
Micro ROV Simulator

Zoran Fabeković 1, Zdravko Eškinja 1, Zoran Vukić 2
1 Brodarski Institut, Ave. V. Holjevca 20, 10020 Zagreb, Croatia

2 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, Zagreb, Croatia
E-mail: zoran.fabekovic@hrbi.hr

Abstract - The ROV Simulator was developed as modular structure with the possibility of connecting signals
received from the real ROV. Programming language VRML helped in developing a 3D model of the ROV and
the interaction between the ROV and the virtual world has been achieved. The kinematics of the ROV was
implemented for simulator needs. The simulator menu offers different virtual environments. The simulator has
different additional possibilities such as: gripper management, realistic illumination and camera manipulations.

Keywords – Simulator, ROV, AUV, 3D visualization, ROV model, kinematics, Virtual Reality, VRML

1. INTRODUCTION

 In recent years, increasing attention is dedicated
to the development of unmanned vehicles. Reasons
for growing research efforts in this area are in the
inconvenience of human work in inaccessible, and
sometimes life threatening surroundings, and lower
mission costs if men are not included.
 Unmanned vehicles can be classified by control
method and by surroundings in which they operate.
By control methods there are autonomous vehicles
and remotely operated vehicles. By the surroundings
in which they operate there are underwater, surface
and air vehicles. Unmanned vehicles find the use in
different areas of human activities: military,
industry, medicine, space research, underwater
research, clearing mined areas etc.
 For practical as well as financial reasons
simulators are used during the development of
unmanned vehicles. Simulators are models of real
systems which contain all their important
characteristics. Most often they are used for testing
of control algorithms, for planning mission
algorithms and behavior testing of systems in
predicted and unpredicted, normal and extreme
conditions. They are successfully used in training
sessions for operators who control vehicles when
training on real objects is too expensive or simply
too hot to handle.
 The fact that over 70% of Earth surface is
covered by water and that most of that area is not
investigated gives us enough motive for developing
new unmanned underwater vehicles.
 Unmanned underwater vehicles are divided by
control method into autonomous unmanned vehicles
(AUV) and remotely operated vehicles (ROV).
Small size ROV-s are also called Micro ROV-s (Fig.
1).

Fig. 1. Micro ROV

2. SIMULATOR STRUCTURE

 The simulator is developed to be modular with
the possibility of enlargement of functionalities and
simple parameter alternation [1].

2.1. Structure of entire simulator

 Structure of the entire simulator is shown in Fig.
2. The simulator input is represented by the control
part of the user interface which contains the joystick
and other controls (camera, light controls etc.).

Fig. 2. Structure of the simulator

 The next block is used for joystick signals
conditioning. This block output is the vector of
desired forces and moments dτ . The Control
allocator task is used to calculate control signals
(u) for individual actuators, such that the real forces
and moments (the Propulsion System output)
produced by actuators are equal to the desired
(dττ =). The forces and moments given by the
propulsion system are used as inputs for the dynamic
model (Dynamics block).
 The dynamic model calculates ROV velocities in
mobile coordinate frame (MOBv) which are used as
inputs for the kinematic model – Kinematics block.
Using these velocities and with presumption that
ROV initial position is known, kinematic model
gives the ROV position and orientation in the Earth-
fixed coordinate frame (

NED
η). Position and

orientation vector
NED

η together with data received

from control panel are used in process of creation as
well as refreshing virtual reality and the indicator
part of user interface.

2.2. Structure of implemented part of simulator

 The implemented part of the simulator is shown
in Fig. 2 surrounded by a dashed line . It consists of
the kinematics and visualization which is realized
using virtual reality. This part of the simulator,
realized in MATLAB (The MathWorks Inc.) and
adjusted for testing, is shown in Fig. 3.

Fig. 3. Implemented part of the simulator

 3. KINEMATIC MODEL

 In order to develop the kinematic ROV model it
is necessary to define two different coordinate
frames. The first one is the Earth-fixed coordinate
frame - NED (North-East-Down) which is defined in
the way that the orthogonal axes N and E stretch out
the tangential plane on the Earth surface, while the
third axis D is directed down to the center of the
Earth and together with axes N and E creates a right-

oriented orthogonal coordinate frame.
 The second one – mobile coordinate frame
(MOB with axes x, y and z) – is connected to the
ROV. At the start of the simulation its axes are
matching the Earth-fixed axes: x corresponds to N, y
to E and z to D. Mobile and Earth-fixed coordinate
frames are shown on Fig. 4.

Fig. 4. Coordinate frames: a) Earth-fixed, b) Mobile

 To realize the kinematic model [2, 3] a new
notation of coordinate frames is needed. Position
and orientation vectors are given in relation to the
Earth-fixed coordinate frame:

[]T
NED

T
NEDNED 21

,ηηη = , (1)

where the ROV position vector in relation to NED
is:

[]TT
NED

zyx ,,
1

=η , (2)

and ROV orientation vector in relation to NED is:

[]TT
NED

ψθφη ,,
2

= . (3)

 Velocities are expressed in relation to the Mobile
coordinate frame:

[]T
MOB

T
MOB 21 ,ννν = , (4)

where the linear velocities vector in direction of x, y
and z coordinate axes is:

[]TT
MOB wvu ,,1 =ν , (5)

and the angular velocities vector arround x, y and z
axis in MOB coordinate frame, in counter-
clockwise (CCW) direction is:

[]TT
MOB rqp ,,2 =ν . (6)

 The kinematic model can now be written in
vector form as:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

×

×

MOB

MOB

NED

NED

NED

NED

v
v

J
J

2

1

2233

3321

2

1

)(0
0)(
η

η
η
η
&

& , (7)

where:

,)(
21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
++
++−

=
θφφθθ

φθψφψφθψθψθψ
φθψφψφθψθψθψ

η
ccscs

cssscssscccs
cscssssccscc

J
NED

(8)

,
//0

0
1

)(
22

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

θφθφ
φφ
θφθφ

η
cccs

sc
tcts

J
NED

(9)

where:)cos(),sin(⋅=⋅⋅=⋅ cs and)tan(⋅=⋅t .

 As it is shown in equation 9, there is a problem
in the realization of this kinematic model because
there exists possibility of dividing by zero in the
case of a 90° twist around y axis (pitch angle =
±90°). This problem is usually ignored because most
ROV-s, including this one, cannot move in such
way.

4. USER INTERFACE

 The user interface is designed in two functionally
different parts: control user interface and visual user
interface.

4.1. Control User interface

 A set of various simulator controls, including
joystick controls and initial adjustments, can be
found on the control user interface.
 The joystick and its controls are shown in Fig. 5,
while Table 1 presents joystick axes and buttons
with assigned functions.

Table 1.

Control Function
X-axis Forward / Backward
Y –axis Roll

Ax
es

Z – axis
(Throttle) Depth control

Button 2 Coordinate axes – on/off
Button 3 Perspective (view point) control
Button 4 Perspective – RESET
Button 5 Gripper – close
Button 6 Gripper – open
Button 7 Light intensity - down
Button 8 Light intensity - up

0° Tilt Up

90° Zoom In

180° Tilt Down

Bu
tto

ns

PO
V

(P

oi
nt

 O
f V

ie
w

)

270° Zoom Out

 Various initial adjustments are available, such as
joystick axes sensitivity, dead-zones for each axis,
propeller rotation direction (CCW, CW).
 Also, it is possible to choose between the three
surroundings shown in Fig 6.

Fig. 5. Joystick axes and buttons

Fig. 6. Selectable surroundings

4.2. Visual user interface

 The visual user interface consists of two parts:
the indicator user interface and virtual reality.

 The simultaneous use of both interface parts
gives the user better and more complete picture
about real ROV position and orientation and about
ROV’s interaction with the environment. Fig 7
presents the indicator user interface which consists
of speed, depth, position and heading indicators.

Fig. 7. Indicator user interface

 ROV position is determined by the position of
the mobile coordinate frame origin in the fixed
coordinate frame, while the depth is just a position
coordinate in D-axis direction. The shown speed is
the absolute translatory speed of the ROV:

222 wvuvel ++= . (10)

 Heading can be determined from the ROV’s
orientation vector in the NED coordinate frame -
equation (3). If the z-axis of the mobile coordinate
frame is parallel with D-axis of the fixed coordinate
frame, which is true in this case, the course is the
third element of the

NED2
η vector.

 VRML (Virtual Reality Modeling Language) is
used for realization of virtual reality [4, 5]. It is a
programming language which is used for 3D
interactive scenes visualization, and it is primarily
developed for 3D visualization over the Internet.
 Using VRML it is possible to change scene
objects colors, textures and transparency.

It is possible to integrate animations, sounds, light
effects, and various sensors into the virtual world.
Program code implementation is possible (written in
Java or Java script) by insertion of Script Node.
Files created in this format have .wrl extension and
are saved in textual format, which means that only a
text editor is needed for VRML programming. Fig. 8
shows one scene in virtual reality during a
simulation.

Fig. 8. Virtual reality scene – in the middle of a
simulation

 The blue section in the bottom part of Fig 8 is
used for viewpoint control and navigation through
the virtual world. This way it is possible to observe
specific situations from various viewpoints, in order
to get the real picture of ROV’s position and
orientation in its surrounding.

5. SIMULATOR VERIFICATION

 The simulator implements many features like:
various predefined points of view fixed to ROV and
viewpoints fixed to the Earth-fixed coordinate
frame, camera management (zoom in/out, tilt
up/down), point of view control using joystick,
lights which enable realistic scene illumination in
every moment of simulation, changing ROV lights
intensity, visibility decrease in relation to ROV’s
depth, gripper management, change of propeller
rotation direction and velocity in relation to ROV
direction and velocity, switching on/off of
coordinate axes.
 Some examples of mentioned features are shown
in text and figures below. Front camera control is
presented in Fig. 9. Fig. 9a to 9e show the front
camera view and Fig. 9f is obtained by changing the
point of view using joystick button 3 and joystick
manipulations. The yellow spot in Fig 9a, 9b, 9c and
9e is the mobile coordinate frame x-axis.

a) b)

c) d)

e) f)

Fig. 9. Front camera and point of view control using
joystick: a) initial position, b) tilt down, c) tilt up, d)

zoom in, e) zoom out, f) changing point of view

 Gripper and light intensity management is shown
in Fig. 10a and Fig 10b. The front camera view with
low light intensity and with gripper opened just a bit
is shown in Fig 10a, while Fig 10b presents fully
opened gripper and maximum light intensity. Fig.
10c presents the point of view fixed to Earth-fixed
coordinate frame, while coordinate axes are
switched on. Collision detection problem is shown
in Fig 10d – ROV is passing through the wall.

a) b)

c) d)

Fig. 10. Lights and gripper management

6. CONCLUSION

 Although the implemented ROV simulator does
not contain ROV dynamics, it has many other
features. The simulator is modular in structure and it
supports connecting a ROV dynamics module and
other upgrade modules. Also, it supports connecting
real ROV signals to the simulator visualization
block. This feature allows many new possibilities
such as ROV visualization while the operator cannot
directly see the ROV. The kinematic model and the
whole visualization are implemented in the virtual
reality. A big lack of this simulator is nonexistence
of collision detection between ROV and other
objects in the virtual scene. The virtual model
implements adjustable dynamic lights which move
together with the ROV and in this way contributes to
even more realistic visualization. The visibility
change in relation to ROV depth contributes to the
same realistic feeling. Gripper management is also
implemented. Some added simulator features like
front camera zoom and coordinate axes on/off
switch, are not present on this actual ROV –
VideoRay Pro II. Three types of environment are
offered. Complex area is used for operator training,
while the circle and rectangular pool are used for
laboratory research needs. Rotation direction
selection of each propeller is offered by menu.
 The implementation of ROV dynamics is
needed for future research. In order to make the
simulator closer to reality, it is needed to implement
modules which simulate disturbances like sea waves
and sea current [6], and to solve the collision
detection problem.

ACKNOWLEDGEMENT

 We would like to thank Edin Omerdic, Nikola
Mišković and Marin Stipanov for their support and
helpful comments during development of this
simulator.

REFERENCES

[1] Z. Fabeković, VideoRay Pro II Simulator,

Master Thesis, University of Zagreb FER,
Croatia 2006. (in Croatian)

[2] Thor I. Fossen, Guidance and Control of
Ocean Vehicles, John Wiley & Sons, 1994.

[3] Z. Kovačić, S. Bogdan, V. Krajči: Robotics
Basics, Graphis, Zagreb 2002. (in Croatian)

[4] VRML 2.0 specification, Available at
http://graphcomp.com/info/specs/sgi/vrml/spec

[5] VideoRay Pro II technical specifications
[6] Z. Vukić, Lj. Kuljača, Automatic Control -

linear systems analysis, Kigen, Zagreb 2005.
(in Croatian)

View publication statsView publication stats

https://www.researchgate.net/publication/4305757

