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Abstract: This paper focuses on the formation tracking issue of autonomous underwater vehicles
(AUVs) subject tomultiple constraints in three‑dimensional space. We developed a novel distributed
Lyapunov‑basedmodel predictive controller (DLMPC)with a fast finite‑time extended state observer
(FFTESO). Initially, the external disturbances and internal uncertainties of each AUV were precisely
compensated using the designed FFTESO. Subsequently, we proposedDLMPC‑based position track‑
ing and velocity tracking controllers, which solved an online optimization problem to determine
optimal velocities and control forces. This hierarchical framework effectively managed system con‑
straints, such as state constraints and actuator saturation. Additionally, the Lyapunov‑based back‑
stepping control law was applied to construct stability constraints in the distributed optimization
problem, ensuring the recursive feasibility and closed‑loop system stability of the proposed scheme.
Sufficient conditions and attraction regions to ensure stability were explicitly provided. Finally, the
simulation results demonstrated that the proposed method improved both the convergence speed
and tracking accuracy by at least 30% compared to other methods.

Keywords: autonomous underwater vehicles; finite‑time extended state observer; distributed
Lyapunov‑based model predictive control; formation trajectory tracking; multiple constraints

1. Introduction
Due to their critical role in undersea exploration and hydrographic observation, au‑

tonomous underwater vehicles (AUVs) have emerged as the most effective tools for ocean
development thus far [1]. In contrast to the limitations of individual AUVs, multi‑AUV
systems offer a broader detection range, heightened operational efficiency, and enhanced
redundancy performance. Given these significant advantages, research on AUV forma‑
tion control has garnered increasing attention [2]. The primary challenge is to ensure
the stability of the formation motion in intricate underwater environments with multiple
constraints [3]. Addressing this issue, researchers have undertaken extensive studies in
recent years. A behavioral decision‑making‑based path planning method for AUVs was
proposed in [4], but the built‑in model creates challenges for mathematical analysis. The
leader–follower method, introduced for AUV formation tracking control in [5], confronts
challenges related to poor robustness and fault tolerance due to the presence of a desig‑
nated leader. Consequently, there has been a growing focus on the more promising lead‑
erless formation approach [6]. In [7], a virtual structure‑based method for AUV formation
control was developed, but its flexibility and applicability are constrained. Despite sub‑
stantial research in this domain, crafting a control scheme that provides optimal control
performance while accommodating multiple constraints remains a primary research ob‑
jective for multi‑AUV systems.

Themost typical constraints are the various disturbances encountered byAUVs. These
include internal disturbances within the system, such as model uncertainties caused by
coupled dynamics and varying system parameters [8]. Another significant factor is the un‑
predictable external disturbances caused by currents in the actual ocean environment [9].
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Additionally, system constraints impose considerable challenges on AUV formation mo‑
tion. For instance, the cruising speed and attitude angle of an AUV are subject to specific
limitations [10]. These intrinsic state constraints place substantial demands on the design
of the controller. Furthermore, actuator saturation constraints are a pertinent concern in
real applications, stemming from limitations in the active drive force due to the physical
characteristics of the actuator. If the control inputs violate this limit, it will degrade the con‑
trol performance of the system [11]. The traditional controlmethods in the aforementioned
studies have difficulty in achieving optimal control performance. In contrast, model pre‑
dictive control (MPC) offers notable advantages in explicitly managing system constraints
and optimizing performance [12]. It has found widespread application in various control
systems subject to multiple constraints. In terms of AUV formation control, distributed
model predictive control (DMPC) has garnered increased attention among researchers. As
a result, there is an urgent need to provide an AUV formation control strategy that guaran‑
tees closed‑loop system stability under external disturbances, internal model uncertainties,
and system constraints.

In response to the above facts and challenges, we propose a novel FFTESO‑based hi‑
erarchical DLMPC strategy for AUV formation tracking systems subject to multiple con‑
straints in the complex ocean environment. The scheme precisely compensates for lumped
disturbances while concurrently accounting for system constraints, such as actuator satu‑
ration and state constraints. The Lyapunov‑based backstepping method is employed to
ensure closed‑loop stability.

The subsequent sections of this paper are organized as follows. Section 2 overviews
related works on responses to multiple constraints and MPC. Section 3 presents the AUV
modeling and problem formulation. Section 4 proposes the methodology, including the
design of the FFTESO and DLMPC‑based hierarchical tracking controllers, as well as the
theoretical analysis of the system stability. In Section 5, the comparative simulation results
are demonstrated. Finally, conclusions are drawn in Section 6.

2. Related Work
In recent decades, to enhance the robustness and adaptability of formation control

systems against disturbances, diverse advanced methods have been explored. These en‑
compass disturbance observers [13], adaptive control methods [14], and strategies involv‑
ing neural networks [15]. Notably, the extended state observer (ESO) stands out due to its
superior property of not requiring precise information about the controlled object. In re‑
cent years, the ESO technique proposed in [16] has demonstrated potential for disturbance
compensation. It treats internal uncertainties and external environmental disturbances as
lumped disturbances, extending them into a new state. In [17], an output feedback mo‑
tion control method employing a high‑gain ESO was developed. This method effectively
compensates for measurement errors, external disturbances, and model uncertainties in
remotely operated vehicles. Additionally, Ref. [18] introduced AUV tracking controllers
based on a generalized ESO and a harmonic ESO, which are intended to ensure path track‑
ing even in the presence of lumped disturbances. Despite the diversity of ESOs developed
by researchers, their capability is often constrained to ensuring asymptotic convergence on
the observation error without effectively limiting the convergence time. To enhance higher
estimation accuracy in complex environments, there is a growing attraction towards finite‑
time ESO.

The design strategy for conventional FTESOs is presented in [19] and the estimation of
the convergence timeunder different cases is given for the first time. A robust fault‑tolerant
controller based on FTESO was designed in [20] to estimate the lumped disturbances of
spacecraft. The control algorithm incorporates nonsingular terminal sliding mode and
super‑twisting methods. The authors of [21] investigated a safety control based on the
FTESO adaptive neural network for unmanned aerial vehicles. The double‑power FTESO
was utilized to compensate for lumped disturbances. Nevertheless, there is room for fur‑
ther optimization of the observer’s structure to enhance compensation performance.
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To cope with actuator saturation and state constraints, an adaptive energy‑saving tra‑
jectory tracking control strategy for AUVs was proposed in [22]. A compensator based on
radial basis function neural network was used to solve the problems of saturation of the
actuator and multi‑objective optimization. In [23], an adaptive super‑twisting algorithm‑
based sliding mode controller (ASTASMC) was introduced for the formation control prob‑
lem in a multi‑AUV recovery system. This controller utilizes a robust adaptive law to
estimate unclear hydrodynamic parameters and unknown environmental disturbances in
real time.

DMPC addresses constrained optimization problems based on information from the
AUV itself and its neighboring vehicles. In [24], a DMPC‑based formation trackingmethod
for AUV systems subject to input constraints was introduced. However, it is important to
note that this approach solely considered the kinematics of the AUV and did not support
a realistic AUV model. Addressing the AUV formation control under compound distur‑
bances, Ref. [25] proposed a FTESO‑based dual closed‑loop DMPC scheme. However, sta‑
bility analysis for optimal control problemswithin a finite horizon has proved challenging,
often requiring the addition of suitable terminal constraint sets or selecting sufficiently
large prediction horizons [26]. To overcome these limitations, a Lyapunov‑based MPC
(LMPC) method was proposed in [27], ensuring the stability of the control system through
the construction of Lyapunov contraction constraints. This method inherits the stability
and robustness of the Lyapunov‑based control law, offering valuable insights for the de‑
sign of AUV formation controllers. Based on stochastic Lyapunov feedback control strate‑
gies, Ref. [28] developed a Lyapunov‑based MPCmethod for nonlinear systems subject to
stochastic uncertainties. The authors of [29] studied iterativeDMPCmethod for large‑scale
nonlinear systems subject to asynchronous and delayed state feedback. The stability con‑
straints of the iterative DMPC were formulated by utilizing the Lyapunov‑based control
technique. To the best of our knowledge, a Lyapunov‑based distributed predictive control
law was only proposed in [30] to solve the three degrees‑of‑freedom (DOF) AUV forma‑
tion tracking issue under time‑varying disturbances. However, its applicability is limited
to plane motion and does not consider model uncertainties. The state‑of‑the‑art methods
related to DLMPC are summarized in Table 1.

Table 1. Comparison between state‑of‑the‑art methods.

Methods Applications Main Contributions Limitations

LMPC [27] Trajectory tracking for
AUVs

Stability constraints for
LMPC systems of AUVs
are given for the first

time

The lumped
disturbances are ignored
and the closed‑loop

stability is conservative

Stochastic
LMPC [28]

Nonlinear systems with
unbounded stochastic

uncertainties

Stability constraints are
explicitly characterized
in a probabilistic sense

Applicability and
scalability can be further

improved

Iterative
DLMPC
[29]

Nonlinear systems with
asynchronous and

delayed state feedback

Iterations can be
terminated at any

number without loss of
closed‑loop stability

Stability is limited by the
dynamic behavior of the

open‑loop process

DLMPC
[30]

Formation tracking for
3DOF AUVs

Contraction constraints
are given for the stability

of AUV disturbed
formation

Only planar motion is
considered and the
control structure is

simple

With respect to existing works, the principal contributions of this scheme include:
1. Compared with the existing DLMPC method [30], we have considered the lumped

disturbances and improved the control structure. Ahierarchical structure is employed,
comprising a position controller and a velocity controller, aimed at generating the de‑
sired velocity and control force. This adaptation not only mitigates the challenge of
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accessing the optimal solution but also augments the controllability of the velocity,
thereby improving the spatial tracking accuracy of the formation system.

2. Compared to the FTESO utilized in [19,31], we have enhanced convergence speed by
augmenting linear terms. This enables faster compensation of the disturbances for
online updating of the prediction model. It not only enhances the estimation accu‑
racy and convergence speed but also effectively mitigates the fluctuations of lumped
disturbances. Hence, the robustness of the multi‑AUV system is enhanced.

3. The Lyapunov‑based backstepping control law is utilized to institute stability con‑
straints within the DMPC problem. This choice ensures the recursive feasibility of
the control algorithm and the stability of the closed‑loop system. The conditions and
attraction regions sufficient to ensure stability are explicitly given. The control per‑
formance of formation tracking is substantially improved.

3. Preliminaries
In this section, we present the AUV model and problem formulation, where a new

version of the dynamic equation is demonstrated based on the task constraints.

3.1. AUV Modeling
The article selects a fully‑actuated torpedo‑type AUV from the literature [32] aligning

with the task objectives. As shown in Figure 1, a 6DOF AUV is typically described by
two reference frames: an earth‑fixed frame {E} and a body‑fixed frame {B}. Since this
AUV can be regarded as a highly metacentric stable vehicle with self‑stable roll motion,
we ignore the effect of roll; that is, roll angle ϕi = 0, roll angular velocity pi = 0, and
the spatial motion of AUV is regarded as a 5DOF motion process. The kinematics and
dynamics of the ith AUV are expressed as [33]:

.
ηi = Ji(ηi)vi (1)

Mi
.
vi + Ci(vi)vi +Di(vi)vi + gi(ηi) = τi + τic (2)

where i = 1, 2, . . . , N, ηi = [xi, yi, zi, θi, ψi]
T ∈ R5 denotes the states of position and orien‑

tation of AUV, vi = [ui, vi, wi, qi, ri]
T ∈ R5 denotes the velocity states of the AUV. Ji(ηi) is

a rotation transformation matrix from the body‑fixed frame to the earth‑fixed frame and is
assumed to be invertible (i.e., |θi| < π/2), expressed as:

Ji(ηi) =


cos ψi cos θi − sin ψi cos ψi sin θi 0 0
sin ψi cos θi cos ψi sin ψi sin θi 0 0
− sin θi 0 cos θi 0 0

0 0 0 1 0
0 0 0 0 1/ cos θi

 (3)

Mi denotes the inertial matrix. Ci(vi) and Di(vi) represent the Coriolis and centripetal
and hydrodynamic damping matrix, respectively. The gravitational and buoyancy forces
of this AUV are balanced with each other such that the restoring force gi(ηi) is approxi‑
mated to be zero. τi =

[
τiu, τiv, τiw, τiq, τir

]T denotes the control force and moment, and
τic =

[
τicu, τicv, τicw, τicq, τicr

]T represents the time‑varying unknown external disturbance.
Specific expressions for these matrices are given in [34].

In practical applications, acquiring precise hydrodynamic coefficients for the AUV
model might be challenging. It can generally be assumed that the coefficients are subject
to certain perturbations ranging from−20% to 20% [35]. Thus, the parameter matrices are
divided intoMi = M∗

i + ∆Mi, Ci(vi) = C∗
i (vi) + ∆Ci(vi), and Di(vi) = D∗

i (vi) + ∆Di(vi),
(·)∗i represents the nominal part that can be determined by the computational fluid dy‑
namics (CFD) [36]. ∆(·)i denotes the difference between the actual and nominal parts, i.e.,
model uncertainties.
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Then, the dynamic model (2) of ith AUV with the above constraints is rewritten as:

M∗
i
.
vi + C∗

i (vi)vi +D∗
i (vi)vi = τi + τid (4)

where τid = τic − ∆Mi
.
vi − ∆Ci(vi)vi − ∆Di(vi)vi is considered as the lumped disturbance,

including environmental disturbances andmodel uncertainties. In general, external distur‑
bances exhibit limited energy and periodic variations. The model uncertainties are limited
by the actual state and physical features of the AUV. Therefore, we make the following
rational assumption:

Assumption 1 ([37]). The external disturbance τic and its first derivative 
.
τic are bounded, and

the model uncertainties ∆Mi, ∆Ci, and ∆Di are unknown and bounded. Therefore, the lumped
disturbance τid is bounded and satisfies ∥τid∥ ≤ τid, τid ∈ R+.

3.2. Problem Formulation
To better characterize the information exchange between the AUVs, we adopted a

directed topology graph G = {V, ε} to describe the formation communication. The node
set V = {V1, V2, · · · , VN} denotes the N AUVs, and an edge set ε ⊆ V × V describes the
information interaction from the node Vi to the node Vj. Define A =

[
aij
]
as an adjacency

matrix, where aij denotes the connection weight and aij = 1 if (i, j) ∈ ε, while aij = 0 if
(i, j) /∈ ε. Presume that the ith AUV has the capability to receive local information from the
virtual leader and the neighbors Ni = {j ∈ V : (j, i) ∈ ε} [38].

Next, we formulate the AUV formation tracking control problem. In order for the
AUV formation to track the reference trajectory ηr smoothly while maintaining the pre‑
scribed shape, the ith AUV is driven to satisfy: (1) Tracking: lim

t→∞
∥ηi(t)− ηr(t)∥ = dir;

lim
t→∞

∥vi(t)− vid(t)∥ = 0. (2) Formation: lim
t→∞

∥∥ηi(t)− ηj(t)
∥∥ = dij, with dir denoting the

formation configuration vector and dij denoting the relative distance vector between the
ith AUV and the jth AUV.

4. Methodology
In this section, to address the AUV formation control issue subject to complex con‑

straints, wedevelop a novel distributedLyapunov‑basedmodel predictive tracking control
scheme. Initially, recognizing the presence of lumped disturbances that cannot be directly
measured, a fast FTESO is devised to compensate for this constraint. Then, we make struc‑
tural adaptation to the existing DLMPCmethod that uses a hierarchical design of position
and velocity tracking controllers to handle the other constraints. Stability constraints are
constructed based on Lyapunov theory. Finally, we analyze the feasibility and stability of
the AUV formation system.
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4.1. Design and Stability Analysis of FFTESO
Given the efficacy of the extended state observationmethod in estimatingdisturbances

and model uncertainties, we propose a novel FFTESO to concurrently compensate for the
lumped disturbances within the AUV formation.

To facilitate the FFTESO design, the AUV dynamics model (4) with respect to the
earth‑fixed frame can be further transformed as:

..
ηi = −M−1

iη

[
Ciη

.
ηi +Diη

.
ηi − J−T

i (ηi)(τi + τid)
]

(5)

where Ciη = J−T
i (ηi)

[
C∗

i (vi)−M∗
i J

−1
i (ηi)

.
Ji(ηi)

]
J−1

i (ηi), Diη = J−T
i (ηi)D∗

i (vi)J−1
i (ηi),

Miη = J−T
i (ηi)M∗

i J
−1
i (ηi). Then, define the auxiliary variables µi =

.
ηi = Ji(ηi)vi, fi(µi)µi =

M−1
iη
(
Ciη +Diη

) .
ηi, di = M−1

iη J−T
i (ηi)τid, so the AUV’s system model (1) and (2) are trans‑

formed to { .
ηi = µi.
µi = −fi(µi)µi +M−1

iη J−T
i τi + di

. (6)

Next, we define some new variables zi1 = ηi, zi2 = µi, and the lumped disturbances
are regarded as an extended state zi3, denoted as zi3 = di with

.
zi3 = σi. In Assumption

1, di is bounded and continuously differentiable as well, and the components of its first
derivative σi satisfies

∣∣σip
∣∣ ≤ σi, p = 1, 2, . . . , 5, where σi is an unknown upper bound.

Afterward, the mathematical model of the ith AUV can be extended as:
.
zi1 = zi2.
zi2 = −fi(zi2)zi2 +M−1

iη J−T
i τi + zi3

.
zi3 = σi

. (7)

Denote
^
zi1,

^
zi2, and

^
zi3 as the estimation of states zi1, zi2 and zi3 in the extended sys‑

tem (7), and ei1 =
^
zi1 − zi1, ei2 =

^
zi2 − zi2, ei3 =

^
zi3 − zi3 as the estimation errors of the

position, velocity, and lumped disturbance, respectively. Then, the FFTESO for the ith
AUV is designed as:

.
^
zi1 =

^
zi2 − βi1

(
⌈ei1⌋αi1 + ei1

)
.
^
zi2 =

^
zi3 − βi2

(
⌈ei1⌋αi2 + γiei1

)
− fi(

^
zi2)

^
zi2 +M−1

iη J−T
i τi

.
^
zi3 = −βi3

(
⌈ei1⌋αi3 + γ2

i ei1
) (8)

with the observer gains satisfying βik > 0, k = 1, 2, 3, αi1 ∈ (2/3, 1) and αi2 = 2αi1 − 1,
αi3 = 3αi1 − 2, γi = |ei1|αi1−1, ⌈ei1⌋αik = sign(ei1)|ei1|αik with |ei1|αik =

[
|ei11|αik , |ei12|αik

]
,…,[

|ei1n|αik
]T . Based on the model (7) and the designed FFTESO (8), the observation error

dynamics are: 
.
ei1 = ei2 − βi1

(
⌈ei1⌋αi1 + ei1

)
.
ei2 = ei3 − βi2

(
⌈ei1⌋αi2 + γiei1

)
+ fi(zi2)zi2 − fi(

^
zi2)

^
zi2.

ei3 = −βi3
(
⌈ei1⌋αi3 + γ2

i ei1
)
− σi

. (9)

The convergence analysis of the FFTESO (8) is presented in the following theorem.

Theorem 1. Consider the formation control system of the AUV model (7) under Assumption 1. If
the FFTESO is designed as in (8) to satisfy the specified observer gain constraints, then the estima‑
tion errors ei =

[
eT

i1, eT
i2, eT

i3
]T  will converge to the stability region Ωi within a finite time Ti f .

Proof.  See Appendix A. □
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4.2. Position Tracking Controller
In this subsection, we explain our design of the DLMPC‑based position tracking con‑

troller. It makes the ith AUV track the reference trajectory ηr by outputting the desired
driving speed, thereby converging the position tracking error. It supplies the optimal de‑
sired speed needed by the velocity tracking controller.

The reference trajectory is defined as ηr = [xr, yr, zr, θr, ψr]
T . Here, to avoid singulari‑

ties in the reference trajectory, we make the following assumption:

Assumption 2 ([25]). The reference trajectory ηr and its derivatives are smooth and bounded, sat‑
isfying the equation ∥ηr∥∞ ≤ ηr, 

∥∥ .ηr
∥∥

∞ ≤ ηr1, 
∥∥ ..ηr
∥∥

∞ ≤ ηr2 with positive constants ηr, ηr1,
ηr2.

The kinematic model for the ith AUV position tracking can be established by (1):
.
xi1 = Ji(ηi)vi = fi1(xi1, ui1) (10)

where xi1 = [xi, yi, zi, θi, ψi]
T and ui1 = [ui, vi, wi, qi, ri]

T are the state and the control input
of the ith AUV, respectively. To fulfill the control objective of each AUV, the DLMPC
optimization problem for the position tracking controller can be formulated as:

min
ui1∈C(h)

Ji1 =
∫ T

0

(
∑

j∈Ni

aij
∥∥xij(s)

∥∥2
Qij

+ ∥ ˜xi1(s)∥2
Qi1

+ ∥ui1(s)∥2
Ri1

)
ds (11a)

s.t.
.
⌢
x i1(s) = fi1

(
⌢
x i1(s), ui1(s)

)
(11b)

⌢
x i1(0) = xi1|t=t0

(11c)

xmin
i1 ≤ ⌢

x i1(s) ≤ xmax
i1 (11d)

∥ui1(s)∥∞ ≤ umax
i1 (11e)

.
Vip

∣∣∣
ui1(0)

≤
.

Vip

∣∣∣
uvir

i1 (0)
(11f)

where
⌢
x i1(s) denotes the predicted state trajectory, xij =

⌢
x i1 −

⌢
x j1 − dij,

˜
xi1 =

⌢
x i1 − ηr −

dir. C(h) represents the cluster of piecewise functions featured by the sampling period h,
T = Mh denotes the prediction horizon. Qij,Qi1 andRi1 represent weightingmatrices that
are diagonal and positive‑definite. (11c) is the initial state condition. (11d) represents the
position state constraint. (11e) represents the control input constraint. (11f) is the stabil‑
ity constraint constructed by the Lyapunov‑based virtual control law uvir

i1 and the relevant
Lyapunov function Vip, which explicitly characterizes the guaranteed region of attraction.
This is designed to circumvent the local linearization of the standard DMPCwhile guaran‑
teeing the stability of the formation tracking. One should note that uvir

i1 does not actually
control the vehicle but only ensures system stability.

Then, we construct the concrete expression of the stability constraints in (11f), which
involves determining an appropriate state‑feedback controller and the corresponding Lya‑
punov function. Various nonlinear control techniques, such as sliding mode control and
backstepping, can be employed. For the trajectory tracking problem, we select the back‑
stepping method to develop the Lyapunov‑based nonlinear controller.

Let ηi denote the trajectory of the ith AUV, and ηir = ηr + dir = [xir, yir, zir, θir, ψir]
T

be the desired path; ˜ηi = ηi − ηir represents the position tracking error of ith AUV. Define
the following Lyapunov function:

Vip =
1
2
˜
η

T

i Λi1
˜
ηi (12)
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where Λi1 > 0 is a specified control gain matrix, diagonal and positive‑definite. Taking
the time derivative of Vip, we can obtain:

.
Vip =

˜
η

T

i Λi1

.
˜
ηi =

˜
η

T

i Λi1
(
Ji(ηi)vi −

.
ηr
)
. (13)

To stabilize the position tracking, we choose the following control law:

vvir
i = J−1

i (ηi)

(
.
ηr −Kip

˜
ηi

)
(14)

where Kip > 0 is another specified control gain matrix. Then, the derivative of Vip (13)
becomes the following form:

.
Vip = − ˜

η
T

i Λi1Kip
˜
ηi. (15)

From (12) and (15), it can be seen that Vip > 0 and
.

Vip ≤ 0, so based on Lyapunov’s
direct method, the position tracking subsystem with virtual control law (14) is globally

asymptotically stable with respect to the equilibrium
[
˜
ηi, vi

]
= [0, 0]. Therefore, we can

obtain the concrete expression of the stability constraint (11f) as follows:

˜
η

T

i (0)Λi1
(
Ji(ηi(0))vi(0)−

.
ηr(0)

)
≤ − ˜

η
T

i (0)Λi1Kip
˜
ηi(0). (16)

The stability constraint (16) facilitates the verification that the DLMPC inherits the sta‑
bility properties of the state‑feedback control law (14) [39]. Moreover, owing to the online
optimization process, the DLMPC‑based position controller will automatically execute the
optimal control performance obeying the system constraints.

4.3. Velocity Tracking Controller
In this subsection, wedesign aDLMPC‑based velocity tracking controller to obtain the

optimal control forces and moments of the ith AUV, aiming to track the desired velocity.
It is used to stabilize the velocity tracking error in the AUV dynamics subsystem.

The dynamic model for the ith AUV velocity tracking can be modeled by (4):
.
xi2 = M∗−1

i (τi + τid − C∗
i (vi)vi −D∗

i (vi)vi) = fi2(xi2, ui2, τid) (17)

where the state is defined as xi2 = [ui, vi, wi, qi, ri]
T and the control input is defined as

ui2 =
[
τiu, τiv, τiw, τiq, τir

]T . Based on the effect of FFTESO (8) and the control objective, the
DLMPC optimization problem for the velocity tracking controller can be formulated as:

min
ui2∈C(h)

Ji2 =
∫ T

0

(∥∥∥∥ ˜xi2(s)
∥∥∥∥2

Qi2

+ ∥ui2(s)∥2
Ri2

)
ds (18a)

s.t.
.
⌢
x i2(s) = fi2

(
⌢
x i2(s), ui2(s),

^
τid(s)

)
(18b)

⌢
x i2(0) = xi2|t=t0

(18c)

xmin
i2 ≤ ⌢

x i2(s) ≤ xmax
i2 (18d)

∥ui2(s)∥∞ ≤ umax
i2 (18e)

.
Viv

∣∣∣
ui2(0)

≤
.

Viv

∣∣∣^
u

vir

i2 (0)
(18f)

where
⌢
x i2(s) is the predicted state trajectory, and

˜
xi2 =

⌢
x i2 −vid denotes the tracking error.

The desired speed vid is derived from the position tracking controller (11). Qi2 andRi2 rep‑
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resent positive‑definite weighting matrices. Similar to the optimization problem (11), the
condition (18c) denotes the initial state. (18d) represents the velocity state constraint. (18e)
represents the control input constraint. (18f) is the stability constraint constructed by the

virtual control law
^
u

vir

i2 and the corresponding Lyapunov function Viv. The DLMPC con‑
troller (18) inherits the stability and robustness of the virtual controller. Then, we construct
the concrete expression of the stability constraints.

Let vi denote the velocity of the ith AUV, where
˜
vi = vi − vid represents the velocity

tracking error of ith AUV. Consider the following Lyapunov function:

Viv =
1
2
˜
v

T

i Λi2
˜
vi + Vip (19)

where Λi2 > 0 is a positive‑definite diagonal matrix. Taking the time derivative of Viv, we
can derive:

.
Viv =

˜
v

T

i Λi2

.
˜
vi +

.
Vip =

˜
v

T

i Λi2

[
M∗−1

i (τi + τid − C∗
i (vi)vi −D∗

i (vi)vi)−
.
vid

]
− ˜

η
T

i Λi1Kip
˜
ηi. (20)

To achieve stable velocity tracking, based on the backsteppingmethod and the lumped
disturbances compensated by FFTESO, we choose the following control law:

τvir
i = C∗

i (vi)vi +D∗
i (vi)vi +M∗

i
.
vid −M∗

i Kiv
˜
vi −

^
τid (21)

where Kiv > 0 is a specified gain matrix. Then, (13) becomes the following form:

.
Viv = − ˜

v
T

i Λi2Kiv
˜
vi −

˜
η

T

i Λi1Kip
˜
ηi. (22)

From (19) and (22), it can be seen thatViv > 0 and
.

Viv ≤ 0, so according to Lyapunov’s
direct method, the velocity tracking subsystem with virtual control law (21) is globally

asymptotically stable with respect to the equilibrium
[
˜
vi, τi

]
= [0, 0]. Thus, the concrete

expression of the stability constraint (18f) is:

˜
v

T

i (0)Λi2

[
M∗−1

i

(
τi(0) +

^
τid(0)− C∗

i (vi(0))vi(0)−D∗
i (vi(0))vi(0)

)
− .
vid(0)

]
≤ − ˜

v
T

i (0)Λi2Kiv
˜
vi(0).

(23)

Likewise, the DLMPC‑based velocity controller exerts excellent control performance
thanks to online optimization. Leveraging the designed position controller (11) and ve‑
locity controller (18), the distributed Lyapunov‑based model predictive formation control
will be implemented for each AUV in the receding horizon mode.

The implementation process of DLMPC is described in Algorithm 1. The core of the
algorithm consists of two parts: solving the optimization problem (11) of the position track‑
ing layer and solving the optimization problem (18) of the velocity tracking layer. Firstly,
the optimization problem (11) is solved, yielding the optimal control input related to AUV
linear and angular velocity variables. Then, the control inputs of the position tracking layer
are passed as reference velocity to the velocity tracking layer. By solving the optimization
problem (18), the optimal control force and torque are obtained. Finally, the control in‑
puts of the velocity tracking layer are applied to the AUV system. Figure 2 shows the flow
diagram of the proposed Algorithm 1.
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Algorithm 1. DLMPC Implementation

1: The ith AUV samples the current state ηi(t). Input the cost function Ji1 in (11a).
2: The ith AUV receives the state trajectory of its neighbor AUV

⌢
x j1(t), j ∈ V, j ̸= i.

3: Solve the optimization problem (11) provided xi1|t=t0
= ηi(t), generate κi1(s), and let it be the

(sub‑)optimal solution.
4: Implement κi1(s) for only one sampling period, i.e., ui1(t) = κi1(s) for s ∈ [0, h].
5: Let vid(t) = ui1(t), input the cost function Ji2 in (18a).
6: Solve the optimization problem (18) provided, xi2|t=t0

= vi(t), generating κi2(s).
7: Implement κi2(s) for only one sampling period, i.e., ui2(t) = κi2(s) for s ∈ [0, h].
8: At next sampling time instant, set t = t + h, and repeat from step 1.
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Remark 1. In the next section, we demonstrate that both system stability and recursive feasibility
are not dependent on obtaining the precise solution from the optimization process. Therefore, sub‑
optimal solutions are deemed acceptable in Algorithm 1. The use of iterative methods ensures that
DLMPC optimization problems (11) and (18) possess locally optimal solutions. We can trade off
numerical efficacy and control effect by setting the maximum iteration number without compromis‑
ing the stability of the formation control. Additionally, the compensation of lumped disturbances
is continuously applied throughout the iterative optimization process, ensuring the success of the
formation tracking task under multiple constraints.

4.4. Stability Analysis
In the previous subsection, stability constraintswere constructed using the Lyapunov‑

based backstepping method. In this subsection, we will analyze the recursive feasibility
and closed‑loop stability of Algorithm 1.

First, we give the following theorem to show the recursive feasibility of the designed
position tracking controller.
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Theorem 2. Choose the positive‑definite gain matrix as Kip = diag
{

kip1, kip2, kip3, kip4, kip5
}
.

Let Kip denote the largest entity in the control gain Kip. For uvir
i1 (xi1) = vvir

i (xi1), under Assump‑
tion 2, if the following relation can be ensured(

1 +

√
2

2

)
(ηr1 + Kip∥

˜
ηi(0)∥) ≤ vmax

i (24)

where vmax
i =

∥∥vmax
i

∥∥
∞ denotes the maximum generalized velocity, then the DLMPC‑based posi‑

tion controller is recursively feasible, i.e., 
∥∥∥uvir

i1

(
⌢
x i1(t)

)∥∥∥
∞
≤ umax

i1 , for all t ≥ 0.

Proof.  See Appendix B. □

Then, we give the following theorem to show the recursive feasibility of the velocity
controller.

Theorem 3. Choose the positive definite gain matrix as Kiv = diag{kiv1, kiv2, kiv3, kiv4, kiv5}.

Let Kiv denote the largest entity in the control gain Kiv. For 
^
u

vir

i2 (xi2) = τvir
i (xi2), under Assump‑

tion 1 and Assumption 2, if the following relation can be ensured

(
ci + di

)
vi + mivid +

[
Kiv +

(
1 +

√
2

2

)]
mi∥γi(0)∥+ τid ≤ τmax

i (25)

where vi =
(

1 +
√

2
2

)(
ηr1 + Kip∥γi(0)∥

)
, vid = 2+

√
2

h
(
ηr1 + Kip∥γi(0)∥

)
, τmax

i  is the maxi‑
mum possible generalized thrust force, mi is a known constant bound for M∗

i . Then, the velocity

controller is recursively feasible, i.e., 
∥∥∥∥^uvir

i2

(
⌢
x i2(t)

)∥∥∥∥
∞
≤ umax

i2 , for all t ≥ 0.

Proof.  See Appendix C. □

Finally, we give the following theorem to show the stability of closed‑loop system.

Theorem 4. Consider the AUV formation control system described by (10) and (17) with lumped
disturbances. If Assumption 1 and Assumption 2 hold, then the DLMPC‑based position controller

(11) renders the equilibrium 
[
˜
ηi, vi

]
= [0, 0] asymptotically stable, and the velocity controller

(18) renders the equilibrium 
[
˜
vi, τi

]
= [0, 0] asymptotically stable. In other words, the AUV

formation tracking task can be realized under the control inputs produced by Algorithm 1.

Proof.  See Appendix D. □

5. Simulation
In this section, we conduct some simulation analyses to verify the effectiveness of

the proposed hierarchical DLMPC algorithm for the AUV formation system. The forma‑
tion network comprises four AUVs (N = 4, i = 1, 2, 3, 4) and a virtual leader (AUV0).
Figure 3 illustrates the adopted communication topology, with the arrows indicating the
communication direction between the AUVs. The simulation results demonstrate the
promising formation tracking performance and robustness of the proposed method.
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5.1. Simulation Setup

The initial states for each AUV are selected as η1 = [17m, 28m, −2m, 0.08rad, 2rad]T ,
η2 = [21m, 23m, −8m, 0.06rad, 2rad]T , η3 = [20m, 8m, −6m, −0.05rad, 2.3rad]T and
η4 = [30m, 17m, −3m, −0.06rad, 2.6rad]T , respectively. Themodel parameters for the ho‑
mogeneous AUVwere extracted from previous work [40]. We selected a diamond‑shaped
formation conducive to omnidirectional marine exploration, setting the formation config‑
uration vectors as d1r = [0, 0, 8, 0, 0]T , d2r = [0, −6, 0, 0, 0]T , d3r = [0, 0, −8, 0, 0]T ,
d4r = [0, 6, 0, 0, 0]T . d12 = −d21 = [0, 6, 8, 0, 0]T , d13 = −d31 = [0, 0, 16, 0, 0]T , d14 =

−d41 = [0, −6, 8, 0, 0]T , d23 = −d32 = [0, −6, 8, 0, 0]T , d24 = −d42 = [0, −12, 0, 0, 0]T

and d34 = −d43 = [0, −6, −8, 0, 0]T . The model uncertainties are reflected by consider‑
ing 15% of the nominal value as the model error, implying that the AUV parameters in the
simulation characterize only 85% of the nominal system. To assess the system’s robustness,
the external disturbances are modeled as follows:

τicu = 0.2sign(ui) + 0.3 sin(t/10) N
τicv = 0.1sign(vi) + 0.2 sin(t/20) N
τicw = 0.05sign(wi) + 0.1 sin(t/5) N
τicq = 0.2sign(qi) + 0.1 sin(t/10) N · m
τicr = 0.3sign(ri) + 0.2 sin(t/10) N · m

(26)

There are guidelines for selecting each parameter: considering that AUVs navigate at
slower speeds, a smaller T is planned to be adopted. During debugging, if the rate is not
fast enough, adjust it down, and if the stability is poor, adjust it up. As we place more
attention on the position tracking performance,Qi1 is set as slightly bigger than Qi2; to at‑
tenuate the interaction between angles, the angle weights in Qij are set a little smaller; Ri1
and Ri2 are set as small as possible while ensuring the stability of the system. The connec‑
tion among the observer gains βik and αi1 is obtained by solving the Lyapunov equation
(29), and then tuned to select appropriate values. Following the above guidelines, the sim‑
ulation parameters of the proposed algorithm in Table 2 were chosen.

Table 2. Control parameters of the designed algorithm.

Parameter Value Parameter Value

Qi1 diag
(
103, 103, 103, 102, 102) h 0.1 s

Qij diag
(
103, 103, 103, 10, 10

)
αi1 0.75

Qi2 diag
(
102, 102, 102, 10, 10

)
βi1 0.8

Ri1 diag
(
10−2, 10−2, 10−2, 10−2, 10−2) βi2 0.7

Ri2 diag
(
10−1, 10−1, 10−1, 10−1, 10−1) βi3 0.2

Kip diag(5, 5, 5, 1, 1) Λi1 diag(1, 1, 1, 1, 1)
Kiv diag(3, 3, 3, 1, 1) Λi2 diag(1, 1, 1, 1, 1)

Moreover, the prediction horizon is T = 10 h, and the limitation of each actuator is
500 N. The upper and lower bound of velocity states are set as ±2 m/s, ±1.2 m/s, ±0.7
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m/s, ±0.1 rad/s, ±0.3 rad/s. The reference trajectory generated by a virtual leader is a
helical curve: 

xr(t) = 35 cos(πt/200)
yr(t) = 35 sin(πt/200)
zr(t) = −0.06t − 6

(27)

5.2. Performance Tests for Lumped Disturbances Estimation
Firstly, to assess the disturbance rejection capability of the formation system under

spatial disturbance constraints, we conducted comparative tests with the conventional
FTESO in [19], the improved third‑order FTESO in [31], and the designed FFTESO (8). Fig‑

ure 4 illustrates the disturbance estimation error norms ∥ei3∥ = ∥
^
di − di∥ for each AUVun‑

der different observers. It is evident from the figure that the conventional FTESO exhibits
slow convergence time and slight chattering. While the third‑order FTESO achieves finite‑
time stabilization, it starts with a large initial error and displays slow convergence speed.
In contrast, the proposed FFTESO not only ensures the convergence of the estimation error
to a small neighborhood of the origin within a finite time but also outperforms the other
two observers in terms of dynamic response speed and estimation accuracy. Therefore, ow‑
ing to the advantages of fast transient response and high accuracy of the designed FFTESO
(8), each AUV can more swiftly and accurately compensate for both external disturbances
and internal uncertainties. This markedly fortifies the active disturbance rejection capabil‑
ity of the formation control system.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 25 
 

 

 

Figure 4. The estimation error norm 3ei  for the lumped disturbance of the ith AUV. 

5.3. Performance Tests for Formation Trajectory Tracking 
To evaluate the tracking control performance of the designed scheme, comparative 

tests were conducted under uniform parameter and disturbance settings: scheme (a) 
corresponds to our proposed FFTESO-based hierarchical DLMPC algorithm; scheme (b) 
corresponds to the conventional DLMPC algorithm for AUV formation in [30]; and 
scheme (c) corresponds to the ASTASMC algorithm proposed for AUV formation control 
in [23]. In the following section, we analyze the performance metrics of formation track-
ing control: convergence speed, tracking accuracy, and smoothness of control inputs. 

Figures 5–9 depict the trajectories of the position and attitude angles of each AUV 
during formation tracking under both schemes. Figures 10–14 depict the trajectories of 
linear and angular velocities. Observing the results, it is evident that the three schemes 
successfully guided the four AUVs to the desired state. However, the tracking perfor-
mance differed. In terms of convergence speed, scheme (a) achieved full-state stable 
tracking within 150 s, scheme (b) required 220 s, while in scheme (c) the entire process 
convergence took about 300 s. In terms of tracking accuracy, unlike the observers used in 
(a) and (b), scheme (c) compensated for lumped disturbances through a robust adaptive 
law designed to mitigate high-frequency measurement noise. However, from the state 
trajectories, it is discernible that the state variables in (c) exhibited longer stabilization 
times and were accompanied by chattering. This indicates a weaker disturbance rejection 
capability compared to our proposed scheme. Furthermore, the comparison of (a) and (b) 
shows that the hierarchical structure enhances the rate of convergence and the controlla-
bility of the velocity state. The simulation results affirm that combining disturbance 
compensation from FFTESO and the online optimization of DLMPC strongly enhanced 
the formation control performance. 

 
Figure 5. State ix  trajectories for multi-AUV systems. (a) The proposed hierarchical DLMPC 
scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC scheme. 

0 100 200 300 400 500
0

1

2

3

4

Time(s)

  Conventional FTESO
  Third-order FTESO
  Designed FFTESO (8)

||e
13

||

0 100 200 300 400 500
0

1

2

3

4

Time(s)

||e
23

||

  Conventional FTESO
  Third-order FTESO
  Designed FFTESO (8)

0 100 200 300 400 500
0

1

2

3

4

Time(s)

||e
43

||

0 100 200 300 400 500
0

1

2

3

4

Time(s)

||e
33

||

  Conventional FTESO
  Third-order FTESO
  Designed FFTESO (8)

  Conventional FTESO
  Third-order FTESO
  Designed FFTESO (8)

50 100 150 200
0.0

0.2

0.4

0.6

0.8

50 100 150 200
0.0

0.2

0.4

0.6

0.8

50 100 150 200
0.0

0.2

0.4

0.6

0.8

50 100 150 200
0.0

0.2

0.4

0.6

0.8

0 100 200 300 400 500
−40

−20

0

20

40

x(
m

)

Time(s)
(a)

0 100 200 300 400 500
−40

−20

0

20

40

x(
m

)

Time(s)
(b)

0 100 200 300 400 500
−40

−20

0

20

40

x(
m

)

Time(s)
(c)

 AUV1  AUV2  AUV3  AUV4

Figure 4. The estimation error norm ∥ei3∥ for the lumped disturbance of the ith AUV.

5.3. Performance Tests for Formation Trajectory Tracking
To evaluate the tracking control performance of the designed scheme, comparative

tests were conducted under uniform parameter and disturbance settings: scheme (a) cor‑
responds to our proposed FFTESO‑based hierarchical DLMPC algorithm; scheme (b) cor‑
responds to the conventional DLMPC algorithm for AUV formation in [30]; and scheme
(c) corresponds to the ASTASMC algorithm proposed for AUV formation control in [23].
In the following section, we analyze the performancemetrics of formation tracking control:
convergence speed, tracking accuracy, and smoothness of control inputs.

Figures 5–9 depict the trajectories of the position and attitude angles of each AUVdur‑
ing formation tracking under both schemes. Figures 10–14 depict the trajectories of linear
and angular velocities. Observing the results, it is evident that the three schemes success‑
fully guided the four AUVs to the desired state. However, the tracking performance dif‑
fered. In terms of convergence speed, scheme (a) achieved full‑state stable tracking within
150 s, scheme (b) required 220 s, while in scheme (c) the entire process convergence took
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about 300 s. In terms of tracking accuracy, unlike the observers used in (a) and (b), scheme
(c) compensated for lumped disturbances through a robust adaptive law designed to mit‑
igate high‑frequency measurement noise. However, from the state trajectories, it is dis‑
cernible that the state variables in (c) exhibited longer stabilization times and were accom‑
panied by chattering. This indicates a weaker disturbance rejection capability compared to
our proposed scheme. Furthermore, the comparison of (a) and (b) shows that the hierarchi‑
cal structure enhances the rate of convergence and the controllability of the velocity state.
The simulation results affirm that combining disturbance compensation from FFTESO and
the online optimization of DLMPC strongly enhanced the formation control performance.
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Figure 5. State xi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 6. State yi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 7. State zi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 8. State θi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 9. State ψi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 10. State ui trajectories formulti‑AUV systems. (a) The proposedhierarchicalDLMPCscheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 11. State vi trajectories formulti‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 12. State wi trajectories for multi‑AUV systems. (a) The proposed hierarchical DLMPC
scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC scheme.
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Figure 13. State qi trajectories formulti‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 14. State ir  trajectories for multi-AUV systems. (a) The proposed hierarchical DLMPC 
scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC scheme. 

Figure 15 visually illustrates the formation tracking trajectory in three-dimensional 
space. In conjunction with Figures 5–14, it is evident that under the same initial condi-
tions, all three schemes performed the formation helical dive task. However, scheme (c) 
was characterized by continuous fluctuations during the tracking process, posing an in-
creased risk of the AUV formation deviating from the desired trajectory. Conversely, the 
formation members in schemes (a) and (b) smoothly tracked the reference trajectory 
while maintaining the preset distance. This difference arose from the distinct compensa-
tion principles of the disturbance rejection methods. The robust adaptive law in scheme 
(c) proved less robust to lumped disturbances with fast time-varying characteristics. On 
further observation, the proposed control scheme facilitated each AUV in forming the 
predefined configuration more rapidly, showcasing the superior response speed of the 
designed control system. Consequently, under multiple constraints such as lumped dis-
turbances, state constraints, and stability constraints, the FFTESO-based DLMPC algo-
rithm exhibited greater adaptability to complex underwater environments than the other 
two algorithms in terms of disturbance rejection, convergence speed, and tracking per-
formance. Figure 16 gives the tracking error for each AUV under the three schemes. Table 
3 presents the convergence time of all states and the average of AUV3’s tracking error 
after 130 s for the three schemes. We can clearly conclude that the proposed method had 
the optimal convergence speed and tracking accuracy. 

−40

−20

0

20

40

−45

−15

15

45
−40

−30

−20

−10

0

Longitudinal(m)

Vertical(m)

Transverse(m)

(a)

−40

−20

0

20

40

−45

−15

15

45
−40

−30

−20

−10

0

Longitudinal(m)

Vertical(m)

Transverse(m)

(b)

−40

−20

0

20

40

−45

−15

15

45
−40

−30

−20

−10

0

Longitudinal(m)

Vertical(m)

Transverse(m)

(c)  
Figure 15. Three-dimensional trajectories of the multi-AUV systems under three schemes. (a) The 
designed hierarchical DLMPC scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC 
scheme. 

 
Figure 16. Tracking errors of the multi-AUV under three schemes. (a) The proposed hierarchical 
DLMPC scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC scheme. 

0 100 200 300 400 500
-0.25

-0.15

-0.05

0.05

0.15

r(r
ad

/s
)

Time(s)
(a)

0 100 200 300 400 500
-0.25

-0.15

-0.05

0.05

0.15

r(r
ad

/s
)

Time(s)
(b)

0 100 200 300 400 500
-0.25

-0.15

-0.05

0.05

0.15

r(r
ad

/s
)

Time(s)
(c)

 AUV1  AUV2  AUV3  AUV4

0 100 200 300 400 500
0

5

10

15

20

25

30

35

Tr
ac

ki
ng

 e
rro

r (
m

)

Time(s)
(a)

0 100 200 300 400 500
0

5

10

15

20

25

30

35

Tr
ac

ki
ng

 e
rro

r (
m

)

Time(s)
(b)

0 100 200 300 400 500
0

5

10

15

20

25

30

35

Tr
ac

ki
ng

 e
rro

r (
m

)

Time(s)
(c)

 AUV1  AUV2  AUV3  AUV4

Figure 14. State ri trajectories formulti‑AUV systems. (a) The proposed hierarchical DLMPC scheme.
(b) The conventional DLMPC scheme. (c) The ASTASMC scheme.

Figure 15 visually illustrates the formation tracking trajectory in three‑dimensional
space. In conjunction with Figures 5–14, it is evident that under the same initial con‑
ditions, all three schemes performed the formation helical dive task. However, scheme
(c) was characterized by continuous fluctuations during the tracking process, posing an
increased risk of the AUV formation deviating from the desired trajectory. Conversely,
the formation members in schemes (a) and (b) smoothly tracked the reference trajectory
while maintaining the preset distance. This difference arose from the distinct compensa‑
tion principles of the disturbance rejection methods. The robust adaptive law in scheme
(c) proved less robust to lumped disturbances with fast time‑varying characteristics. On
further observation, the proposed control scheme facilitated each AUV in forming the pre‑
defined configuration more rapidly, showcasing the superior response speed of the de‑
signed control system. Consequently, under multiple constraints such as lumped distur‑
bances, state constraints, and stability constraints, the FFTESO‑based DLMPC algorithm
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exhibited greater adaptability to complex underwater environments than the other two al‑
gorithms in terms of disturbance rejection, convergence speed, and tracking performance.
Figure 16 gives the tracking error for each AUV under the three schemes. Table 3 presents
the convergence time of all states and the average of AUV3’s tracking error after 130 s for
the three schemes. We can clearly conclude that the proposed method had the optimal
convergence speed and tracking accuracy.
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Figure 15. Three‑dimensional trajectories of the multi‑AUV systems under three schemes. (a) The
designed hierarchical DLMPC scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC
scheme.
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Figure 16. Tracking errors of the multi‑AUV under three schemes. (a) The proposed hierarchical
DLMPC scheme. (b) The conventional DLMPC scheme. (c) The ASTASMC scheme.

Table 3. Comparison of performance metrics.

Control Scheme Convergence Time Tracking Error Averages

Scheme (a) 150 s 0.508 m
Scheme (b) 220 s 0.830 m
Scheme (c) 300 s 1.341 m

Without loss of generality, Figure 17 illustrates the actual control forces andmoments
applied to AUV1 under the three algorithms. The blue curve represents the ASTASMC
scheme, the green curve represents the traditional DLMPC scheme, and the red curve de‑
picts the proposed DLMPC scheme. Compared with schemes (b) and (c), the control sig‑
nals under the proposed scheme were regulated more swiftly, and the force and moment
varied smoothly, allowing for steady trajectory tracking of the AUV formation when sub‑
jected to constraints. It is worth mentioning that the AUVs under the ASTASMC scheme
required continual correction of the driving force and moment, leading to persistent chat‑
tering. This observation underscores the robustness and superiority of the FFTESO‑based
hierarchical DLMPC algorithm. It is noteworthy that, at the onset of the task, the proposed
scheme made use of the propulsion capability to achieve the fastest possible convergence,
all while adhering to the physical limitations of the thrusters. In other words, the variation
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of the control signals continually remained within prescribed limits, effectively avoiding
actuator saturation and reducing the failure rate.
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Figure 17. Actual control force and moment of AUV1.

6. Conclusions
In summary, this paper proposes a FFTESO‑based hierarchical DLMPC scheme for

AUV formation tracking under multiple constraints. The scheme leverages the faster and
more precise compensation of lumped disturbances by FFTESO to dynamically update
the prediction model online. Position tracking and velocity tracking controllers were par‑
ticularly designed to determine the optimal velocities and control forces for the forma‑
tion system while adhering to specified constraints. The Lyapunov‑based backstepping
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controllers were then employed to construct stability constraints in the DMPC optimiza‑
tion problem, ensuring both recursive feasibility and closed‑loop stability of the control
algorithm. The simulation results demonstrated that compared with the conventional
DLMPC and the ASTASMC method, we enhanced the convergence speed by 31.8% and
50%, and the tracking accuracy by 38.8% and 62.1%, respectively. This demonstrates that
the proposed scheme significantly improved the formation tracking performance and anti‑
disturbance capability. The theoretical results lay a robust foundation for the practical
design and implementation of AUV formation controllers.

The main limitation of DLMPC is that it relies heavily on timely and reliable inter‑
subsystem communication. In the future work, we will focus on the design of a DLMPC
controller for AUV formation systems subject to communication delays to overcome the
communication challenges in real‑world applications. In addition, in response to the is‑
sue that finite‑time convergence is sensitive to the initial values of the states, we intend to
investigate an extended state observer with fixed‑time convergence.
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Appendix A

Proof of Theorem 1.  Introducing an auxiliary error variable εT
i =

[(
⌈ei1⌋αi1 + ei1

)T , eT
i2, eT

i3

]
.

It can be seen that when the estimation error ei converges to the neighborhood of the ori‑
gin in finite time, εi also converges to the neighborhood of the origin. Taking the time
derivation of εi, we obtain:

.
εi =

αi1|ei1|αi1−1 .ei1 +
.
ei1.

ei2.
ei3

 =

αi1|ei1|αi1−1[ei2 − βi1
(
⌈ei1⌋αi1 + ei1

)]
1
2
[
ei3 − βi2

(
⌈ei1⌋αi2 + γiei1

)]
− 1

2 βi3
(
⌈ei1⌋αi3 + γ2

i ei1
)



+

 ei2 − βi1
(
⌈ei1⌋αi1 + ei1

)
1
2
[
ei3 − βi2

(
⌈ei1⌋αi2 + γiei1

)]
− 1

2 βi3
(
⌈ei1⌋αi3 + γ2

i ei1
)

+

05

f̃i
05

+

 05
05
−σi


= diag

([
|ei1|αi1−1, |ei1|αi1−1, |ei1|αi1−1

])
Ci1εi + Ci2εi + Fi + Θi

(A1)

where Fi =
[
05 f̃i 05

]T
, Θi =

[
05 05 −σi

]T , and the state coefficient matrices

Ci1 =

 −αi1βi1I5 αi1I5 05
−βi2I5/2 05 γ−1

i I5/2
−βi3γiI5/2 05 05

, Ci2 =

 −βi1I5 I5 05
−βi2γiI5/2 05 I5/2
−βi3γ2

i I5/2 05 05

, defining the

state function f̃i = fi(zi2)zi2 − fi

(
^
zi2

)
^
zi2 = −fi(zi2)ei2 − fi(ei2)(zi2 + ei2). Then, we can

further obtain
∥∥∥̃fi∥∥∥ ≤ li1∥zi2∥∥ei2∥+ li2∥ei2∥(∥zi2∥+ ∥ei2∥) ≤ (li1 + li2)µi∥ei2∥+ li2∥ei2∥2,

with li1 and li2 as positive constants, and µi as an upper bound of zi2 that exists due to
limited velocity.
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If the designed observer gain is restricted to βi3 < 2αi1βi1βi2, it is known that all
eigenvalues ofCi1 andCi2 have negative real parts. Thismeans that the coefficientmatrices
Ci1, Ci2 are Hurwitz matrices. So, there exist Hermitian matrices Hi1 and Hi2 such that the
below Lyapunov equation holds:{

CT
i1Pi + PiCi1 = −Hi1

CT
i2Pi + PiCi2 = −Hi2

. (A2)

where Pi is a positive‑definite symmetric matrix. Then, we select a candidate Lyapunov
function as Vi1(ei) = εT

i Piεi, differentiating Vi1(ei) with respect to time, one obtains:
.

Vi1 = εT
i

[
diag

([
|ei1|αi1−1, |ei1|αi1−1, |ei1|αi1−1

])(
CT

i1Pi + PiCi1

)]
εi + εT

i

(
CT

i2Pi + PiCi2

)
εi + 2εT

i Pi(Fi + Θi)

≤ −|ei1|αi1−1
max εT

i Hi1εi − εT
i Hi2εi + 2∥εi∥∥Pi∥(∥Fi∥+ ∥Θi∥)

(A3)

where |ei1|max = max{|ei11|, . . . , |ei15|}. Given that |ei1|max ≤ ∥ei1∥ ≤ ∥εi∥1/αi1 , and
αi1 ∈ (2/3, 1), we can derive the following inequality:

.
Vi1 ≤ −∥εi∥

αi1−1
αi1 εT

i Hi1εi − εT
i Hi2εi + 2∥εi∥∥Pi∥∥Fi∥+ 2∥εi∥∥Pi∥∥Θi∥

≤ −λmin(Hi1)∥εi∥
3− 1

αi1 − λmin(Hi2)∥εi∥2 + 2∥εi∥2∥Pi∥[(li1 + li2)µi + li2∥εi∥] + 2∥εi∥∥Pi∥∥Θi∥.
(A4)

From λmin(Pi)∥εi∥2 ≤ Vi1 ≤ λmax(Pi)∥εi∥2 we have λmax(Pi)
−1/2V1/2

i1 ≤ ∥εi∥ ≤
λmin(Pi)

−1/2V1/2
i1 . Since σi is supposed to be limited by

∣∣σip
∣∣ ≤ σi, we can obtain:

2∥εi∥∥Pi∥∥Θi∥ ≤ 2
√

5σi∥εi∥∥Pi∥ ≤ 2
√

5σiλmin(Pi)
−1/2∥Pi∥V1/2

i1 (A5)

Accordingly, inequality (A4) can be further derived as:

.
Vi1 ≤ −λmin(Hi1)λmax(Pi)

1
2αi1

− 3
2 V

3
2−

1
2αi1

i1 + 2li2∥Pi∥λmin(Pi)
− 3

2 V
3
2

i1 + 2
√

5σi∥Pi∥λmin(Pi)
− 1

2 V
1
2

i1

+
(
−λmin(Hi2)λmax(Pi)

−1 + 2(li1 + li2)µi∥Pi∥λmin(Pi)
−1
)

Vi1

≤ −λi1V
3
2−

1
2αi1

i1 + λi2Vi1 + λi3V
3
2

i1 + λi4V
1
2

i1

(A6)

with λi1 = −λmin(Hi1)λmax(Pi)
1

2αi1
− 3

2 , λi2 = −λmin(Hi2)λmax(Pi)
−1 + 2(li1 + li2)µi∥Pi∥

λmin(Pi)
−1, λi3 = 2li2∥Pi∥λmin(Pi)

− 3
2 and λi4 = 2

√
5σi∥Pi∥λmin(Pi)

− 1
2 . Then, we define

two new variables as λi2 = λi2Vi1
(
e0

i
)− 1

2+
1

2αi1 , λi3 = λi3Vi1
(
e0

i
) 1

2αi1 , and a restriction region

Θi1 specified for the initial valueVi1
(
e0

i
)
. For ei ∈ Θi1 =

{
ei|λi2V

− 1
2+

1
2αi1

i1 + λi3V
1

2αi1
i1 < λi1

}
,

there is
.

Vi1 < 0. This indicates that Vi1 is a monotonically decreasing function, then it has
Vi1
(
e0

i
)
≥ Vi1(ei), and λi2 + λi3 < λi1. According to the above definition, inequality (A6)

can be simplified as:

.
Vi1 ≤ −

(
λi1 − λi2 − λi3

)
V

3
2−

1
2αi1

i1 + λi2Vi1 − λi2V
3
2−

1
2αi1

i1 + λi3V
3
2

i1 − λi3V
3
2−

1
2αi1

i1 + λi4V
1
2

i1

≤ −
(
λi1 − λi2 − λi3

)
V

3
2−

1
2αi1

i1 + λi4V
1
2

i1 = −λi5V
3
2−

1
2αi1

i1 + λi4V
1
2

i1

(A7)

where λi5 = λi1 − λi2 − λi3, it can be noted that the inequality (A7) has the same structure
as Proposition 2 of [41]. Therefore, the error trajectory of the designed FTESO (8) is finite‑
time uniformly ultimately bounded stable, which means that the estimation errors ei will
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converge to a small neighborhood of the origin. Furthermore, the convergence time Ti f is
given by:

Ti f ≤
2αi1Vi1

(
e0

i
) 1

2αi1
− 1

2

(λi5 − δi5)(1 − αi1)
. (A8)

With the stable region Ωi given by Ωi =

{
ei|Vi1(ei)

1− 1
2αi1 < λi4/δi5

}
, where δi5 ∈

(0, λi5) is an arbitrary constant. This completes the proof. □

Appendix B

Proof of Theorem 2.  Given the current system state xi1(t), if
∥∥∥uvir

i1

(
⌢
x i1

)∥∥∥
∞
≤ umax

i1 can be

satisfied, then uvir
i1

(
⌢
x i1

)
is always feasible for the DLMPC optimization problem (11).

Taking the infinity norm on both sides of (14), we have∥∥∥vvir
i

(
⌢
x i1

)∥∥∥
∞

=
∥∥∥J−1

i (ηi)
∥∥∥

∞

∥∥∥∥ .ηr −Kip
˜
ηi

∥∥∥∥
∞
≤
∥∥∥J−1

i (ηi)
∥∥∥

∞

(∥∥ .ηr
∥∥

∞ +

∥∥∥∥Kip
˜
ηi

∥∥∥∥
∞

)
≤
∥∥∥J−1

i (ηi)
∥∥∥

∞

(
ηr1 + Kip

∥∥∥∥ ˜ηi

∥∥∥∥
∞

)
.

(A9)

From (15),
.

Vip ≤ 0. Therefore,
∥∥∥∥ ˜ηi(t)

∥∥∥∥ ≤
∥∥∥∥ ˜ηi(0)

∥∥∥∥. Considering that ∥∥∥∥ ˜ηi

∥∥∥∥
∞

≤
∥∥∥∥ ˜ηi

∥∥∥∥,
we have

∥∥∥∥ ˜ηi

∥∥∥∥
∞
≤
∥∥∥∥ ˜ηi(0)

∥∥∥∥. According to the property of the rotation matrix (3), we obtain

∥∥∥J−1
i (ηi)

∥∥∥
∞
= max{|cos ψi cos θi|+ |sin ψi cos θi|+ |− sin θi|, |− sin ψi|+ |cos ψi|,

|cos ψi sin θi|+ |sin ψi sin θi|+ |cos θi|, 1, |1/ cos θi|} ≤ 1 +
√

2
2 .

(A10)

Accordingly, (A9) can be further derived as:

∥∥∥vvir
i

(
⌢
x i1

)∥∥∥
∞
≤
(

1 +

√
2

2

)(
ηr1 + Kip

∥∥∥∥ ˜ηi(0)
∥∥∥∥). (A11)

If (24) can be satisfied, then the relation
∥∥∥vvir

i

(
⌢
x i1

)∥∥∥
∞
≤ vmax

i can hold. This ensures

that
∥∥∥uvir

i1

(
⌢
x i1

)∥∥∥
∞
≤ umax

i1 holds at all moments, which concludes the proof. □

Appendix C

Proof of Theorem 3.  Given the current system state xi2(t), if
∥∥∥∥^uvir

i2

(
⌢
x i2

)∥∥∥∥
∞
≤ umax

i2 can be

satisfied, then
^
u

vir

i2

(
⌢
x i2

)
is always feasible for the DLMPC optimization problem (18).

Consider the following Lyapunov function:

Vi = Viv + Vi1 =
1
2

γT
i Πiγi (A12)

where γi =

[
˜
η

T

i ,
˜
v

T

i ,
√

2εT
i

]T

, Πi = diag(Λi1, Λi2, Pi). From (22) and the proof of Theorem

1, it follows that
.

Vi ≤ 0. Therefore, ∥γi(t)∥ ≤ ∥γi(0)∥. Moreover, we have
∥∥∥∥ ˜ηi

∥∥∥∥
∞

≤
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∥∥∥∥ ˜ηi

∥∥∥∥ ≤ ∥γi∥,
∥∥∥∥ ˜vi

∥∥∥∥
∞

≤
∥∥∥∥ ˜vi

∥∥∥∥ ≤ ∥γi∥, ∥εi∥∞ <
∥∥∥√2εi

∥∥∥
∞

≤
∥∥∥√2εi

∥∥∥ ≤ ∥γi∥, then
∥∥∥∥ ˜ηi

∥∥∥∥
∞

≤

∥γi(0)∥,
∥∥∥∥ ˜vi

∥∥∥∥
∞
≤ ∥γi(0)∥, and ∥εi∥∞ ≤ ∥γi(0)∥.

Since the desired speed in the velocity tracking controller is derived from the position
controller, we have

.
vid =

.
ui1 = [vi(t + h)− vi(t)]/h. Then, we take the infinity norm on

.
vid to obtain: ∥∥ .vid

∥∥
∞ =

∥∥∥ vi(t+h)−vi(t)
h

∥∥∥
∞
≤ ∥vi(t+h)∥∞+∥vi(t)∥∞

h ≤ 2∥vi∥∞
h

≤
2
∥∥∥vvir

i

(
⌢
x i1

)∥∥∥
∞

h ≤ 2+
√

2
h
(
ηr1 + Kip∥γi(0)∥

)
= vid

(A13)

where ∥vi∥∞ ≤
∥∥∥vvir

i

(
⌢
x i1

)∥∥∥
∞

≤
(

1 +
√

2
2

)(
ηr1 + Kip∥γi(0)∥

)
= vi. Consequently, the

bound of the Coriolis and centripetal matrix C∗
i (vi) can be obtained by taking the

infinity norm:
∥C∗

i (vi)∥∞ ≤
(

2 +
√

2
)

mi
(
ηr1 + Kip∥γi(0)∥

)
= ci (A14)

∥D∗
i (vi)∥∞ can be derived by the same principle:

∥D∗
i (vi)∥∞ ≤ d1 + d2

(
1 +

√
2

2

)(
ηr1 + Kip∥γi(0)∥

)
= di (A15)

with d1 = max
{
|Xu|, |Yv|, |Zw|,

∣∣Mq
∣∣, |Nr|

}
, d2 = max

{
X|u|u, Y|v|v, Z|w|w, M|q|q, N|r|r

}
.

Taking infinity norms on both sides of the lumped disturbance
^
τid = M∗

i J
−1
i (ηi)

^
di,

one obtains:∥∥∥∥ ^τid

∥∥∥∥
∞

=

∥∥∥∥M∗
i J

−1
i (ηi)

^
di

∥∥∥∥
∞
=
∥∥∥M∗

i J
−1
i (ηi)(di + ei3)

∥∥∥
∞
≤ ∥τid∥∞ +

∥∥∥M∗
i J

−1
i (ηi)

∥∥∥
∞
∥ei3∥∞

≤ ∥τid∥+
(

1 +
√

2
2

)
mi∥εi∥∞ ≤ τid +

(
1 +

√
2

2

)
mi∥γi(0)∥.

(A16)

Based on the above analysis, taking the infinity norms on both sides of (21) yields:∥∥∥τvir
i

(
⌢
x i2

)∥∥∥
∞

= ∥C∗
i (vi)vi +D∗

i (vi)vi∥∞ +
∥∥M∗

i
.
vid
∥∥

∞ +

∥∥∥∥M∗
i Kiv

˜
vi

∥∥∥∥
∞
+

∥∥∥∥ ^τid

∥∥∥∥
∞

≤
(

ci + di

)
∥vi∥∞ + mi

∥∥ .vid
∥∥

∞ + miKiv

∥∥∥∥ ˜vi

∥∥∥∥
∞
+

∥∥∥∥ ^τid

∥∥∥∥
∞

≤
(

ci + di

)
vi + mivid +

[
Kiv +

(
1 +

√
2

2

)]
mi∥γi(0)∥+ τid.

(A17)

If (25) can be satisfied, then the relation
∥∥∥τvir

i

(
⌢
x i2

)∥∥∥
∞
≤ τmax

i can hold. This ensures

that
∥∥∥∥^uvir

i2

(
⌢
x i2

)∥∥∥∥
∞
≤ umax

i2 holds at all moments, which concludes the proof. □

Appendix D

Proof of Theorem 4.  Since we have constructed a Lyapunov function Vip(xi1) that is con‑
tinuously differentiable and radically unbounded, according to converse Lyapunov the‑
orems [42], there exist functions χik(·) (k = 1, 2, 3) belonging to class K∞ that satisfy the
following inequalities:

χi1(∥xi1∥) ≤ Vip(xi1) ≤ χi2(∥xi1∥) (A18)
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.
Vip

∣∣∣
uvir

i1 (xi1)
≤ −χi3(∥xi1∥) (A19)

In view of the stability constraint (11f) and the optimal solution κi1(s) implemented
at each sampling period, we obtain:

.
Vip

∣∣∣
ui1(xi1)

≤
.

Vip

∣∣∣
uvir

i1 (xi1)
≤ −χi3(∥xi1∥). (A20)

From the Lyapunov argument of Theorem 4.8 in [42], we conclude that the position
tracking subsystem is asymptotically stable within an attraction regionRi1.{

xi1 ∈ Rn
i1|
(

1 +

√
2

2

)(
ηr1 + Kip

∥∥∥∥ ˜ηi(0)
∥∥∥∥) ≤ vmax

i

}
. (A21)

Similarly, the following conclusion can be obtained: the velocity tracking subsystem
under Algorithm 1 is asymptotically stable within an attraction regionRi2.{

xi2 ∈ Rn
i2|
(

ci + di

)
vi + mivid +

[
Kiv +

(
1 +

√
2

2

)]
mi∥γi(0)∥+ τid ≤ τmax

i

}
. (A22)

This ensures the stability of the overall AUV formation system. Since there are no
other limitations on Kip and Kiv, the attraction regionsRi1 andRi2 can be arbitrarily large
as long as the control gains are small enough. □

Remark A1. It is noteworthy that the tracking control performance of the backstepping technique‑
based virtual control law relies on the amplitude of the control gains. As seen in (14) and (21),
smaller values of  Kip and Kiv result in slower convergence. Moreover, thanks to the optimization
process of the proposed DLMPC controller, even if smaller control gains are chosen to expand the
attractive regions, the controller can effectively leverage the thrust capability to achieve optimal
control performance aligned with the cost function. This confirms the advantage that DLMPC
inherits the stability properties of the virtual controller.
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