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Abstract: In the underwater domain where Autonomous Underwater Vehicles (AUVs) operate, mea-
surements may suffer from the impact of outliers and non-Gaussian noise. These factors can potentially
undermine the efficacy of integrated navigation algorithms. The Maximum Correntropy Criterion
(MCC) can be utilized to enhance the robustness of AUV integrated navigation algorithms through
the construction and maximization of the correntropy function. Notwithstanding, the underwater
environment occasionally presents unknown time-varying noise, a situation for which the MCC lacks
adaptability. In response to this issue, our study introduces a novel integrated navigation algorithm that
synergizes the MCC and the Variational Bayesian approach, thereby augmenting both the robustness
and adaptability of the system. Initially, we implement the MCC along with a mixture kernel function
in an Unscented Kalman Filter (UKF) to strengthen the robustness of the AUV integrated navigation
algorithms amidst the complexities inherent to underwater environmental conditions. Additionally, we
utilize the Variational Bayesian method to refine the approximation of measurement noise covariance,
thereby boosting the algorithm’s adaptability to fluctuating scenarios. We evaluate the performance of
our proposed algorithm using both simulation and sea trial datasets. The experimental results reveal
a significant enhancement in the Root Mean Square Error (RMSE) and navigation accuracy of our
proposed algorithm. Notably, in a complex noise environment, our algorithm achieves, approximately,
a 50% improvement in navigation accuracy over other established algorithms.

Keywords: autonomous underwater vehicle (AUV); integrated navigation; maximum correntropy
criterion; mixture correntropy; variational bayesian; robustness; adaptability

1. Introduction

To effectively execute missions beneath the sea, Autonomous Underwater Vehicles
(AUVs) have been developed [1–3]. AUVs are instrumental in advancing marine scientific
research, marine engineering, and underwater archaeology, thereby becoming essential tools
for oceanic exploration and study [4]. Accurate navigation and positioning are paramount for
AUVs to enhance their performance in executing a diverse array of underwater tasks [2,5].

The AUV integrated navigation algorithm, which integrates various navigation sensors
such as an Inertial Navigation System (INS), Doppler Velocity Log (DVL), and pressure sensor
through a filtering algorithm, demands fewer resources while facilitating high-precision
autonomous underwater navigation. For a nonlinear integrated navigation model of an
AUV, the Unscented Kalman Filter (UKF) can be employed [6,7]. The UKF leverages the
Unscented Transform (UT) to generate sigma points, providing an accurate approximation
of the nonlinear model. Despite its advantages, the efficiency of this traditional integrated
navigation algorithm is further compromised in complex noise environments, like unknown
underwater environments, that are characterized by non-Gaussian noise, time-varying noise,
and outliers.
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To enhance the accuracy of estimations and bolster the robustness and adaptability of
the filtering algorithm, specific mathematical methods are employed. The M-estimator, which
is based on the least squares (LS) criterion, has been successfully introduced to improve the
robustness of the KF. The M-estimator can suppress the influence of non-Gaussian noise and
outliers by minimizing the cost function based on the measurements residual [8]. The Huber
Kalman Filter (HKF) utilizes the Huber function to construct a cost function in the M-estimator.
As an improved robust estimation algorithm, the HKF has been widely used and verified to
have superior performance. In practical navigation, Crespillo et al. came up with a tightly cou-
pled GNSS/INS integrated algorithm based on the HKF, which was verified to have a better
performance in challenging GNSS scenarios [9]. Wang et al. achieved hierarchical water
velocity estimation in a middle-water environment using an HKF, enhancing the accuracy
of SINS/DVL integrated navigation [10]. In addition, the robust Student’s t Kalman Filter
(STKF) was proposed, which achieves a robust estimate by approximating the process noise
and measurement noise as a heavy-tailed non-Gaussian distribution. Jia et al. designed
a SINS/GPS integrated navigation method based on the STKF. Simulations were conducted
to prove its superior robustness and performance in complex noise environments [11]. In
the field of underwater navigation, Wang et.al came up with an SINS/USBL integrated
algorithm based on the STKF. Simulations and field trails were conducted to verify its
robustness [12].

Rather than using the least squares criterion and typical filtering algorithms, the
Maximum Correntropy Criterion (MCC) was introduced. The MCC focuses on construct-
ing and maximizing a cost function predicated on correntropy, which in turn augments
the robustness of the algorithm. Such advancements have provided fresh insights into
addressing the challenges associated with solving the correntropy function. Chen et al.
introduced an innovative fixed-point method-based iterated maximum correntropy UKF
(IMCUKF) [13] and investigated the algorithm’s convergence properties [14]. Wang et al.
proposed a non-iterative MCUKF, employing a cost function derived from the weighted
least squares (WLS) method [15]. Additionally, two iterative versions of the MCUKF based
on the Gauss–Newton and Levenberg–Marquardt methods were put forward [16]. These
were demonstrated to offer a superior estimation performance and numerical stability.

Although the Maximum Correntropy Criterion (MCC) outperforms traditional meth-
ods in handling outliers and non-Gaussian noise, its efficiency can be compromised by
unknown time-varying noise. To address this, Huang et al. proposed an adaptive MCC-
based Kalman filter with a variable kernel, wherein the kernel width is a function of the
residual [17]. Shi et al. introduced a variable kernel bandwidth approach into the MCC
to enhance the algorithm’s adaptability, devising a novel method to update the kernel
bandwidth at each step [18]. More recently, Variational Bayesian methods have been em-
ployed to further improve the adaptability of the MCC. Liu et al. developed a Variational
Bayesian-based cubature Kalman filter capable of addressing high-dimensional nonlinear
problems [19]. Additionally, Li et al. proposed a Variational Bayesian-based Kalman filter
that has demonstrated enhanced efficiency in environments with non-stationary noise [20].
By approximating the measurement noise through Variational Bayesian techniques, the
algorithm can achieve improved adaptability to unknown time-varying noise.

In practical applications in the navigation field, the MCC-based filter has shown sig-
nificant promise. Li et al. applied the MCC-based filter to INS/GNSS integrated navigation
systems [21], conducting experiments to verify its performance against existing filtering
algorithms when facing outliers. Sirish et al. employed the correntropy Kalman filter
to improve GPS position estimation during periods of reduced GPS signal visibility [22].
Moreover, while studies on underwater navigation using the MCC are sparse, Wang et al.
implemented an MCC-based Kalman filter for underwater SINS/USBL navigation to cope
with non-Gaussian measurement noise [23].

In this study, we address challenges posed by non-Gaussian and time-varying mea-
surement noise in the navigation systems of Autonomous Underwater Vehicles (AUVs)
operating in complex underwater environments. We introduce a novel approach, the
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Variational Bayesian and Gaussian–Newton method-based Iterated Maximum Mixture Cor-
rentropy Unscented Kalman Filter (VBGN-IMMCUKF) and integrated it into the navigation
algorithm for AUVs. To evaluate the efficacy of our proposed algorithm, we conducted
both simulations and sea trials, comparing its performances against those of conventional
filters. The contributions of this paper are threefold:

(1) We improve the MCUKF using a mixture kernel and Gaussian–Newton method,
specifically for AUV integrated navigation. These significantly improve the robustness
of navigation within complex environments.

(2) The VBGN-IMMCUKF is introduced for AUV integrated navigation, employing
Variational Bayesian techniques to approximate unknown time-varying noise, thereby
increasing the navigation system’s adaptability.

(3) We conducted simulation experiments and sea trials to validate the navigation ac-
curacy and robustness of our proposed algorithm. The results demonstrate that our
algorithm surpasses both conventional algorithms and existing MCC-based algo-
rithms in performance.

The structure of this paper is as follows. Section 2 introduces the AUV integrated
navigation model and the Maximum Correntropy Criterion. Section 3 details the existing
IMCUKF and our proposed algorithm. The performance of our proposed algorithm is
analyzed based on the simulation and sea trial results in Section 4 and Section 5, respectively.
Finally, Section 6 presents our overall conclusions.

2. Preliminaries

Before introducing the proposed algorithm based on the MCC, it is necessary to have
some preliminary knowledge about AUV integrated navigation systems and the Maximum
Correntropy Criterion.

2.1. AUV Integrated Navigation System

Currently, the integrated navigation system for AUVs primarily utilizes an INS and
DVL. The INS provides vital data on the AUV’s current attitude and acceleration, which
are two critical components of navigation. The DVL, on the other hand, supplies velocity
information in the carrier coordinate system. By fusing this data within a filtering algorithm,
the AUV can effectively navigate and locate objects underwater.

Before introducing the proposed navigation algorithm, it is necessary to define the
AUV’s navigation coordinate system specifically: a north–east–down coordinate system.
And the body-frame’s forward–starboard–down coordinate system is also defined for the
AUV. These systems of reference are depicted in Figure 1.

Figure 1. Navigation coordinate system of AUV.
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Subsequently, we construct the integrated navigation model for the AUV based on
a discrete-time state-space framework [24,25]. The state vector of the AUV’s integrated
navigation system at time step k is described as follows:

Xk = [xk yK φk uk vk ax,k ay,k ωz,k]
T (1)

where {xk, yk} are the current north and earth position at time k, and φk denotes the current
heading of the AUV at time k. {uk, vk} are the current forward and starboard bottom-track
velocities in body coordinates at time k. {ax,k, ay,k} denote the forward and starboard
acceleration in body coordinates at time k. ωz,k denotes the angular velocity of the heading
at time k.

The state equation of the navigation system is given by

Xk = f (Xk−1, wk−1) (2)



xk
yk
φ
uk
vk

ax,k
ay,k
ωz,k


=



xk−1 + (uk−1t + 1
2 ax,k−1t2)cos(φ)− (vk−1t + 1

2 ay,k−1t2)sin(φ) + qx,k−1
yk−1 + (uk−1t + 1

2 ax,k−1t2)sin(φ) + (vk−1t + 1
2 ay,k−1t2)cos(φ) + qy,k−1

φk−1 + ωz,k−1t + qφ,k−1
uk−1 + ax,k−1t + qu,k−1
vk−1 + ay,k−1t + qv,k−1

ax,k−1 + qax ,k−1
ay,k−1 + qay ,k−1
ωz,k−1 + qωz ,k−1


(3)

where wk−1 denotes the process noise at time k − 1. Here, in assuming that they agree with
the zero-mean Gaussian distribution,

q ∼ N (0, Q) (4)

where Q is the covariance matrix of the process noise:

Q = diag[σ2
wx σ2

wy σ2
wφ

σ2
wu σ2

wv σ2
wax

σ2
way

σ2
wωz

] (5)

The measurement vector at time k is given by

Zk = [φINS
k uDVL

k vINS
k aDVL

x,k aINS
y,k ωINS

z,k ]T (6)

where {φINS
k , aINS

x,k , aINS
y,k , ωINS

z,k } are the yaw, body frame acceleration, and yaw angular

velocity measured by the INS respectively, {uDVL
k , vDVL

k } denote the body frame bottom-
track velocity measured by the DVL.

And the measurement equation is defined as

Zk = HkXk + rk (7)

Hk = [06×2 I6×6] (8)

where rk denotes the measurement noise at time k. Here, in assuming that they agree with
the zero-mean Gaussian distribution.

r ∼ N (0, R) (9)

where R is the covariance matrix of the measurement noise:

R = diag[σ2
rφ

σ2
ru σ2

rv σ2
rax

σ2
ray

σ2
rωz

] (10)



Electronics 2024, 13, 2426 5 of 22

2.2. Max Correntropy Criterion

Correntropy is a newly presented quantity that represents the difference between two
random variables [26]. In assuming that there are two random variables Ak ∈ Rd and
Bk ∈ Rd, their correntropy V(A, B) can be expressed as

V(A, B) = E(κ(A, B)) =
∫∫

κ(a, b)dFAB(a, b) (11)

where E[.] denotes the expectation operation, and FAB(a, b) is the joint probability distribu-
tion of A and B. κ(A, B) denotes a shift-invariant kernel function that follows the Mercer
condition. The Gaussian kernel is utilized as the kernel function in this paper:

κ(a, b) = Gσ(e) = exp(− e2

2σ2 ) (12)

where e = a − b, and σ > 0 denotes the bandwidth of the Gaussian kernel function.
The joint probability distribution FAB(a, b) can only be approximated through samples

in practice:

V̂(A, B) =
1
N

N

∑
i=1

Gσ(e(i)) (13)

where e(i) = a(i) − b(i). {a(i), b(i)}N
i=1 are N samples obtained from the joint density

FAB(a, b).
The Taylor series expansion of Equation (13) is given by

V(A, B) =
∞

∑
n=0

(−1)n

2nσ2nn!
E[(A − B)2n] (14)

Equation (14) demonstrates that correntropy represents the weighted sum of the
second moment and all higher-order moments of (A − B). In adjusting the Gaussian kernel
bandwidth σ, the weights assigned to these moments can be modulated; as σ increases,
the influence of the higher-order moments in the calculation decreases significantly. Only
when (A = B), the correntropy function reaches its maximum.

Inspired by the correntropy function, the Maximum Correntropy Criterion (MCC) is
proposed. This criterion achieve the optimal estimate by constructing and maximizing a
correntropy function that expresses the discrepancy between estimated and observed values.
Equation (14) illustrates the capability of the correntropy to accommodate estimations at
higher-order moments, which is particularly effective in addressing non-Gaussian noise.

In AUV positioning and navigation, sensor measurements are susceptible to dis-
turbances in complex underwater environments, which may introduce outliers or non-
Gaussian noise. The typical assumption of Gaussian noise in traditional navigation algo-
rithms may be not effective under these conditions. The Maximum Correntropy Criterion
is particularly beneficial for addressing such challenges, enhancing the robustness and
accuracy of navigation algorithms in complex noise environments.

3. The Variational Bayesian and Gaussian-Newton Method Based IMMCUKF

The existing Iterated Maximum Correntropy Unscented Kalman Filter (IMCUKF) [13]
has demonstrated proficiency in managing non-Gaussian noise issues, yet there are specific
areas where enhancements are feasible. Firstly, within the IMCUKF algorithm, despite
the accommodation for non-Gaussian noise distributions, the use of a static measurement
noise covariance matrix R may not be sufficiently adaptive to unknown or dynamic noise
conditions. Secondly, the reliance on a Gaussian kernel bandwidth can lead to a diminished
estimation performance in increasingly complex engineering scenarios. Thirdly, refining
the efficiency of the iterative process could significantly improve the practical deployment
of the algorithm.
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To address these limitations, the Variational Bayesian and Gaussian–Newton method-
based Iterated Maximum Mixture Correntropy Unscented Kalman Filter (VBGN-IMMCUKF)
is introduced. This advanced algorithm aims to enhance adaptability to varying noise
profiles, optimize the estimation performance in multifaceted environments, and streamline
the iterative efficiency, thus improving its practical applicability.

3.1. Gaussian–Newton Method-Based Iterated Maximum Mixture Correntropy UKF

Suppose that there is a nonlinear model{
Xk = f (Xk−1, qk−1)
Zk = h(Xk, rk)

(15)

where f (.) is the dynamic model, and h(.) is the measurement model. Xk ∈ RN and Z ∈ RM

are the state and measurement of the system at time k. qk−1 and rk are the process noise
and measurement noise at time k − 1, where qk−1 ∼ N (0, Qk−1), and rk−1 ∼ N (0, Rk−1).

Both the MCC-based Unscented Kalman Filter and the traditional Unscented Kalman
Filter (UKF) utilize the same process for prior estimates. In the UKF, the state distribution
is represented through an Unscented Transform, which involves the weighted sampling of
a set of sigma points. The prior state estimate and its corresponding covariance are derived
through updating these sample points and computing their weighted sum, as illustrated in
Equations (16) and (17).

X0,k−1|k−1 = X̂k−1|k−1

Xi,k−1|k−1 = X̂k−1|k−1 +
√
(n + k)Pk−1|k−1 i = 1, 2, . . . n,

Xi,k−1|k−1 = X̂k−1|k−1 −
√
(n + k)Pk−1|k−1 i = n + 1, n + 2 . . . 2n,

(16)

where Xi,k−1, i = 1, 2, . . . n are sigma points generated by the posterior estimation of state

at time k − 1, and w(i)
m and w(i)

c are the weights of the sigma points.
X̂−

k|k−1 =
2n
∑

i=0
w(i)

m f (Xi,k−1|k−1),

P−
k|k−1 =

2n
∑

i=0
w(i)

c (Xi,k|k−1 − X−
k|k−1)(Xi,k|k−1 − X−

k|k−1)
T + Qk.

(17)

where X−
k|k−1 and P−

k|k−1 are the prior estimate and covariance matrix of the state at time k.

w(i)
m and w(i)

c are the weights of the sigma points, with w(0)
m = λ

n+λ , w(0)
c = λ

n+λ + (1 − α2 +

β), w(i)
m = w(i)

c = 1
n+λ , i = 1, 2, 3 . . . 2n, and λ = α2(n + κ)− n.

Once the measurements are acquired, the measurement update process is performed.
Firstly, a new set of sigma points is acquired through sampling the states and covariance
matrix derived from the prior estimate:

X0,k|k−1 = X̂k|k−1

Xi,k|k−1 = X̂k|k−1 +
√
(n + k)Pk|k−1 i = 1, 2, . . . n,

Xi,k|k−1 = X̂k|k−1 −
√
(n + k)Pk|k−1 i = n + 1, n + 2 . . . 2n,

(18)

Then, calculate Ẑk|k−1, Pzz, and Pxz:

Ẑk|k−1 =
2n
∑

i=0
wi

mh(Xi,k|k−1),

Pzz =
2n
∑

i=0
wi

c(h(Xi,k|k−1)− Ẑk|k−1)(h(Xi,k|k−1)− Ẑk|k−1)
T + Rk,

Pxz =
2n
∑

i=0
wi

c(Xi,k|k−1 − X−
k|k−1)(h(Xi,k|k−1)− Ẑk|k−1)

T .

(19)
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As introduced in Section 2.2, for an MCC-based KF, the correntropy cost function is
constructed. To overcome the limitation of single-kernel correntropy in dealing with complex
problems, mixture correntropy is utilized. The mixture correntropy is defined as

V(X, Y) = E[µGσ1(e) + (1 − µ)Gσ2(e)] (20)

where σ1 and σ2 are different Gaussian kernel bandwidths of the mixture correntropy, and
0 ≤ µ ≤ 1 is the mixture weight.

Equation (20) reveals that the mixture correntropy incorporates different kernel func-
tions, each with distinct bandwidths. The curve of the mixture correntropy distribution,
characterized by bandwidth parameters σ1 = 1 and σ2 = 10 for varying weights µ, is
depicted in Figure 2. This illustration demonstrates that the application of mixture cor-
rentropy can improve the Maximum Correntropy Criterion’s effectiveness in managing
complex noise environments. It is evident that the mixture correntropy reduces to the
original correntropy when µ equals 0 or 1.

Figure 2. Mixed Gaussian kernel function with different weights µ.

Then, inspired by the weighted least squares (WLS) method, the mixture correntropy
cost function is constructed as follows:

J(Xk) =α1µGσ1(∥Xk − X̂k|k−1∥P−1
k|k−1

) + α2(1 − µ)Gσ2(∥Xk − X̂k|k−1∥P−1
k|k−1

)

+ β1µGσ1(∥Zk − h(Xk)∥R−1
k
) + β2(1 − µ)Gσ2(∥Zk − h(Xk)∥R−1

k
)

(21)

where α1, α2, β1, and β2 are adjusting weights, and ∥X∥2
A = XT AX. Then, the posterior

estimation can be obtained by solving the following equation:

X̂k|k = argmax J(Xk) (22)

Due to the nonlinear characteristic of the AUV navigation model, Equation (3) lacks
an analytical solution. To address this challenge, the Gaussian–Newton iteration method
is employed, as it has demonstrated superior effectiveness and convergence in resolving
iterative issues [15]. The Gaussian–Newton method iteration, from steps (t) to (t + 1),
performs the following equation:

X̂(t+1)
k|k = X̂(t)

k|k − ((η(X))−1∇J(X))|
X=X̂(t)

k|k
(23)

where the terms η(X) and ∇J(X) denote the Hessian and gradient of the cost function J(X),
respectively. The partial derivatives of Gσ(∥Xk − X̂k|k−1∥P−1

k|k−1
) and Gσ(∥Zk − h(Xk)∥R−1

k
)

over Xk can be calculated as
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∂Gσ(E)
∂Xk

|E=∥Xk−X̂k|k−1∥P−1
k|k−1

= Gσ(E)
E
σ2

∂E
∂Xk

|E=∥Xk−X̂k|k−1∥P−1
k|k−1

= Gσ(∥Xk − X̂k|k−1∥P−1
k|k−1

)
(Xk − X̂k|k−1)P−1

k|k−1

σ2

(24)

∂Gσ(E)
∂Xk

|E=∥Zk−h(Xk)∥R−1
k

= Gσ(E)
E
σ2

∂E
∂Xk

|E=∥Zk−h(Xk)∥R−1
k

= Gσ(∥Zk − h(Xk)∥R−1
k
)

H̃k(Zk − h(Xk))R−1
k

σ2

(25)

where H̃(t)
k = ∂h(Xk)

∂Xk
, which can be approximated as follows [27]:

Hk = PT
xz(Pk|k−1)

−1 (26)

Therefore, the gradient ∇J(X)|
X=X̂(t)

k|k
can be calculated as

∇J(X)|
X=X̂(t)

k|k
= L(t)

P P−1
k|k−1(X̂(t)

k|k − X̂k|k−1)− L(t)
R (H̃(t)

k )T R−1
k (Zk − h(X̂(t)

k|k)) (27)

The L(t)
P and L(t)

R are given by

L(t)
P = [

α1µ

σ2
1

Gσ1(∥X̂(t)
k|k − X̂k|k−1∥P−1

k|k−1
) +

α2(1 − µ)

σ2
2

Gσ2(∥X̂(t)
k|k − X̂k|k−1∥P−1

k|k−1
)], (28)

L(t)
R = [

β1µ

σ2
1

Gσ1(∥Zk − h(X̂(t)
k|k)∥R−1

k
) +

β2(1 − µ)

σ2
2

Gσ2(∥Zk − h(X̂(t)
k|k)∥R−1

k
)]. (29)

In defining weights α1 = β1 = σ2
1 and α2 = β2 = σ2

2 ,

L(t)
P = [µGσ1(∥X̂(t)

k|k − X̂k|k−1∥P−1
k|k−1

) + (1 − µ)Gσ2(∥X̂(t)
k|k − X̂k|k−1∥P−1

k|k−1
)], (30)

L(t)
R = [µGσ1(∥Zk − h(X̂(t)

k|k)∥R−1
k
) + (1 − µ)Gσ2(∥Zk − h(X̂(t)

k|k)∥R−1
k
)]. (31)

Then, the Hessian η(X) can be calculated by

η(X)|
X=X̂(t)

k|k
= L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )T R−1

k H̃(t)
k (32)

It is noteworthy that the MCC based algorithm will encounter issues of numerical
instability when large measurement noise occurs, which results in the values of LP and
LR being excessively small. To mitigate this, a minimum threshold ε is established for the
computation of LP and LR . The modified L̂P and L̂R are defined as follows:

L̂P = Max{LP, ε}, L̂R = Max{LR, ε}. (33)

The Gaussian–Newton method iteration from steps (t) to (t + 1) is given by

X̂(t+1)
k|k =X̂(t)

k|k − (L(t)
P P−1

k|k−1 + L(t)
R (H̃(t)

k )
T

R−1
k H̃(t)

k )−1(L(t)
P P−1

k|k−1(X̂(t)
k|k − X̂k|k−1)

− L(t)
R (H̃(t)

k )
T

R−1
k (Zk − h(X(t)

k|k)))
(34)
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Substituting

X̂(t)
k|k = (L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )−1(L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )X̂(t)

k|k (35)

into Equation (34), we have

X̂(t+1)
k|k =(L(t)

P P−1
k|k−1 + Lt

R(H̃(t)
k )

T
R−1

k H̃(t)
k )−1(L(t)

P P−1
k|k−1X̂k|k−1

+ L(t)
R (H̃(t)

k )
T

R−1
k H̃(t)

k X̂(t)
k|k + L(t)

R (H̃(t)
k )

T
R−1

k (Zk − h(X(t)
k|k)))

(36)

Then, adding and subtracting (L(t)
R (H̃(t)

k )
T

R−1
k )H̃(t)

k X̂k|k−1 from the left-hand side of
the equation, we have

X̂(t+1)
k|k =(L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )−1((L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )X̂k|k−1

− (L(t)
R (H̃(t)

k )
T

R−1
k H̃(t)

k )X̂k|k−1 + L(t)
R (H̃(t)

k )
T

R−1
k H̃(t)

k X̂(t)
k|k

+ L(t)
R (H̃(t)

k )
T

R−1
k (Zk − h(X(t)

k|k)))

(37)

After reorganization, the posterior estimate from step (t) to step (t + 1) is given by

X̂(t+1)
k|k =X̂k|k−1 + (L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )−1(−(L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )X̂k|k−1

+ L(t)
R (H̃(t)

k )
T

R−1
k H̃(t)

k X̂(t)
k|k + L(t)

R (H̃(t)
k )

T
R−1

k (Zk − h(X(t)
k|k)))

(38)

The Gaussian–Newton method iteration of the posterior estimate from step (t) to step
(t + 1) can be summarized as follows:

X̂(t+1)
k|k = X̂k|k−1 + K(t)

k (Zk − h(X(t)
k|k) + H̃(t)

k X̂(t)
k|k − H̃(t)

k X̂k|k−1)

K(t)
k = (L(t)

P P−1
k|k−1 + L(t)

R (H̃(t)
k )

T
R−1

k H̃(t)
k )−1L(t)

R (H̃(t)
k )

T
R−1

k

(39)

In addition, the estimate error X̃(t+1)
k|k can be expressed as

X̃(t+1)
k|k = Xk − X̂(t+1)

k|k

= Xk − X̂k|k−1 − K(t)
k [Zk − h(X(t)

k|k) + H̃(t)
k (X̂(t)

k|k − X̂k|k−1)]
(40)

In substituting Zk − h(X(t)
k|k) = H̃(t)

k X(t)
k + rk − H̃(t)

k X̂(t)
k|k,

X̃(t+1)
k|k = Xk − X̂k|k − K(t)

k [H̃(t)
k (X(t)

k − X̂(t)
k|k) + rk + H̃(t)

k (X̂(t)
k|k − X̂k|k−1)]

= (I − K(t)
k H̃(t)

k )(Xk − X̂k|k−1) + K(t)
k rk

(41)

Therefore, the covariance matrix of the posterior estimated state Pk|k can be approxi-
mated as follows:

P(t+1)
k|k = (I − K(t)

k H̃(t)
k )Pk|k−1(I − K(t)

k H̃(t)
k )T + K(t)

k Rk(K
(t)
k )T (42)

3.2. Variational Bayesian Improvement

In practice, the constant measurement noise covariance R constrains the algorithm’s
performance when dealing with time-varying measurements. To overcome this limitation,
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we integrate the Variational Bayesian (VB) method with the MCC to adaptively estimate R,
thereby enhancing the adaptability of the navigation system.

The VB method is a statistical approach commonly employed for managing complex
probabilistic models. Utilizing the VB method, we can approximate the joint posterior
probability distribution of the system state and measurement noise at time k as follows:

p(Xk, Rk|Z1:k) ≈ qX(Xk)qR(Rk) (43)

where qX(Xk) and qR(Rk) are the approximating density of system state and measurement
noise covariance. Then, the VB-approximated distribution can be calculated by minimizing
the Kullback–Leibler (KL) divergence between the approximation and true distribution.
The KL divergence is defined as

KL[qX(Xk)qR(Rk)∥p(Xk, Rk|Z1:K)] =
∫

qX(Xk)qR(Rk)log(
qX(Xk)qR(Rk)

p(Xk, Rk|Z1:K)
)dXkdRk (44)

Minimizing the KL divergence, we obtain the following equations:

qX(Xk) ∝ exp(
∫

log(p(Zk, Xk, Rk|Z1:K−1)qR(Rk))dRk) (45)

qR(Rk) ∝ exp(
∫

log(p(Zk, Xk, Rk|Z1:K−1)qX(Xk))dXk) (46)

Therefore, the posterior probability distribution can be approximated as a product of
the Gaussian distribution and Inverse Wishart (IW) distribution:

p(Xk, Rk|Z1:k) ≈ N (Xk|X̂k, Pk)IW(Rk|γk, Vk) (47)

N (Xk|X̂k, Pk) ∝ |Pk|−
1
2 exp(−1

2
(Xk − X̂k)

T P−1
k (Xk − X̂k)) (48)

IW(Rk|γk, Vk) ∝ |Rk|−
γk+n+1

2 exp(−1
2

tr(VkR−1
k )) (49)

where γk and Vk are the degree-of-freedom parameter and scale matrix of the Inverse
Wishart distribution, respectively, and n denotes the dimension of the state. tr(.) denotes
the trace of the matrix. Therefore, the approximated measurement noise covariance R̂k can
be calculated as the mean of the IW distribution:

R̂k = (γk − n − 1)−1Vk (50)

The dynamic model of the IW distribution is given by

γk|k−1 = ρ(γk−1|k−1 − n − 1) + n + 1 (51)

Vk|k−1 = BVk−1|k−1BT (52)

where ρ is the forgetting factor 0 < ρ < 1, and B =
√

ρI.
The posterior update process P(Rk|Z1:k) is given by

γk|k = γk|k−1 + 1 (53)

Vk|k = Vk|k−1 +
2n

∑
i=0

ωi(Zk − Zi,k|k−1)(Zk − Zi,k|k−1)
T (54)

Therefore, we can approximate Rk using the VB method during iteration. The VBGN-
IMMCUKF algorithm is summarized in Algorithm 1.
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Algorithm 1 VBGN-IMMCUKF

1: Initialize X̂0|0, P0|0, γ0, Y0

2: for time k = 1, 2, 3 . . . do

3: Prior Predict

4: Calculate X̂k|k−1 and Pk|k−1 by (16), (17);

5: Calculate γk|k−1 and Vk|k−1 by (50), (51);

6: Posterior Update

7: set X(0)
k|k = X̂k|k−1, P(0)

k|k = Pk|k−1,γk|k = 1 + γk|k−1, V(0)
k|k = Vk|k−1;

8: for iteration t = 0, 1, 2 . . . , N do

9: Calculate Xi,k|k−1, Ẑk|k−1, PZZ and PXZ by (18) and (19);

10: Calculate R̂(t)
k , H(t)

k by (50) and (26);

11: Calculate L(t)
P , L(t)

R by (30) and (31);

12: Calculate X̂(t+1)
k|k , P(t+1)

k|k , V(t+1)
k|k by (39), (42), (54);

13: if
∥X̂(t+1)

k|k −X̂(t)
k|k∥

∥X̂(t)
k|k∥

< ϵ then

14: X̂k|k = X̂(t+1)
k|k , Pk|k = P(t+1)

k|k , Vk|k = V(t+1)
k|k , break.

15: end if

16: end for

17: end for

4. Simulation Analysis

Simulations were conducted to evaluate the performance of the proposed algorithm,
the Variational Bayesian and Gaussian–Newton method-based Iterated Maximum Mixture
Correntropy Unscented Kalman Filter (VBGN-IMMCUKF), in comparison with several
established algorithms: the Extended Kalman Filter (EKF), the Unscented Kalman Filter
(UKF), the Iterated Maximum Correntropy Unscented Kalman Filter (IMCUKF), the It-
erated Maximum Mixture Correntropy Unscented Kalman Filter (IMMCUKF), and the
Gaussian–Newton method-based Iterated Maximum Mixture Correntropy Unscented
Kalman Filter (GN-IMMUKF). Each algorithm was implemented on the AUV navigation
model introduced in Section 2.1. Additionally, the AUV dynamic models presented in [28]
were employed to generate the simulation data.

4.1. Simulation Settings

To comprehensively assess the performance of each algorithm, three simulations were
executed. The algorithms’ performances were quantified using the Root Mean Square Error
(RMSE) and navigation accuracy. The RMSE, Average Root Mean Square Error (ARMSE),
and accuracy were calculated according to the following equations:

RMSEpos(m) =

√√√√ 1
N

N

∑
k=1

((x̂k − xk)2 + (ŷk − yk)2) (55)

RMSEvel(m/s) =

√√√√ 1
N

N

∑
k=1

((ûk − uk)2 + (v̂k − vk)2) (56)

ARMSEpos(m) =
1
M

M

∑
i=1

RMSEpos,i (57)
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ARMSEvel(m/s) =
1
M

M

∑
i=1

RMSEvel,i (58)

Accuracy(%) =
RMSE

Total Distance
× 100 (59)

where N is the total time of one simulation, and M is the number of Monte Carlo runs.
The details of each simulation case are presented below. Firstly, some filter parameters

for conventional algorithms in each simulation case were configured as follows.
The covariance matrix of the noise Qk, Rk, and initial state covariance matrix P0 are

given by 
Qk = 0.1.diag(I8×1),
Rk = 0.001.diag(I6×1),
P0 = 0.1.diag(I8×1).

(60)

The parameters of the UKF in Equation (17) are given by
α = 1,
β = 2,
κ = 0.

(61)

The bandwidth of a single-Gaussian kernel σ was set to 1; two kernel bandwidth and
mixture weights of the mixture Gaussian kernel were set as follows:

σ1 = 2,
σ2 = 10,
µ = 0.5.

(62)

The initial parameters of the Variational Bayesian method were set as follows:{
γ = 10,
V = diag(I6×6).

(63)

The flag for the end of the iteration was set as ϵ = 10−6, and the minimum threshold
in Equation (33) was set as ε = 10−10.

In each simulation case, the AUV ran 1000 steps, with each step representing one
second of motion, starting from an initial position of x0 = y0 = 0, with an initial heading of
0◦, and sustains a constant forward velocity of 1 m/s.

Different from other cases, the AUV in simulation case 1 had angular velocity of
4.5◦/s in 240–260 s, 490–510 s, and 740–760 s, resulting in a box trajectory of the AUV. A
multi-Gaussian noise model r ∼ [0.99N (0, 0.1) + 0.01N (1, 10)] was added to the simulated
DVL measurements to simulate the harsh measurement noise environment. The simulated
DVL forward velocity for simulation case 1 is illustrated in Figure 3b. As can be seen from
the figure, the analogous DVL measurements suffer from severe pollution due to the added
harsh noise. So, the trajectory of each method was polluted, as illustrated in Figure 3a.
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In simulation case 2, the AUV sustains an angular velocity of 0.36◦/s, leading to
the circular trajectory of the AUV. The Gaussian noise with a time-varying covariance
r ∼ [N (0.5, R̃)] was introduced to the DVL measurements, where covariance R̃ = 0.5
during 100–200 s, R̃ = 0.4 during 600–700 s, and R̃ = 0.1 for the remaining time. The
analogous DVL forward velocity for simulation case 2 is depicted in Figure 4b, and the
simulated trajectory of each method is illustrated in Figure 4a.

For simulation case 3, the AUV had an angular velocity of 0.72◦/s in 0–250 s and
500–750 s and −0.72◦/s in 250–500 s and 750–1000 s, which resulted in a lawnmower
trajectory of the AUV. Different from other cases, a multi-Gaussian noise r with time-varying
covariance was added to the DVL measurements: r ∼ [0.99N (0, 0.1) + 0.01N (1, R̃)], where
R̃ = 10 during 100–200 s, R̃ = 9 during 400–500 s, R̃ = 8 during 600–700 s, and R̃ = 7 for
the remaining time. As shown in Figure 5b, due to the harsh noise, the analogous DVL
measurement in simulation case 3 was severely disturbed.

(a) The motion trajectory (b) The DVL forward velocity

Figure 3. Trajectory and DVL forward velocity of simulation case 1.

(a) The motion trajectory (b) The DVL forward velocity

Figure 4. Trajectory and DVL forward velocity of simulation case 2.
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(a) The motion trajectory (b) The DVL forward velocity

Figure 5. Trajectory and DVL forward velocity of simulation case 3.

4.2. Simulation Results

The experimental results for simulation case 1 are depicted in Figure 6. Figure 6a,c
depict the RMSE changing during one simulation. As we can see from the diagrams, due
to the added severe noise, outliers occurred. Upon the occurrence of outliers, the RMSE
changes significantly; however, the proposed algorithm effectively suppress the change.
The overall RMSE of 30 runs of the simulation is presented in Figure 6b,d. As can be seen
from the diagrams, the proposed algorithm’s overall RMSE is evidently lower than those
of the other algorithms. The statistical results are recorded in Table 1, which reveals that
for simulation case 1, the proposed algorithm shows certain superiority in both accuracy
and ARMSE. Numerically, the proposed algorithm achieves a 44.67% improvement in the
position ARMSE over the EKF, 44.74% over the UKF, 44.68% over the IMCUKF, 44.31%
over the IMMCUKF, and 10.25% over the GN-IMMCUKF. In terms of navigation accuracy,
the improvement is 43.28% over the EKF, 41.39% over the UKF, 42.35% over the IMCUKF,
41.19% over the IMMCUKF, and 9.42% over the GN-IMMCUKF. These statistical results
substantiate the superior robustness of the proposed algorithm.

Figure 7 illustrates the experimental results of simulation case 2, which featured no
outliers but was influenced by Gaussian noise with time-varying covariance. As can be
seen from the figure, the overall velocity RMSE of proposed algorithm is evidently lower
than those of the other algorithms, which proves that the proposed algorithm has a better
estimation performance when the measurement noise changes. Table 1 records the statistical
results of simulation case 2. It can be seen from the data that the proposed algorithm
achieves a 3.61% improvement in accuracy over the EKF, 3.76% over the UKF, 3.04% over
the IMCUKF, 2.46% over the IMMCUKF, and 2.25% over the GN-IMMCUKF. These findings
confirm the proposed algorithm’s improved navigation accuracy, which further proves
that the proposed algorithm can better estimate under time-varying measurement noise,
improving the adaptability of the navigation system.

The experimental results of simulation case 3 are shown in Figure 8. Figure 8a,c
illustrate the RMSE variation during a simulation. As can be seen from the figures,
the estimation performance of each algorithm may be affected by outliers; however, the
proposed algorithm can effectively suppress this adverse affect. The overall RMSE of
30 Monte Carlo runs of simulation case 3 can be seen in Figure 8b,d. It can be seen that the
RMSE of the proposed algorithm is evidently lower than those of the other algorithms,
which further proves the superior robustness of the proposed algorithm. The statistical
results of simulation case 3 are recorded in the Table 1. We can see that the position ARMSE
of the proposed algorithm (VBGN-IMMCUKF) is improved by 74.48% compared to the
EKF, 74.12% compared to the UKF, 74.11% compared to the IMCUKF, 73.81% compared to
the IMMCUKF, and 43.37% compared to the GN-IMMCUKF. And the navigation accuracy
of the proposed algorithm is improved by 92.42% compared to the EKF, 92.30% compared
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to the UKF, 91.76% compared to the IMCUKF, 91.14% compared to the IMMCUKF, and
75.12% compared to the GN-IMMCUKF. The statistical results shows that the proposed
VBGN-IMMCUKF can improve the robustness of the navigation system and has a superior
performance in complex noise environments.

(a) The position RMSE (b) The position RMSE of 30 Monte Carlo runs

(c) The velocity RMSE (d) The velocity RMSE of 30 Monte Carlo runs

Figure 6. The experimental results of simulation case 1.

(a) The position RMSE of 30 Monte Carlo runs (b) The velocity RMSE of 30 Monte Carlo runs

Figure 7. The experimental results of simulation case 2.
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(a) The position RMSE (b) The position RMSE of 30 Monte Carlo runs

(c) The velocity RMSE (d) The velocity RMSE of 30 Monte Carlo runs

Figure 8. The experimental results of simulation case 3.

Table 1. Statistical comparison of simulation for different algorithms.

Dataset EKF UKF IMCUKF IMMCUKF GN-IMMCUKF VBGN-IMMCUKF

simulation case 1

ARMSEpos (m) 19.6300 19.6554 19.6335 19.5011 12.1014 10.8675
ARMSEvel (m/s) 0.2743 0.2743 0.2643 0.2743 0.0734 0.0719
Accuracy (%) 6.1983 5.9987 6.0985 5.9786 3.8817 3.5158
Time (ms/step) 0.0029 0.0027 0.0042 0.0045 0.0541 0.0467(Outliers occur)

simulation case 2

ARMSEpos (m) 7.4309 7.4149 7.4049 7.4048 7.3878 7.3740
ARMSEvel (m/s) 0.1338 0.1338 0.1337 0.1338 0.0926 0.0719
Accuracy (%) 1.3546 1.3578 1.3478 1.3390 1.3358 1.3060
Time (ms/step) 0.0023 0.0031 0.0048 0.0031 0.0496 0.0467(Outliers occur)

simulation case 3

ARMSEpos (m) 28.5191 28.1079 28.1083 27.7914 12.8405 7.2759
ARMSEvel (m/s) 0.7853 0.7853 0.7850 0.7822 0.1466 0.1826
Accuracy (%) 4.7532 4.6786 4.3787 4.0088 1.4478 0.3602
Time (ms/step) 0.0038 0.0039 0.0054 0.0050 0.0574 0.0479(Outliers occur)

The simulation program was conducted using MATLAB R2021b on a PC equipped
with a 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz processor and 16.0 GB of RAM.
Moreover, the computation time for one step when outliers occurred is recorded in Table 1.
As can be seen in Table 1, although the proposed algorithm requires a longer processing
time, it remains within the acceptable bounds for practical applications.
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5. Sea Trial

Two groups of sea trial experiment data collected by a PX-210 AUV were utilized to
compare the performance of the proposed algorithm. The PX-210 AUV was independently
developed by the Underwater Vehicle Laboratory in Qingdao, Shandong, China.

As shown in Figure 9, the navigation system of the PX-210 AUV is equipped with
navigation sensors, such as an INS, DVL, pressure sensor, etc., which can collect real-time
navigation information during an AUV mission. The performances of the main navigation
sensors on the PX-210 are given in Table 2. A Yanhua aimb-205 Industrial PC with a 12th
Gen Intel(R) Core(TM) i5-6500 3.20 GHz processor and 16.0 GB of RAM was equipped
on the PX-210 AUV. And communication with the sensors and computation in real time
are achieved through a serial port and the MOOS-Ivp software 12.2 platform, which helps
achieve the autonomous positioning and navigation of the AUV.

Figure 9. Main navigation sensors equipped on PX-210.

Table 2. Performances of the main navigation sensors on the PX-210.

Sensor Type Performance Update Rate

INS
Gyroscope

Constant ≤ 0.1 (°)/h
Random ≤ 0.02 (°)/

√
h 50 Hz

Accelerometer Constant ≤ 0.1 (°)/h

DVL Bottom-Track Accuracy 0.4% ± 2 mm/s 1 Hz

GPS Horizontal Position Accuracy 2.5 m 10 Hz

PS Accuracy 0.09% 10 Hz

The sea trial was conducted in an open sea area of Tuandao Bay as illustrated in
Figure 10. GPS position information was utilized as a reference value to evaluate and
compare the performance of the proposed algorithms. The filter parameters during the sea
trial were set the same as those introduced in Section 5 for the simulation case.

To verify the superior performance of the proposed algorithm, sea trial-1 was con-
ducted. During sea trial-1, the AUV navigated for 844 s, covering a total distance of
approximately 775 m. As depicted in Figure 11a, the AUV followed a box trajectory. Fur-
thermore, Figure 11b illustrates that the DVL forward velocity exhibited outliers near
300 s.



Electronics 2024, 13, 2426 18 of 22

To further compare the performance of the proposed algorithm, sea trial-2 was con-
ducted. The trajectory and DVL measurements of sea trial-2 are illustrated in Figure 12.
During sea trial-2, the AUV navigated a zigzag trajectory for 1090 s, covering a total dis-
tance of approximately 987 m. As shown in Figure 12b, the AUV experienced disturbances
near 600 s and 1000 s.

Figure 10. The PX-210 AUV during mission.

The position RMSE at each moment of sea trial-1 is depicted in Figure 13a. It is evident
that outliers negatively impacted the performance of each algorithm, yet the proposed
algorithm (VBGN-IMMCUKF) effectively mitigated this deterioration.

The statistical results are presented in Table 3. It is evident from the table that the
end-point position RMSE of the proposed algorithm improved by 61.58% compared to the
EKF, 61.58% compared to the UKF, 56.32% compared to the IMCUKF, 53.12% compared to
the IMMCUKF, and 26.78% compared to the GN-IMCUKF. Additionally, the navigation
accuracy of the proposed algorithm improved by 61.34% compared to the EKF, 61.33% com-
pared to the UKF, 56.04% compared to the IMCUKF, 52.82% compared to the IMMCUKF,
and 27.06% compared to the GN-IMCUKF. Therefore, based on the statistical results, we
conclude that the proposed algorithm demonstrates superior robustness compared to other
existing algorithms.

The position RMSE at each moment of sea trial-2 is depicted in Figure 13b. It is evident
from the diagram that the unknown disturbances worsened the estimation performance of each
algorithm. It is obvious that the proposed algorithm effectively mitigated this deterioration.

Table 3 presents the statistical results of sea trial-2. It is observed from the table that
the end-point position RMSE of the proposed algorithm improved by 53.78% compared to
the EKF, 51.71% compared to the UKF, 51.82% compared to the IMCUKF, 50.60% compared
to the IMMCUKF, and 38.49% compared to the GN-IMCUKF. Additionally, the navigation
accuracy of the proposed algorithm improved by 54.00% compared to the EKF, 53.99%
compared to the UKF, 51.93% compared to the IMCUKF, 50.84% compared to the IMM-
CUKF, and 38.60% compared to the GN-IMCUKF. Therefore, based on the statistical results,
we conclude that the proposed algorithm outperforms other existing algorithms in AUV
navigation under disturbance.
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(a) The trajectory (b) The DVL forward velocity

Figure 11. Trajectory and DVL forward velocity of sea trial-1.

(a) The trajectory (b) The DVL forward velocity

Figure 12. Trajectory and DVL forward velocity of sea trial-2.

(a) The position RMSE of sea trail-1 (b) The position RMSE of sea trail-2

Figure 13. The experimental results of sea trails.
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Table 3. Statistical comparison of sea trails for different algorithms.

Dataset EKF UKF IMCUKF IMMCUKF GN-IMMUKF VB-GNIMMCUKF

sea trial-1

End position RMSE (m) 16.6468 16.6381 14.6413 13.6438 8.7352 6.3961
Accuracy (%) 1.9257 1.9247 1.6937 1.5783 1.0208 0.7445
Time (ms/step) 0.5591 0.5809 0.4684 0.4540 1.2434 54.6370(outlier occur)

sea trial-2

End position RMSE (m) 23.4197 22.4115 22.4705 21.9109 17.5975 10.8236
Accuracy (%) 2.3575 2.3567 2.2560 2.2057 1.7662 1.0844
Time (ms/step) 0.0472 0.2029 0.2680 0.3533 1.1089 53.8124(outlier occur)

Moreover, the computation times of one step when outliers occur are also listed in
Table 3. It is worth mentioning that, although the proposed algorithm takes a lot of time
when outliers occur, it can still meet the needs of 20 Hz AUV navigation in practice.

6. Conclusions

In this study, we introduced the Variational Bayesian and Gaussian-Newton method-
based Iterated Maximum Mixture Correntropy Unscented Kalman Filter (VBGN-IMMCUKF),
designed to enhance the navigation precision, fortify robustness against outliers, and in-
crease adaptability to unknown disturbances within the realm of Autonomous Under-
water Vehicle (AUV) integrated navigation systems. To assess the performance of the
proposed VBGN-IMMCUKF, we conducted three sets of simulations alongside two se-
ries of sea trial experiments, benchmarking against established algorithms such as the
Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Iterated Maximum Cor-
rentropy Unscented Kalman Filter (IMCUKF), Iterated Maximum Mixture Correntropy
Unscented Kalman Filter (IMMCUKF), and the Gaussian–Newton Iterated Maximum Mix-
ture Correntropy Unscented Kalman Filter (GN-IMMCUKF). The experimental outcomes
affirm that our proposed algorithm outperforms existing algorithms in terms of robustness
and adaptability.

However, it is noteworthy that despite the practical applicability of our algorithm,
it requires significantly more computational time than conventional alternatives. Con-
sequently, future work should prioritize enhancing the computational efficiency of the
VBGN-IMMCUKF to accommodate the demands of high-frequency navigation applications.
Moreover, the kernel function form within the correntropy deserves further exploration to
refine the MCC-based algorithm for handling even more complex environments.
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