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Abstract - The ROV Simulator was developed as modular structure with the possibility of connecting signals 
received from the real ROV. Programming language VRML helped in developing a 3D model of the ROV and 
the interaction between the ROV and the virtual world has been achieved. The kinematics of the ROV was 
implemented for simulator needs. The simulator menu offers different virtual environments. The simulator has 
different additional possibilities such as: gripper management, realistic illumination and camera manipulations. 
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1. INTRODUCTION 
 
 In recent years, increasing attention is dedicated 
to the development of unmanned vehicles.  Reasons 
for growing research efforts in this area are in the 
inconvenience of human work in inaccessible, and 
sometimes life threatening surroundings, and lower 
mission costs if men are not included.  
 Unmanned vehicles can be classified by control 
method and by surroundings in which they operate. 
By control methods there are autonomous vehicles 
and remotely operated vehicles. By the surroundings 
in which they operate there are underwater, surface 
and air vehicles. Unmanned vehicles find the use in 
different areas of human activities: military, 
industry, medicine, space research, underwater 
research, clearing mined areas etc. 
   For practical as well as financial reasons 
simulators are used during the development of 
unmanned vehicles.  Simulators are models of real 
systems which contain all their important 
characteristics. Most often they are used for testing 
of control algorithms, for planning mission 
algorithms and behavior testing of systems in 
predicted and unpredicted, normal and extreme 
conditions. They are successfully used in training 
sessions for operators who control vehicles when 
training on real objects is too expensive or simply 
too hot to handle. 
 The fact that over 70% of Earth surface is 
covered by water and that most of that area is not 
investigated gives us enough motive for developing 
new unmanned underwater vehicles. 
  Unmanned underwater vehicles are divided by 
control method into autonomous unmanned vehicles 
(AUV) and remotely operated vehicles (ROV). 
Small size ROV-s are also called Micro ROV-s (Fig. 
1).  
 

  
 

Fig. 1. Micro ROV 
  
 
2. SIMULATOR STRUCTURE 
 
 The simulator is developed to be modular with 
the possibility of enlargement of functionalities and 
simple parameter alternation [1]. 
  
2.1. Structure of entire simulator 
 
 Structure of the entire simulator is shown in Fig. 
2. The simulator input is represented by the control 
part of the user interface which contains the joystick 
and other controls (camera, light controls etc.).  
 

 
 

Fig. 2. Structure of the simulator 
 
  



 The next block is used for joystick signals 
conditioning. This block output is the vector of 
desired forces and moments dτ . The Control 
allocator task is used to calculate control signals 
(u ) for individual actuators, such that the real forces 
and moments (the Propulsion System output) 
produced by actuators are equal to the desired 
( dττ = ).  The forces and moments given by the 
propulsion system are used as inputs for the dynamic 
model (Dynamics block). 
 The dynamic model calculates ROV velocities in 
mobile coordinate frame ( MOBv ) which are used as 
inputs for the kinematic model – Kinematics block. 
Using these velocities and with presumption that 
ROV initial position is known, kinematic model 
gives the ROV position and orientation in the Earth-
fixed coordinate frame (

NED
η ). Position and 

orientation vector 
NED

η  together with data received 

from control panel are used in process of creation as 
well as refreshing virtual reality and the indicator 
part of user interface. 
   
2.2. Structure of implemented part of simulator 
 
 The implemented part of the simulator is shown 
in Fig. 2 surrounded by a dashed line . It consists of 
the kinematics and visualization which is realized 
using virtual reality. This part of the simulator, 
realized in MATLAB (The MathWorks Inc.) and 
adjusted for testing, is shown in Fig. 3.  
 

 
 

Fig. 3. Implemented part of the simulator 
 
 
 3. KINEMATIC MODEL 
  
 In order to develop the kinematic ROV model it 
is necessary to define two different coordinate 
frames. The first one is the Earth-fixed coordinate 
frame - NED (North-East-Down) which is defined in 
the way that the orthogonal axes N and E stretch out 
the tangential plane on the Earth surface, while the 
third axis D is directed down to the center of the 
Earth and together with axes N and E creates a right- 

oriented orthogonal coordinate frame.  
 The second one – mobile coordinate frame 
(MOB with axes x, y and z) – is connected to the 
ROV. At the start of the simulation its axes are 
matching the Earth-fixed axes: x corresponds to N, y 
to E and z to D. Mobile and Earth-fixed coordinate 
frames are shown on Fig. 4. 
 

 
 
Fig. 4. Coordinate frames: a) Earth-fixed, b) Mobile 
 
 To realize the kinematic model [2, 3] a new 
notation of coordinate frames is needed.  Position 
and orientation vectors are given in relation to the 
Earth-fixed coordinate frame: 
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where the ROV position vector in relation to NED 
is: 
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and ROV orientation vector in relation to NED is:  
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 Velocities are expressed in relation to the Mobile 
coordinate frame: 
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where the linear velocities vector in direction of x, y 
and z coordinate axes is: 
 

[ ]TT
MOB wvu ,,1 =ν , (5) 

 
and the angular velocities vector arround x, y and z 
axis in MOB coordinate frame,  in counter-
clockwise (CCW) direction is: 
  

[ ]TT
MOB rqp ,,2 =ν . (6) 

 
 The kinematic model can now be written in 
vector form as: 
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where: 
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where: )cos(),sin( ⋅=⋅⋅=⋅ cs  and )tan( ⋅=⋅t . 
 
 As it is shown in equation 9, there is a problem 
in the realization of this kinematic model because 
there exists possibility of dividing by zero in the 
case of a 90° twist around y axis (pitch angle = 
±90°). This problem is usually ignored because most 
ROV-s, including this one, cannot move in such 
way.   
 
 
4. USER INTERFACE 
 
 The user interface is designed in two functionally 
different parts: control user interface and visual user 
interface.  
 
4.1. Control User interface 
 
 A set of various simulator controls, including 
joystick controls and initial adjustments, can be 
found on the control user interface.  
 The joystick and its controls are shown in Fig. 5, 
while Table 1 presents joystick axes and buttons 
with assigned functions.   
 

Table 1. 
 

Control Function 
X-axis Forward / Backward 
Y –axis Roll 

Ax
es

 

Z – axis 
(Throttle) Depth control 

Button 2 Coordinate axes – on/off 
Button 3 Perspective (view point) control
Button 4 Perspective – RESET 
Button 5 Gripper – close 
Button 6 Gripper – open 
Button 7 Light intensity -  down 
Button 8 Light intensity -  up 

0° Tilt Up 

90° Zoom In 

180° Tilt Down 
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270° Zoom Out 

 Various initial adjustments are available, such as 
joystick axes sensitivity, dead-zones for each axis, 
propeller rotation direction (CCW, CW).  
 Also, it is possible to choose between the three 
surroundings shown in Fig 6.  
 

 
 

Fig. 5. Joystick axes and buttons 
 
 

 
 

Fig. 6. Selectable surroundings 



4.2. Visual user interface 
 
 The visual user interface consists of two parts: 
the indicator user interface and virtual reality.  
 
 The simultaneous use of both interface parts 
gives the user better and more complete picture 
about real ROV position and orientation and about 
ROV’s interaction with the environment.  Fig 7 
presents the indicator user interface which consists 
of speed, depth, position and heading indicators. 
 

 
 

Fig. 7. Indicator user interface 
 
 ROV position is determined by the position of 
the mobile coordinate frame origin in the fixed 
coordinate frame, while the depth is just a position 
coordinate in D-axis direction. The shown speed is 
the absolute translatory speed of the ROV: 
 

222 wvuvel ++= . (10) 
 
 Heading can be determined from the ROV’s 
orientation vector in the NED coordinate frame - 
equation (3). If the z-axis of the mobile coordinate 
frame is parallel with D-axis of the fixed coordinate 
frame, which is true in this case, the course is the 
third element of the 

NED2
η  vector.  

 VRML (Virtual Reality Modeling Language) is 
used for realization of virtual reality [4, 5]. It is a 
programming language which is used for 3D 
interactive scenes visualization, and it is primarily 
developed for 3D visualization over the Internet.  
 Using VRML it is possible to change scene 
objects colors, textures and transparency.  
 
 

It is possible to integrate animations, sounds, light 
effects, and various sensors into the virtual world. 
Program code implementation is possible (written in 
Java or Java script) by insertion of Script Node. 
Files created in this format have .wrl extension and 
are saved in textual format, which means that only a 
text editor is needed for VRML programming. Fig. 8 
shows one scene in virtual reality during a 
simulation.  
 

 
 

Fig. 8.  Virtual reality scene – in the middle of a 
simulation 

 
 The blue section in the bottom part of Fig 8 is 
used for viewpoint control and navigation through 
the virtual world. This way it is possible to observe 
specific situations from various viewpoints, in order 
to get the real picture of ROV’s position and 
orientation in its surrounding.  
 
 
5. SIMULATOR VERIFICATION 
 
 The simulator implements many features like: 
various predefined points of view fixed to ROV and 
viewpoints fixed to the Earth-fixed coordinate 
frame, camera management (zoom in/out, tilt 
up/down), point of view control using joystick, 
lights which enable realistic scene illumination in 
every moment of simulation, changing ROV lights 
intensity, visibility decrease in relation to ROV’s 
depth, gripper management, change of propeller 
rotation direction and velocity in relation to ROV 
direction and velocity, switching  on/off  of 
coordinate axes. 
 Some examples of mentioned features are shown 
in text and figures below. Front camera control is 
presented in Fig. 9. Fig. 9a to 9e show the front 
camera view and Fig. 9f is obtained by changing the 
point of view using joystick button 3 and joystick 
manipulations. The yellow spot in Fig 9a, 9b, 9c and 
9e is the mobile coordinate frame x-axis.  



  
a) b) 

  
c) d) 

  
e) f) 

 
Fig. 9. Front camera and point of view control using 
joystick: a) initial position, b) tilt down, c) tilt up, d) 

zoom in, e) zoom out, f) changing point of view 
 
 Gripper and light intensity management is shown 
in Fig. 10a and Fig 10b. The front camera view with 
low light intensity and with gripper opened just a bit 
is shown in Fig 10a, while Fig 10b presents fully 
opened gripper and maximum light intensity. Fig. 
10c presents the point of view fixed to Earth-fixed 
coordinate frame, while coordinate axes are 
switched on. Collision detection problem is shown 
in Fig 10d – ROV is passing through the wall. 
 

  
a) b) 

  
c) d) 

 
Fig. 10. Lights and gripper management 

 
  

6. CONCLUSION 
 
 Although the implemented ROV simulator does 
not contain ROV dynamics, it has many other 
features. The simulator is modular in structure and it 
supports connecting a ROV dynamics module and 
other upgrade modules.  Also, it supports connecting 
real ROV signals to the simulator visualization 
block. This feature allows many new possibilities 
such as ROV visualization while the operator cannot 
directly see the ROV.  The kinematic model and the 
whole visualization are implemented in the virtual 
reality. A big lack of this simulator is nonexistence 
of collision detection between ROV and other 
objects in the virtual scene. The virtual model 
implements adjustable dynamic lights which move 
together with the ROV and in this way contributes to 
even more realistic visualization.   The visibility 
change in relation to ROV depth contributes to the 
same realistic feeling. Gripper management is also 
implemented. Some added simulator features like 
front camera zoom and coordinate axes on/off 
switch, are not present on this actual ROV – 
VideoRay Pro II.  Three types of environment are 
offered. Complex area is used for operator training, 
while the circle and rectangular pool are used for 
laboratory research needs. Rotation direction 
selection of each propeller is offered by menu. 
  The implementation of ROV dynamics is 
needed for future research. In order to make the 
simulator closer to reality, it is needed to implement 
modules which simulate disturbances like sea waves 
and sea current [6], and to solve the collision 
detection problem.   
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