second GRU layer is utilized as the
input to the attention mechanism.

TrAISformer [10]: This model adopts a Transformer architecture similar to GPT.
The Transformer network consists of a series of stacked attention layers, with each layer
functioning as an autoregressive model and employing a dot-product multihead atten-
tion mechanism.

TRFM-LS [11]: compared with the traditional Transformer structure, the output after
the LSTM processing sequence is added as the input of the decoder.

4.4. Experimental Results

To validate the accuracy of the predicted trajectories generated by DBASformer, trajec-
tory data from buoys and AUVs were used to train and test the network model. By compar-
ing the model prediction results to the actual trajectories, accuracy is evaluated based on
proximity to the real trajectories. The experimental results show that DBASformer achieves
good prediction results in trajectory sequence prediction and exhibits practical efficacy.
Moreover, compared to alternative models, DBASformer achieves a higher prediction
accuracy. Table 3 presents the MSE and MAE of DBASformer’s prediction results along
with those of each comparative model on the synthetic dataset.

DBASformer effectively improves the prediction accuracy of the trajectory sequence.
As depicted in Table 3, DBASformer exhibits smaller error values compared to all compari-
son models. The MSE for predicting the buoy trajectory is 0.1539, with an MAE of 0.1151.
The MSE of predicting the AUV trajectories is 0.1708, with an MAE of 0.1415.

For a clearer and more intuitive display of the prediction results, we present plots of
predicted and true values for the same period. The trajectory curves constitute a crucial
foundation for evaluating the quality of the predictions. Before generating the curve, we
perform Min–Max Normalization for the predicted and true values. This visual representa-
tion enables a more intuitive assessment of the prediction accuracy.

The performance of each model on the buoy trajectory dataset is illustrated in
Figures 6–11, where DBASformer has the best curve fit between the true and predicted
values. Based on these results, the poor performance of the other models is due to the
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complexity of the dataset, which includes multiple variables. Some models may struggle to
capture multidimensional features effectively, thus reducing the predictive efficacy. This
observation reflects the capability of the trajectory-prediction method proposed in this
study to address this challenge.

Table 3. Errors in predicting buoy and AUV trajectories by different models.

Model Metric Buoy AUV

BiLSTM MSE 1.2731 0.9621
MAE 0.6285 0.5546

CNN-LSTM MSE 0.4318 0.2381
MAE 0.5165 0.2794

RGA MSE 0.9306 1.3861
MAE 0.6731 1.4559

TrAISformer MSE 0.2172 0.3235
MAE 0.3049 0.3191

TRFM-LS MSE 0.3270 0.4145
MAE 0.3619 0.4633

DBASformer MSE 0.1539 0.1708
MAE 0.1151 0.1415

(a) (b)

Figure 6. The results of the BiLSTM model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.

(a) (b)

Figure 7. The results of the CNN-LSTM model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.
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(a) (b)

Figure 8. The results of the RGA model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.

(a) (b)

Figure 9. The results of the TrAISformer model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.

(a) (b)

Figure 10. The results of the TRFM-LS model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.
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(a) (b)

Figure 11. The results of the DBASformer model predicting latitude and longitude for buoy trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.

Furthermore, DBASformer was utilized to predict AUV trajectories in order to evaluate
its performance across another dataset.

As depicted in Figure 12, DBASformer also captures the trajectory trend of the
AUV data.

(a) (b)

Figure 12. The results of DBASformer model predicting latitude and longitude for AUV trajectory:
(a) illustrates the prediction of latitude over the period and (b) illustrates the prediction of longitude
over the period.

In the proposed method, comprising adaptive span attention (ASA) and double-branch
attention (DBA), we used the Transformer as a baseline to evaluate their performance.
DBASformer represents the comprehensive model encompassing both ASA and DBA.
Figures 13 and 14 present the MSE and MAE of the predictive outcomes of models incor-
porating various components, respectively. The prediction errors of models incorporating
components are consistently lower than those of the Transformer baseline. Specifically,
the MSE stands at 0.5177 for the Transformer, 0.2674 for ASA alone, and 0.2326 for DBA
alone. DBASformer contains both ASA and DBA, with an MSE of 0.1539.

The results of the version with DBA are significantly better than the baseline model,
which may be because the traditional Transformer inputs the data as 1D, ignoring cross-
dimensional dependencies in the sequence. This suggests that our addition of attention
branching can capture correlations between different variables.

Replacing ASA within the Transformer framework leads to a substantial reduction
in prediction error. Unlike the fixed-width traditional attention mechanism, ASA offers
enhanced flexibility in accurately distributing attention weights based on the data, thus
justifying the incorporation of a learnable attention span for capturing pivotal features. The
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integration of ASA and DBA yields the lowest prediction error, highlighting the efficacy of
the proposed approach in managing multivariate sequential data.

Figure 13. MSE of prediction on the buoy dataset.

Figure 14. MAE of prediction on the buoy dataset.

The effect of hyperparameter input length on the buoy dataset was evaluated. In
Figure 15, we prolong the segment length from 64 to 320 and evaluate the MSE with
different models. For most models, the best results are obtained when the input length is
128. Additionally, prolonging the input length from 128 to 320 causes the MSE to increase.

Figure 15. MSE with different input lengths on the buoy dataset.
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5. Conclusions

This study presents a novel model, named DBASfomer, designed for predicting the
trajectory of underwater drifters in the ocean. DBASfome captures the changing char-
acteristics of trajectories and currents, utilizing them to forecast future drift trajectories,
consequently leading to a substantial reduction in prediction errors. The proposed adaptive
span attention mechanism, along with the double-branch attention structure, exhibits the
capability to learn complex dependencies in multivariate drift trajectory sequences. Buoy
datasets containing trajectory and current velocity information, alongside AUV datasets,
are collated from raw real data and employed to evaluate the model. The experimen-
tal results show that the prediction accuracy of DBASformer is better than the existing
trajectory-prediction methods. The MSE and MAE for predicting buoy trajectory data
stand at 0.1539 and 0.1151, respectively, considerably lower than comparative models.
Furthermore, the model performs well on the underwater vehicle dataset, achieving MSE
and MAE values of 0.1708 and 0.1415, respectively. To validate the efficacy of all compo-
nents in the proposed method, the prediction errors of DBASformer are compared with the
Transformer, ASA only, and DBA only. The results show that the prediction errors of the
models containing components are all lower than the Transformer. In the future, we will
optimize the model for various drift motion patterns, introduce more variables to predict
drift trajectories, and increase the practical application value of DBASformer.
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