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Abstract: The aim of this study is to address the trajectory-tracking control problem of benthic
autonomous underwater vehicles (AUVs) subjected to model uncertainties and extra disturbance. In
order to estimate lumped uncertainties and reconstruction speed information, this paper designs a
robust prescribed-time extended state observer (RPTESO), and its prescribed time can be directly
designed as an explicit parameter, without relying on the initial state of the system and complex
parameter settings. In addition, an adaptive law is designed to improve the robustness of RPTSEO and
reduce overshoot on the premise of ensuring convergence speed. Then, a non-singular robust practical
predefined-time sliding mode control (RPPSMC) considering the hydrodynamic characteristics of
AUV is designed, and the predefined time can be directly set by an explicit parameter. The RPPSMC
is designed based on the lumped uncertainties estimated using RPTESO, so as to improve the
control accuracy of the controller in a complex environment. Theoretical analysis and simulations
demonstrated the effectiveness and superiority of the proposed method.

Keywords: autonomous underwater vehicles; trajectory-tracking control; prescribed-time control;
adaptive control; sliding mode control; predefined-time control

1. Introduction

In recent years, AUVs have been widely used in the field of marine science with
their unmanned and intelligent advantages. As an indispensable key technology of AUVs,
trajectory-tracking control has become a research hotspot at present [1,2]. However, in
the process of the trajectory-tracking control of the AUV, the model uncertainty of the
AUV and various complex external disturbances pose significant challenges to the design
of the controller [3,4]. Therefore, determining whether the designed controller can more
accurately estimate and compensate for the influence of model uncertainty and complex
interference is crucial for improving the control effect. To achieve this goal, many scholars
use disturbance observers to estimate it, and implement the estimation results into the
designed controller for compensation [5]. When an AUV is moving underwater, the position
and speed information are provided via inertial navigation and a Doppler velocimeter, as it
cannot receive GPS signals. However, when the attitude of the AUV changes dramatically
due to extra disturbance, or the distance from the seabed is too high to exceed the effective
measurement range of DVL, the position and velocity information output via inertial
navigation will have a certain deviation [6,7], which is very unfavorable for trajectory-
tracking control. Therefore, it is necessary to reconstruct velocity information and observe
the disturbance information of the AUV system. In this context, extended state observers
(ESOs) have been proposed by some scholars to estimate lumped uncertainties of a system
by considering model uncertainties and external disturbance as a whole [8,9]. In many
tasks, ESO is used to estimate various required state variables of the AUV as a supplement
to related sensors, or directly as a data source for key information.
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Regarding the control method of the AUV, fast control is more meaningful for the
requirements of navigation safety. Some scholars first constructed linear and nonlinear ESO
and proved that they have the characteristics of gradual convergence in theory. However,
their shortcomings included peaking phenomenon and long convergence time [10,11].
Furthermore, finite-time ESOs have been studied [12,13]. However, it is difficult to prove
the convergence time because the initial conditions may not be available. To avoid the limi-
tation of the initial conditions of the system, scholars have studied fixed-time theory [14,15].
However, the upper limit of the convergence time is related to complex parameter selection.
Simultaneously, whether it is finite-time or fixed-time ESO, the set time parameter is only
a conservative upper limit, and this upper limit cannot be set at will according to the
requirements. It needs to be set on the premise of stability proof, and the final upper limit of
convergence time is determined by polynomials containing more parameters. This cannot
satisfy some trajectory-tracking tasks of the AUV, which has strict requirements for con-
vergence time [16]. Therefore, scholars have further proposed the prescribed-time theory,
in which the predicted convergence time directly appears as an independent parameter
in the designed control algorithm and is set at will according to the task needs [17]. Some
scholars studied the state observer with prescribed time and improved the convergence
speed on the premise of ensuring observation accuracy. They proposed a new prescribed-
time observer for a linear system, but only proved the stability of the system within the
prescribed time and did not analyze the stability of the system state after the prescribed
time [18]. Additionally, a distributed prescribed-time observer for a feedback nonlinear
system was designed, and its observation error was bounded [19]. It should be noted that
the aforementioned observers only observe the state, which is not sufficient for an AUV.
To solve this problem, a prescribed-time ESO (PTESO) is proposed to estimate the state
and disturbance simultaneously [20]. However, the process of adjusting the parameters is
very complicated, which is not conducive to engineering applications. In order to simplify
the parameter design process, ref. [21] proposed the PTESO with an adaptive law based
on prescribed performance function (PPF) for estimating the state of the USV. However, if
the state vector of the AUV breaks through the boundary of the PPF, the control system
may collapse. Presently, there are few reports on the application of the PTESO to AUVs.
Therefore, the ability to study the PTESO without complex parameter selection to observe
unknown disturbances and velocity information is of great significance.

In the trajectory-tracking control of AUVs, the significance of the observer is to esti-
mate unknown disturbances and some state quantities, and input them into the trajectory-
tracking controller to improve the control accuracy. Among the many studies on trajectory-
tracking control methods for AUVs, SMC has been widely studied because of its advan-
tages of finite-time convergence, robustness, and insensitivity to uncertainties caused by
externally bounded disturbances and parameter changes [22,23]. To make the controller
converge quickly, scholars continue to improve the SMC method through combining the
finite-time [24], fixed-time [25] and prescribed-time [26] theories. The disadvantages of
fixed-time and finite-time theory are the same as above. Additionally, it is not appropriate
to design a SMC based on prescribed-time theory because it does not consider the dynamic
and kinematic characteristics of AUVs [27].

Considering the abovementioned reasons, a new type of control theory called the
predefined-time theory was proposed [27]. As an explicit parameter, the settling time is
the reciprocal of the gain, and the actual convergence time is not much earlier than the set
time, which can be used more widely. Researchers have combined SMC technology with
predefined-time theory for different control objects. An explicit parameter was designed
for a higher-order integral system to ensure that the system converges at a time which
can be chosen advanced [28]. A SMC which is predefined-time stable was proposed to
improve the robustness of the robot arm [29]. However, because the sign function is used
in common controller designs, the classic chattering problem appears, which affects the
actual control effect [30]. Simultaneously, according to our investigation, research on the
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predefined-time SMC method for AUV is rarely mentioned. Therefore, it is important to
continue studying a predefined-time SMC method which can alleviate chattering.

In summary, this study aims to address the trajectory-tracking problem of AUV
recovery with model uncertainty and external interference. First, based on the prescribed-
time theory, we designed an ESO to observe the velocity and external disturbance, and
designed an adaptive law to enhance the robustness of the observer. The observation
results were used to compensate for the designed predefined-time SMC trajectory-tracking
controller to further improve the robustness under a complex environment. Theoretical
stability proofs under the Lyapunov function were provided. Finally, the proposed scheme
was compared with several existing schemes using a numerical simulation. The results
show that the proposed trajectory-tracking controller exhibits a good performance.

The main contributions of this study focus on the following three aspects:

1. A new RPTESO was proposed to observe the AUV states and lumped disturbances,
and its conservative upper bound of convergence time can be directly designed as only
one explicit parameter, regardless of the initial state. An adaptive law was proposed
to effectively enhance the robustness of the observer.

2. Considering the dynamic and kinematic characteristics of AUV, a new RPPSMC
method was proposed. Additionally, it was proven that the sliding mode surface and
the RPPSMC is predefined-time stable. A new control scheme with strong robustness
was designed in combination with RPTESO.

3. Compared with some existing AUV trajectory-tracking control systems such as those
that are based on finite-time and fixed-time theories, the proposed control scheme
does not require a complicated parameter adjustment process and can flexibly adjust
the convergence time of the system according to the actual requirements.

The remainder of this paper is organized as follows. In Section 2, some prior knowl-
edge required in this study is introduced, and the AUV numerical model is provided along
with the control target. In Section 3, an RPTESO and an RPPSMC are proposed. In Section 4,
the stability of the control system is analyzed. In Section 5, numerical simulations and
comparative experiments are presented to verify the effectiveness and superiority of the
proposed method. The final section summarizes the study.

Notations 1. In brief, λmin(·) is the minimum eigenvalue of the matrix (·). λmax(·) is the
maximum eigenvalue of matrix (·). In ∈ Rn×n denotes the nth order identity matrix. ⌊x⌋α ≜
|x|αsign(x) with α > 0 and x ∈ R. sign(x) is a signum function.

2. Preliminaries and Problem Formulation
2.1. AUV Mathematical Model

In this section, the hydrodynamic model of a benthic AUV is analyzed [31]. The
coordinate system, as shown in Figure 1, is the earth-fixed coordinate system (E − xEyEzE)
and body-fixed coordinate system (O − xByBzB). η = [x, y, z, ϕ, θ, ψ]T denotes the position
and attitude in E− xEyEzE, v = [u, v, w, p, q, r]T denotes the velocities in O− xByBzB. Based
on the abovementioned definitions, the kinematic and kinetic equations can be expressed
as follows:

.
η = J(η)v, (1)

M
.
v + C(v)v + D(v)v + g(η) = τ + τE, (2)
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Figure 1. Coordinate systems of XH-3000.

In Equation (2), M = M + M̃, C(v) = C(v) + C̃(v), D(v) = D(v) + D̃(v) and g(η) =
g(η) + g̃(η). M, C(v), D(v) and g(η) are nominal parametric terms, whereas M̃, C̃(v), D̃(v)
and g̃(η) are uncertain terms. τE is the external disturbance. f is the lumped uncertainty
which is defined as f = −M̃

.
v − C̃(v)v − D̃(v)v − g̃(η) + τE. Equation (2) can be rewritten

as follows:
M

.
v + C(v)v + D(v)v + g(η) = τ + f, (3)

More details of Equations (1) and (2) can be referred in [31].

Remark 1. In the common AUV at present, the recovery moment in the roll is large, and it is
difficult to make it change greatly in the marine environment, so this paper ignores the roll motion.
The vectors related to AUV state contain other five degrees of freedom.

2.2. Preliminaries

Lemma 1 ([20]). For system
.
x = f (x, t), if the origin of the system is globally uniformly asymp-

totically stable and there exists a bounded function T : Rm → R+ ∪ {0} satisfying x(t, x0) =
0 when t ≥ T(x0), if the constant T can be prescribed, the system can converge in prescribed time T.

Lemma 2 ([32]). For system
.
x = f (x, t), there exists a Lyapunov function V(x) : Rn → R+U{0} sat-

isfying V(0) = 0 and V(x) > 0(∀x ̸= 0). If the derivative of V(x) satisfies

.
V ≤ − π

TCΥ
(V1−Υ

2
1 + V1+Υ

2
1 ) + Γ, (4)

where TC is the predefined time. 0 < Υ < 1, 0 ≤ Γ < ∞ are the constants. The system is called
predefined-time stable.

Lemma 3 ([33]). For any c > 0 and xi ≥ 0,

N

∑
i=1

xc
i ≥


(

N
∑

i=1
xi)

c

, 0 < c ≤ 1

N1−c(
N
∑

i=1
xi)

c

, c > 1
, (5)

Lemma 4 ([29]). For any c > 0, if positive numbers x1 and x2 satisfy x1 > 2x2 there exists

xc
1 − xc

2 ≥
{

(x1 − x2)
c, c > 1

(2c − 1)(x1 − x2)
c, 0 < c < 1

. (6)
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2.3. Control Objective

Considering the AUV numerical model, an RPTESO is proposed, which makes the
observation tracking error dynamics satisfy the prescribed-time stability expressed un-
der model uncertainty and external unknown disturbance. Additionally, we propose an
RPPSMC based on RPTESO whose tracking error can provide coverage to zero within a
predefined time.

3. Main Results

To realize fast tracking of the desired trajectory of the AUV under model perturbation
and environmental disturbance, the main results of this study were divided into two parts.
First, an RPTESO was designed, and then an RPPSMC was designed based on the observed
state variables. The control framework is illustrated in Figure 2.
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3.1. Design of RPTESO

Equation (3) suggests that the lumped uncertainty f will affect the accuracy of the AUV
trajectory-tracking control and it cannot be accurately measured. Therefore, a new RPTESO
was designed to observe f, and an adaptive law was designed to enhance the robustness of
RPTESO.

Assumption 1. The control input of AUV and its time derivative are bounded.

Assumption 2. The lumped uncertainty f satisfies ∥f∥ ≤ fmax, fmax is a positive constant.

Remark 2. The control input of AUV is mainly provided by two parts, the environmental distur-
bance and actuator. Because the energy of the marine environment is limited and the energy output
of the AUV actuator is also limited, the control input of the AUV is bounded. The unknown lumped
uncertainty f includes two parts: model uncertainty and external disturbance. The model term is
related to the velocity, because the v and

.
v are bounded, so the model uncertainty is bounded. Hence,

Assumption 1 and 2 are reasonable. In the common AUV at present, the recovery moment in the
roll is large, and it is difficult to make it change greatly in the marine environment, so this paper
ignores the roll motion.

To facilitate the following theoretical derivation, we define x1 = η and x2 =
.
η, and the

AUV numerical models Equations (1)–(3) can be rewritten as{ .
x1 = x2

.
x2 = N(x1, x2) + J(x1)M

−1
τ + ∆

, (7)

where
N(x1, x2) =

.
J(x1)J−1x2 + J(x1)M

−1
(C(x2)x2 + D(x2)x2 + g(x1)), (8)

∆ = J(x1)M
−1

τE, (9)
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where unknown f = N(x1, x2) + ∆. We define x3 = f; then, model Equation (7) can be
rewritten as 

.
x1 = x2

.
x2 = x3 + J(x1)M

−1
τ

.
x3 =

.
f

, (10)

To ensure the high convergence performance of ESO, we designed a monotonically
increasing function

Ξ(t) = csc2(
π

2
− πt

2t f
), (11)

where t is the system time. t f denotes the desired convergence time prescribed by the
designer. Ξ(t) satisfies Ξ(0) = 1 and Ξ(t f ) = +∞.

x̂i(i = 1, 2, 3) is defined as the estimation value of xi(i = 1, 2, 3). Then, the estimation
error is defined as e1 = x1 − x̂1, e2 = x2 − x̂2, and e3 = x3 − x̂3. The structure of PTESO for
the system Equation (10) can be constructed as

.
x̂1 = x̂2 + lΞ(t)g1e1 + (1 − l)k1K

1
3 ⌊e1⌋

2
3

.
x̂2 = x̂3 + J(x1)M

−1
τ + lΞ2(t)g2e1 + (1 − l)k2K

2
3 ⌊e1⌋

1
3

.
x̂3 = lΞ3(t)g3e1 + (1 − l)k3K⌊e1⌋0

, (12)

where K is a Lipschitz constant satisfying K > fmax, k1 = 3.34k3
1
3 , k2 = 5.3k3

2
3 [34].

gi(i = 1, 2, 3) are the positive coefficient. l is the time switch function defined as

l =

 1, t ∈
[
0, t f

)
0, t ∈

[
t f ,+∞

) , (13)

In the prescribed-time interval t ∈
[
0, t f

)
, the observer is guaranteed to converge using

the function Ξ(t). Then, the PTESO can maintain the error at the origin in t ∈
[
t f ,+∞

)
[34].

However, the marine environment is complex and changeable. To improve the robust-
ness of PTESO, an adaptive law Λ = diag{Λ1 . . . Λ5} is proposed based on e1. First, Λ

can be regarded as a gain coefficient. Λ should be designed as a positive term that always
increases, so as to ensure an effective convergence coefficient, and at the same time, A
should not be too large, otherwise it may lead to excessive overshoot and ultimately affect
the observer estimation effect. Λ is defined as

.
Λ = ϖe, (14)

ϖe = |e1 − Θsat(Θe1)|, (15)

where Θ is a positive gain coefficient. Subsequently, Equation (12) can be revised to obtain
RPTESO, which is designed as

.
x̂1 = x̂2 + l(ΛΞ(t)g1e1 + Λ−1

.
Λe1) + (1 − l)k1K

1
3 ⌊e1⌋

2
3 )

.
x̂2 = x̂3 + J(x1)M

−1
τ + lΛ2Ξ2(t)g2e1 + (1 − l)k2K

2
3 ⌊e1⌋

1
3

.
x̂3 = lΛ3Ξ3(t)g3e1 + (1 − l)k3K⌊e1⌋0

, (16)

3.2. Design of a Predefined-Time Sliding Mode Control

In some AUV trajectory-tracking control projects, the tracking error must converge
to the near-zero domain as soon as possible. Therefore, an RPPSMC is proposed based on
the RPTESO proposed in Section 3.1, which enables the AUV to track the expected trajec-
tory within an artificially predefined time under model uncertainties and environmental
disturbances.
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To track the desired trajectory of the AUV, we define the tracking error
x1e = [x1e1 , x1e2 , · · ·, x1en ] as

x1e = x1 − x1d, (17)

where x1d is the desired value of x1, and we design the predefined-time sliding mode
surface s as

s =
.
x1ei + Ψ(x1ei ), (18)

Ψ(x1ei ) =
π

T1µ1
(( 1

2 )
1− µ1

2 ⌊x1ei⌋
1−µ1 + n

µ1
2 ( 1

2 )
1+ µ1

2 ⌊x1ei⌋
1+µ1) + x1ei

i = 1, 2, · · ·, n
, (19)

The time derivative of Ψ(x1e) is defined as
.

Ψ(x1e,
.
x1e), satisfying

.
Ψ(x1e,

.
x1e) =

π
.
x1e

2T1µ1
((1 − µ1

2
)|x1e|−

µ1
2 + n

µ1
2 (

1
2
+

µ1

4
)|x1e|

µ1
2 ) +

.
x1e, (20)

where T1 is the predefined time and µ1 > 0 is a positive constant.

Theorem 1. For a positive constant ϑ. If ∥s∥2 ≤ ϑ, the s is predefined-time stable.

Proof of Theorem 1. When ∥s∥2 ≤ ϑ, we chose the Lyapunov function as

V =
1
2

x1e
Tx1e, (21)

Then, taking the time derivative of Equation (21) and invoking Lemma 3, we obtain

.
V = x1e

T(s − Ψ(x1e))

= x1e
Ts − x1e

Tπ
T1µ1

(( 1
2 )

1− µ1
2 ⌊x1ei⌋1−µ1 + n

µ1
2 ( 1

2 )
1+ µ1

2 ⌊x1ei⌋1+µ1)− x1e
Tx1e

≤ − x1e
Tπ

T1µ1
(( 1

2 )
1− µ1

2 ⌊x1ei⌋1−µ1 + n
µ1
2 ( 1

2 )
1+ µ1

2 ⌊x1ei⌋1+µ1)

−x1e
Tx1e + x1e

Tx1e +
1
4 sTs

≤ − π
T1µ1

(V1
1− µ1

2 + V1
1+ µ1

2 ) + 1
4 ϑ

, (22)

By applying Equation (22) and Lemma 2, the tracking error ηe converges to the sliding-
mode surface within the bounds of a predefined time T1.

Based on the predefined-time sliding mode surface Equation (18), RPPSMC can be
designed as follows

τ = MJ−1(−x̂3 −
.

Ψ + Π +
..
x1d), (23)

Π = − π

T2µ2
((

1
2
)

1− µ2
2

sig1−µ2(s) + n
µ2
2 (

1
2
)

1+ µ2
2

sig1+µ2(s))− 1
2

s, (24)

where T2 is the predefined time and µ2 > 0 is a positive constant. □

4. Stability Analysis

Theorem 2. For system Equation (10) with the designed RPTESO Equation (16), the state
of the estimation error model can converge in t ∈

[
0, t f

)
and it can maintain at the origin

in t ∈
[
t f ,+∞

)
.
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Proof of Theorem 2. In t ∈
[
0, t f

)
. According to Equations (12)–(16), the estimation

dynamic error is obtained as
.
e1 = e2 − lΛΞg1e1 − lΛ−1

.
Λe1 − (1 − l)k1K

1
3 ⌊e1⌋

2
3

.
e2 = e3 − lΛ2Ξ2g2e1 − (1 − l)k2K

2
3 ⌊e1⌋

1
3

.
e3 =

.
f − lΛ3Ξ3g3e1 − (1 − l)k1K⌊e1⌋0

, (25)

For the convenience of subsequent calculations, we define the alternative errors as
ê1 = Λe1, ê2 = e2, and ê3 = Λ−1e3. Because Λ is clearly bounded, then ei = 0 is satisfied
when êi = 0 for i = 1, 2, 3. Therefore, Equation (25) can be rewritten as

.
ê1 = Λê2 − ΞΛg1 ê1.
ê2 = Λê3 − Ξ2Λg2 ê1.

ê3 = Λ−1
.
f − Λ−1

.
Λê3 − Ξ3Λg3 ê1

, (26)

To simplify the calculation, Equation (26) can be further rewritten as

.
Φ = ΛAΦ − ΛBCDΦ + P, (27)

where Φ = [ê1, ê2, ê3], A =

0 1 0
0 0 1
0 0 0

, B = diag
{

Ξ, Ξ2, Ξ3}, C = [g1, g2, g3]
T , D = [1, 0, 0],

P =
[
0, 0, Λ−1

.
f − Λ−1

.
Λê3

]
.

Then, introducing the state transformation

Φ̃ = B̃Φ, (28)

where B̃ = diag
{

g̃2Ξ3, g̃Ξ2, Ξ
}

, g̃ is any constant; thus, Because Ξ is a monotonically

increasing function, it satisfies lim
t→t f

∥∥∥B̃
∥∥∥ = +∞. Then, taking the time derivative of

Equation (28) yields

.
Φ̃ =

.
B̃Φ + B̃

.
Φ

=
.
ΞΞ−1QΦ̃ + ΛB̃(A − BCD)B̃

−1
Φ̃ + B̃P

, (29)

where Q = diag{3, 2, 1}. Moreover, B̃AB̃
−1

= g̃ΞA and B̃BCDB̃
−1

= g̃ΞC̃D, where

C̃ =
[

g1
g̃ , g2

g̃2 , g2
g̃3

]T
. Thus, it satisfies

.
Φ̃ =

.
ΞΞ−1QΦ̃ + ΞΛg̃(A − C̃D)Φ̃ + B̃P, (30)

We define a Lyapunov function as

V
Φ̃
= Φ̃TΓΦ̃, (31)

where Γ is a positive definite symmetric matrix defined as Γ =

Γ1 Γ2 Γ3
Γ4 Γ5 Γ6
Γ7 Γ8 Γ9

.

Then, taking the time derivative of Equation (31) yields

.
V

Φ̃
=

.
Φ̃

T
ΓΦ̃ + Φ̃TΓ

.
Φ̃

=
.
ΞΞ−1Φ̃TQTΓΦ̃ +

.
ΞΞ−1Φ̃TΓQΦ̃

+ΞΛg̃Φ̃T
[
(A − C̃D)

T
Γ + Γ(A − C̃D)

]
Φ̃ + PΦ̃TΓΦ̃ + Φ̃TΓΦ̃P

, (32)
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Because Γ is a positive definite symmetric matrix, and matrices Γ, A, C̃, and D satisfy-
ing the linear matrix inequalities in [19] yields{

(A − C̃D)
T

Γ + Γ(A − C̃D) ≤ A + AT − γIn
ε1In ≤ ΓQ + QΓ ≤ ε2In

, (33)

where γ can be any constant and ε1 and ε2 are the positive constants.
Substituting Equation (33) into Equation (32) yields

.
V

Φ̃
≤

.
ΞΞ−1Φ̃TQTΓΦ̃ +

.
ΞΞ−1Φ̃TΓQΦ̃

+ΞΛg̃(A + AT − γIn)
∥∥∥Φ̃

∥∥∥2
+ PΦ̃TΓΦ̃ + Φ̃TΓΦ̃P

, (34)

Additionally, we assume Λ(0) ≥ 1, then Λ ≥ 1. Using Young’s inequality yields

PΦ̃TΓΦ̃ + Φ̃TΓΦ̃P ≤ Λ−1Ξ
.
f [2Γ3, 2Γ5, 2Γ6]Φ̃ + Ξ

∥∥∥Λ−1
.

Λ
∥∥∥Γmax

∥∥∥Φ̃
∥∥∥2

≤ ΞΓmax fmax

∥∥∥Φ̃
∥∥∥+ Ξ

∥∥∥Λ−1
.

Λ
∥∥∥Γmax

∥∥∥Φ̃
∥∥∥2

≤ σΞ
∥∥∥Φ̃

∥∥∥2
+ Ξ (Γmax fmax)

2

4σ + Ξ
∥∥∥Λ−1

.
Λ
∥∥∥Γmax

∥∥∥Φ̃
∥∥∥2

, (35)

where Γmax = {2∥Γ3∥, 2∥Γ5∥, 2∥Γ6∥} denotes a bounded number. Because Λ is bounded,
we can easily obtain

∥∥∥Λ−1
.

Λ
∥∥∥ ≤ δ, which is a positive constant. Then, we obtain

PΦ̃TΓΦ̃ + Φ̃TΓΦ̃P ≤ σΞ
∥∥∥Φ̃

∥∥∥2
+ Ξ

(Γmax fmax)
2

4σ
+ ΞδΓmax

∥∥∥Φ̃
∥∥∥2

. (36)

Combining Equations (34)–(36), we further obtained

.
V

Φ̃
≤

.
ΞΞ−1ε2

∥∥∥Φ̃
∥∥∥2

+ ΞΛg̃(A + AT − γIn)
∥∥∥Φ̃

∥∥∥2

+σΞ
∥∥∥Φ̃

∥∥∥2
+ Ξ (Γmax fmax)

2

4σ + ΞδΓmax

∥∥∥Φ̃
∥∥∥2 . (37)

Then, we define ζ =
.
ΞΞ−3ε2 + Λg̃(2∥A∥ − γ)Ξ−1 + σΞ−1 + δΓmaxΞ−1; Equation (37)

can be rewritten as
.

V
Φ̃
≤ ζΞ2

∥∥∥Φ̃
∥∥∥2

+ Ξ
(Γmax fmax)

2

4σ
. (38)

To ensure the convergence of Φ̃, it needs to satisfy ζ < 0 first. Hence, we choose
γ ≥ 2∥A∥ + 1 and g̃ ≥ (

.
ΞΞ−3)maxε2 + σΞ−1 + δΓmaxΞ−1 + ι. Owing to the functional

characteristics of Ξ, it is easy to obtain ζ < −ι. Therefore, g̃ ≥ (
.
ΞΞ−3)maxε2 + ι.

Then, Equation (38) is rewritten as

.
V

Φ̃
≤ −ιΞ2

∥∥∥Φ̃
∥∥∥2

+ Ξ
(Γmax fmax)

2

4σ
, (39)

Equation (40) can be obtained by integrating Equation (39)

V
Φ̃
≤ exp−ι

∫ t
t0

Ξ2(m)dm
[

V
Φ̃
(t0) +

(Γmax fmax)
2

4σ

∫ t
t0

exp−ι
∫ t

t0
Ξ2(s)ds Ξ2(m)dm

]
≤ exp−ι

∫ t
t0

Ξ2(m)dm V
Φ̃
(t0) +

(Γmax fmax)
2

4σ

∫ t
t0

exp−ι
∫ t

t0
Ξ2(s)ds+

∫ m
t0

Ξ2(s)ds Ξ2(m)dm

. (40)
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In Equation (40), we can obtain a further analysis that satisfies that the following
inequality holds

(Γmax fmax)
2

4σ

∫ t
t0

exp−ι
∫ t

t0
Ξ2(s)ds+

∫ m
t0

Ξ2(s)ds Ξ2(m)dm

=
(Γmax fmax)

2

4σ
exp−ι

∫ t
t0

Ξ2(s)ds ∫ t
t0

exp−ι
∫ m

t0
Ξ2(s)ds d(

∫ m
t0

Ξ2(s)ds)

=
(Γmax fmax)

2

4σι
exp−ι

∫ t
t0

Ξ2(s)ds expι
∫ m

t0
Ξ2(s)ds

∣∣∣ t
t0

=
(Γmax fmax)

2

4σι
exp−ι

∫ t
t0

Ξ2(s)ds
(expι

∫ t
t0

Ξ2(s)ds −1)

=
(Γmax fmax)

2

4σι
(1 − exp−ι

∫ t
t0

Ξ2(s)ds
)

≤ (Γmax fmax)
2

4σι

. (41)

Thus, we obtain

V
Φ̃
≤ exp−ι

∫ t
t0

Ξ2(m)dm V
Φ̃
(t0) +

(Γmax fmax)
2

4σι
. (42)

It can prove that V
Φ̃
(t) and Φ̃(t) are bounded in t ∈

[
0, t f

)
. Furthermore,

∥Φ(t)∥2 =
∥∥∥B̃

−1
Φ̃
∥∥∥2

≤
∥∥∥B̃

−1
∥∥∥2∥∥∥Φ̃

∥∥∥2 . (43)

According to Rayleigh’s inequalities [35], Equation (43) is rearranged as

λmin(Γ)
∥∥∥Φ̃

∥∥∥2
≤ V

Φ̃
≤ λmax(Γ)

∥∥∥Φ̃
∥∥∥2

. (44)

Substituting Equation (44) into Equation (43) yields

∥Φ(t)∥2 ≤

∥∥∥B̃
−1

∥∥∥2

λmin(Γ)
(exp−ι

∫ t
t0

Ξ2(m)dm V
Φ̃
(t0) +

(Γmax fmax)
2

4σι
), (45)

B̃ satisfies
∥∥∥B̃(0)−1

∥∥∥ = 1 and lim
t→t f

∥∥∥B̃(t)−1
∥∥∥ = 0. Meanwhile, in Equation (45),

exp−ι
∫ t

t0
Ξ2(m)dm V

Φ̃
(t0) +

(Γmax fmax)
2

4σι
is bounded. Thus, lim

t→t f
∥Φ(t)∥ = 0 is equivalent

to lim
t→t f

∥ei∥ = 0(i = 1, 2, 3), which implies that the estimated errors can converge in t f .

Next, considering the situation in t ∈
[
t f ,+∞

)
and the estimation dynamic error for

RPTESO, Equation (25) can be rewritten as
.
e1 = e2 − k1K

1
3 ⌊e1⌋

2
3

.
e2 = e3 − k2K

2
3 ⌊e1⌋

1
3

.
e3 =

.
f − k3K⌊e1⌋0

. (46)

According to [34], for p ≥ 2n − 1 = 5, if there exists a positive κ and a set of gain
parameters ki(i = 1, 2, 3), a Lyapunov function VΥ must exist and satisfy

.
VΥ ≤ −κVΥ

p−1
p . (47)
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The Lyapunov function is chosen as

VΥ =
2

∑
j=1

αjΥj(θj, θj+1) + α3
1
p
|θ3|p, (48)

where arbitrary αi > 0(i = 1, 2, 3), ri = 4 − i(i = 1, 2, 3), and θ1 = e1
K , θ2 = e2

k1K , θ3 = e3
k2K .

From the abovementioned discussion and lim
t→t f

∥ei∥ = 0(i = 1, 2, 3), it is easy to determine

whether the VΥ satisfies lim
t→t f

VΥ = 0. According to (Cruz-Zavala and Moreno, 2018), if

k3 > K > fmax, k1 = 3.34k3
1
3 , and k2 = 5.3k3

2
3 , then

.
VΥ satisfies

.
VΥ ≤ −κVΥ

p−1
p ≤ 0,

which means that VΥ holds VΥ = 0 in t ∈
[
t f ,+∞

)
. In means that ∥ei∥ = 0 was maintained

for the remainder of the period. According to Lemma 1, the RPTESO is prescribed-time
stable. This completes the Proof of Theorem 2. □

Theorem 3. For the AUV system Equation (7), if RPPSMC Equations (23) and (24) and RPTESO
Equation (16) with suitable parameters are applied, converges to the near-zero domain within a
predefined time T2.

Proof of Theorem 3. We define a Lyapunov function as

Vs =
1
2

sTs. (49)

Considering Assumption 2 and the AUV system in Equation (10), the time derivative
of Vs can be described as

.
Vs = sT(

..
x1e +

.
Ψ(x1 e,

.
x1e))

= sT(
..
x1 −

..
x1d +

.
Ψ)

= sT(x3 + J(x1)M
−1

τ − ..
x1d +

.
Ψ)

= sT(x3 + (−x̂3 −
.

Ψ + Π +
..
x1d)−

..
x1d +

.
Ψ)

= sT(e3 + Π)

. (50)

Substituting Equations (23) and (24) into Equation (50), we can obtain

.
Vs = sTΠ + sTe3

≤ − π
T2µ2

(( 1
2 )

1− µ2
2 sTsig1−µ2(s) + n

µ1
2 ( 1

2 )
1+ µ2

2 sTsig1+µ2(s))
− 1

2 sTs + 1
2 (s

2 + e2
3)

= − π
T2µ2

(( 1
2 )

1− µ2
2 sTsig1−µ2(s) + n

µ1
2 ( 1

2 )
1+ µ2

2 sTsig1+µ2(s)) + 1
2 e2

3

. (51)

By applying Lemmas 3 and 4, we obtain the following:

sT⌊s⌋1−µ2 =
n

∑
i=1

|si|
2−µ2

≥ (
n

∑
i=1

s2
i )

1+
µ2

2
= 2

1−
µ2

2 Vs
1−

µ2

2 , (52)

sT⌊s⌋1+µ2 =
n

∑
i=1

|si|
2+µ2

≥ n
−

µ1

2 (
n

∑
i=1

s2
i )

1+
µ2

2
= n

−
µ1

2 2
1+

µ2

2 Vs
1+

µ2

2 . (53)

Substituting Equations (52) and (53) into Equation (51) yields

.
Vs ≤ − π

T2µ2
(( 1

2 )
1− µ2

2 21− µ2
2 Vs

1− µ2
2 + n

µ2
2 ( 1

2 )
1+ µ2

2 n− µ1
2 21+ µ2

2 Vs
1+ µ2

2 ) + 1
2 e2

3

= − π
T2µ2

(Vs
1− µ2

2 + Vs
1+ µ2

2 ) + 1
2 e2

3

. (54)
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By applying Equation (54) and Lemma 2, the s can converge under the bounds T2.
Theorem 3 is proved. □

5. Simulation Verification

In this section, two parts of comparative simulation experiments are described to
demonstrate the effectiveness and superiority of the proposed RPPSMC and RPTESO. In
the first step, RPTESO is compared with the fixed-time ESO to prove its superiority. In the
second step, RPPSMC is compared with fixed-time SMC to prove that RPPSMC has better
control performance. The XH-3000 benthic AUV used in the simulation was designed
and manufactured by the Harbin Engineering University, and its model parameters were
proposed in our previous research [36]. The simulation experiment was performed using
MATLAB, and the simulation step was 0.001 s.

5.1. Comparative Verification with Fixed-Time ESO

The reference trajectory ηd is described as
xd = 10 ∗ cos(0.1t)
yd = 10 ∗ sin(0.1t)

zd = 3 − 0.1t
θd = 0

ψd = 0.1t + 0.5π

. (55)

The external disturbances are set as

τE =


15 · sin(0.2t) + 5
9 · sin(0.3t) + 4

10 · sin(0.1t)− 7
5 · sin(0.2t) + 4
6 · sin(0.1t)− 4

. (56)

The initial position states of the AUV were set as η0 = [12, 3, 1, π/4, 0], and the velocity
states were set as

.
η0 = [0, 0, 0, 0, 0]. The initial states of the RPTESO were set to x̂1 = η0,

x̂2 =
.
η0, and x̂3 = [0, 0, 0, 0, 0]. The first simulation experiment was conducted for two

cases, t f = 0.3s and t f = 0.5s, to prove that the proposed method can flexibly accelerate
the convergence speed. Next, for a fairer comparison, a fixed-time ESO was adopted for
the comparison experiment, as described in Equation (57)

.
x̂1 = x̂2 + m1⌊e1⌋α1 + n1⌊e1⌋β1

.
x̂2 = x̂3 + J(x1)M

−1
τ + m2⌊e1⌋α2 + n2⌊e1⌋β2

.
x̂3 = m3⌊e1⌋α3 + n3⌊e1⌋β3

. (57)

The controller adopted a fixed-time SMC [37]. The details of the comparison method
are as follows: 

τ = ξ(s)(α4sig(s)ε5 + β4sig(s)λ4)
k5
+

..
x1d − z3 +

.
Υ

s =
.
x1e +Υ

Υ = ξ(x1e)(α4sig(x1e)
ε4 + β4sig(x1e)

λ4)
k5

ε4 = 1
2 p4 +

1
2 q4 + ( 1

2 q4 − 1
2 p4)sgn(∥x1e∥ − 1)

λ4 = 1
2k4

+ 1
2 q4 + ( 1

2 q4 − 1
2k4

)sgn(∥x1e∥ − 1)

ξ(x1e) = a4 + (1 − a4) exp (−b4∥x1∥)c4

ε5 = 1
2 p5 +

1
2 q5 + ( 1

2 q5 − 1
2 p5)sgn(∥s∥ − 1)

λ5 = 1
2k5

+ 1
2 q5 + ( 1

2 q5 − 1
2k5

)sgn(∥s∥ − 1)
ξ(s) = a5 + (1 − a5) exp (−b5∥s∥)c5

. (58)
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Because the comparison method was different from the model parameters adopted in
this study, the parameters were readjusted to obtain improved simulation results before
a comparison was made to ensure the fairness of the comparison experiment. The initial
states of the fixed-time ESO were the same as those of RPTESO. The parameters of the
RPTESO, fixed-time ESO, and fixed-time SMC are listed in Table 1.

Table 1. Parameters of comparison method.

Component Value

RPTSESO g1= 6, g2 = 8, g3= 2, K= 8, k3 = 10, Θ = 103

Fixed-time ESO m1 = 10, m2 = 30, m3 = 50, n1 = 20, n2 = 45, n3 = 60,
α1 = 1, α2 = 0.9, α3 = 0.8, β1 = 1.2, β2 = 1, β3 = 0.8

Fixed-time SMC a4 = a5 = 1.5, b4 = b5 = 6, c4 = 0.5, c5 = 0.6, p4 = 0.95, q4 = 1.4, k4 =
0.95, p5 = 0.5, q5 = 1, k5 = 1.5, α4 = β4 = 0.3, α5 = β5 = 8

A trajectory-tracking simulation experiment was conducted without disturbance to
verify the effectiveness of the controller in [37]. As shown in Figure 3, the controller ensures
that the AUV converges to the desired trajectory. Figures 4–6 represent the estimation error
results for the system states using different observers. It can be observed from Figures 4–6
that all three controllers can cause the observation error to converge to the near-zero domain
in a short time. Compared with the fixed-time ESO, the RPTESO has a smaller observation
peak and faster convergence speed. This is because the fixed-time ESO only can obtain a
relatively optimal result by adjusting the other parameters of the observer.
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The convergence time of the RPTESO can be designed as an explicit parameter, and
the upper bound of the observer convergence time can be set by the value of t f . The partial
enlargement of Figures 4–6 proves that the actual convergence time of the RPTESO is very
close to the values t f = 0.3s and t f = 0.5s. To further quantify the observer performance
of lumped uncertainties, the values of the integral absolute error (IAE) and integral time-
weighted absolute error (ITAE) of e3 are listed in Table 2. As observed from Table 2, IAE and
IATE with t f = 0.3 are smaller than the observer with t f = 0.5. This is because smaller t f
leads to a faster convergence speed. However, this is due to the lag of lumped uncertainty
observer estimation, which leads to a large overshoot peak in the initial stage of observation,
which shows that t f = 0.5 is only reduced in e31, and even greatly improved in the other
four degrees of freedom which shows that RPTESO has a worse transient performance.
However, in the results of ITAE, the average sum of ITAE of RPTESO is smaller than that of
the fixed-time ESO, which shows that RPPESO has better global steady-state performance
and a higher overall estimation accuracy. Therefore, as a whole, it can be concluded that
the designed RPTESO has a better state estimation performance.

Table 2. IAE and ITAE of three control schemes.

Method e31 e32 e33 e34 e35

IAE =
∫ T

0 ∥e∥dt

RPTESO with t f = 0.3 2.16 6.38 9.79 7.22 12.2

RPTESO with t f = 0.5 11.8 20.8 34.4 24.2 46.7

Fixed-time ESO 13.9 7.71 7.69 10.7 19

ITAE =
∫ T

0 t∥e∥dt

RPTESO with t f = 0.3 2.06 2.79 3.15 2.29 2.66

RPTESO with t f = 0.5 2.6 3.6 3.32 2.98 3.8

Fixed-time ESO 14.34 13.64 15.3 14.06 14.24

In order to illustrate the control performance of the designed adaptive law, the RPTESO
with t f = 0.5 and the nonadaptive ESO are compared in further simulation experiments.
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Figure 7 shows the curve of the observation error e3 over time. Because the initial error and
the value of Ξ(t) were small, the observation performances of the two methods were almost
the same. With increasing time, the adaptive law can be rapidly increased to improve the
convergence speed. In Figure 8, when time approaches t f , because the value of Ξ(t) is
already large, the value of the adaptive law increases slowly to avoid overshoot, whereas
the nonadaptive ESO can converge to zero more quickly because of the use of a large
fixed-value coefficient, but there is an obvious overshoot. Therefore, the adaptive law
designed in this study improves the robustness of the observer.
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5.2. Comparative Verification with Fixed-Time SMC

To verify the control performance of the RPPSMC, two RPPSMCs with different and
fixed-time SMC were compared. Simultaneously, to further illustrate the advantages of
the ESO in dealing with lumped uncertainties, additional simulation experiments were
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performed without compensation from the ESO. The change rate of the AUV’s external
disturbance can be improved as follows:

τE =


15 · sin(0.6t) + 5
9 · sin(0.9t) + 4

10 · sin(0.3t)− 7
5 · sin(0.6t) + 4
6 · sin(0.3t)− 4

, (59)

The parameters of the reference trajectory, initial AUV state, and fixed-time SMC are
the same as those in Section 5.1. The parameters of the two RPPSMC methods proposed in
this study are listed in Table 3.

Table 3. Parameters of comparison method controllers.

Component Value

RPPSMC-1 T1= 3.5, T2= 3, µ1 = 0.6, µ2 = 0.5

RPPSMC-2 T1= 5.5, T2= 4.5, µ1 = 0.6, µ2 = 0.5

Figure 9 shows the trajectory-tracking results for the desired trajectory. It shows that
all four methods successfully completed the effective tracking of the desired trajectory
even under a worse environment. The local enlarged figure shows that the two RPPSMCs
proposed in this study can converge to the desired trajectory faster than the two fixed-time
SMCs. This means that the RPPSMC has a better control performance.
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The position and attitude tracking errors in Figure 10 further confirm similar conclu-
sions in Figure 9. IAE and IAME in Table 4 show that the RPPSMC-1 has a better tracking
performance and steady-state performance than the fixed-time SMC. However, some results
of the IAE and IATE of the RPPSMC-2 are bigger than the fixed-time SMC. This is because
the predefined-time T of RPPSMC-2 is set as larger, leading to a longer actual rising time,
so the value of T cannot be set too large.
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Table 4. IAE and ITAE of three control schemes.

Method xe ye ze θe ψe

IAE =
∫ T

0 ∥e∥dt

RPPSMC-1 1.85 2.43 2.15 0.6 1.81

RPPSMC-2 2.3 3.12 2.83 0.7 2.31

Fixed-time SMC 2.53 3.89 3.44 0.71 2.66

ITAE =
∫ T

0 t∥e∥dt

RPPSMC-1 2.37 3.97 1.48 0.53 1.96

RPPSMC-2 6.2 8.3 8.48 0.54 3.51

Fixed-time SMC 6.31 6.41 8.16 0.50 3.22

It can be observed from Figures 9–11 that the controller without ESO compensation
has a slower convergence speed and lower accuracy when tracking the trajectory. Even in
the later stages of control, when the other three methods ensured a stable tracking state,
oscillations still occurred. This is because the controller can only calculate the corresponding
control input according to the current state error but cannot reduce the adverse effects
of lumped uncertainties. When a disturbance affects the state of the AUV, the controller
cannot respond in time. Therefore, it cannot stably fit the expected trajectory at all times.
This implies that it is necessary to design an ESO to observe lumped uncertainties. The
control inputs for the four methods are shown in Figure 12. As shown in the figure, all the
control inputs were bounded and within the power range provided by the AUV. Compared
with the initial control input of the fixed-time SMC, the input of the RPPSMC is larger, and
a smaller predefined time T leads to a larger initial control input because it is necessary to
ensure a faster convergence speed. This also explains why the velocity-tracking error of the
RPPSMC in Figure 11 has a larger peak. Although the control input changes sharply in the
initial stage, it decreases rapidly and tends to stabilize after the tracking error converges to
a small value, which not only ensures convergence speed but also enables the AUV to enter
a relatively stable state as soon as possible. Particularly, the two different RPPSMCs in
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Figures 9–11 show something in common: (1) the system converges within a set predefined
time T; and (2) when a shorter predefined time T was set, the system converged faster,
and the convergence time varied with the given predefined time T. Compared with the
unknown convergence time of the fixed-time SMC, the RPPSMC can set the upper bound
of the convergence time more flexibly by adjusting the explicit parameter T.
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6. Conclusions

In this study, a predefined-time SMC based on a prescribed-time ESO is proposed
for an AUV trajectory-tracking control. First, to reduce the adverse effects of lumped
uncertainties on the trajectory-tracking control, an RPTESO is designed, and the upper
bound of the observation convergence time can be directly designed as an explicit parameter
instead of relying on the initial conditions or various parameter adjustments. To improve
the robustness of the ESO, an adaptive law is designed to ensure that the observer has a
fast convergence speed and can avoid an excessive overshoot. Second, considering the
requirements of the AUV’s hydrodynamic design and rapid convergence of the trajectory-
tracking deviation, an RPPSMC is designed, and the upper bound of the total convergence
time T can also be directly set as an explicit parameter. A stability theory analysis proved
that the sliding surface and controller meet the predefined-time convergence characteristics.
Finally, the effectiveness and superiority of the proposed algorithm are verified through
simulation experiments.
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