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Abstract: The underwater motion of the ROV is affected by various environmental factors, such as
wind, waves, and currents. The complex relationship between these disturbance variables results
in non-Gaussian noise distribution, which cannot be handled by the classical Kalman filter. For the
accurate and real-time observation of ROV climbing, and, at the same time, to reduce the influence
of the uncertainty of the noise distribution, the ROV state filter is designed based on the mixture of
Gaussian model theory with the expectation-maximization cubature particle filter (EM-MOGCPF).
The EM-MOGCPF considers different sensor measurement noises, and the addition of mixture of
Gaussian (MOG) improves the fineness and real-time properties, while the expectation-maximization
(EM) reduces the complexity of the algorithm. To estimate the ROV xyz-axis and yaw angular states,
we establish a four-degree-of-freedom (4-DOF) ROV kinetics model, which uses a simulation platform
for multiple sea state degrees. The results show that the EM-MOGCPF effectively improves the
estimation accuracy and exhibits strong adaptability to nonlinear and non-Gaussian environments.
We believe that this algorithm holds promise in solving the state estimation challenge in these
difficult environments.

Keywords: underwater vehicle; state estimation; cubature particle filter; mixture of Gaussian

1. Introduction

The adhesion of marine organisms to the anchor chain can significantly reduce its
weight support capability. Furthermore, the secretions from these organisms can speed
up the corrosion of the steel structure. To ensure proper weight support and extend the
lifespan of the steel structure, frequent underwater cleaning of the anchor chain is necessary.
This cleaning must adhere to safety regulations set forth by the classification society and
the operation area. Given the complexity of the underwater environment, the cleaning
process requires a specialized ROV. This type of ROV is strongly coupled and strongly
nonlinear [1–3]. Therefore, the ROV’s control accuracy is essential in ensuring that it runs
normally. To calculate the current state of the ROV using a series of filtering and data fusion
algorithms, state estimation is adopted, which plays a critical role in the control of the ROV.
It serves as the intermediary layer between sensor measurement and controller calculation.
By using a series of filtering and data fusion algorithms, the current state of the ROV can
be accurately calculated. This information can then be used to improve the accuracy of the
controller, creating a closed loop that enhances the ROV’s performance.

Many scholars have carried out a lot of work on the state estimation algorithm.
The Kalman filter [4] has been widely used in the model-driven state estimation method
because of how straightforward and easy it is to use. Standard Kalman filter theory only
applies to linear systems; however, in engineering applications, the system is typically non-
linear. Bucy and Sunahara proposed the extended Kalman filter (EKF) [5], Dong et al. [6] pro-
posed an EKF-based adaptive object tracking method for AUV state estimation, Han et al. [7]
designed a tracking controller based on feedback linearization by using EKF to estimate the
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state of UVMS, and Zheng et al. [8] implemented the adaptive control of UVMSs using EKF
to estimate system state and forecast external disturbances, but EKF ignores the high-order
terms of the nonlinear system, lowering the estimation accuracy [9]. The original filtering
method has been enhanced with further research [10]. The other two frequently used
filtering techniques are unscented Kalman filtering (UKF) [11] and the cubature Kalman
filter (CKF) [12]. UKF uses a series of sigma points to propagate the state and covariance
matrix [13]. CKF calculates the integral; unlike UKF, CKF uses a 2n cubature point propa-
gation state and covariance matrix. When using an identical matrix factorization method,
such as the Cholesky method, CKF has a lower calculation burden than UKF and has better
stability and higher precision [14]. Chen et al. [15] designed an augmented state cubature
Kalman filter to improve the stability of the long-range navigation of surface ships.

When the system noise cannot be approximated as a Gaussian noise distribution,
the estimation accuracy of the Kalman filter decreases. In this case, a numerical approxima-
tion method, the particle filter, is needed [16]. By using a Monte Carlo simulation, a huge
number of particles are created, and the distribution of these particles is utilized to estimate
the probability distribution of states. Particle filters are used in research [17] to complete
attitude estimation during the UAV landing procedure; a particle filter based on multi-
model interaction [18] was presented to address the issue of estimating the performance of
several rotors, and it minimizes the estimate error when compared to EKF. The correlation
filter [19], which combines particle filters and correlation filters, performs well in state
estimation; Jing and Chen [20] proposed a particle filter based on color distribution for
object tracking, which increased the tracking accuracy by addressing the issue of object
tracking illumination changes and occlusion.

Mixture of Gaussian (MOG) can be seen as a combination of k single Gaussian models;
MOG is widely utilized to mimic non-Gaussian density because it enhances the real-time
state estimation performance while maintaining the estimation performance [21]. Kotecha
and Djuric [22] extended MOG and PF to dynamic space models with non-Gaussian
noise; Ulmschneider et al. [23] used MOG in multi-path-assisted positioning to improve
the positioning accuracy. A recursive estimator for non-Gaussian problems was derived
in [24]; any probability density can be approximated by a mixture model of finite Gaussian
functions [25]. MOGKF outperforms PF and IMM-KF in non-Gaussian issues, as Bilik
showed in [26].

In this paper, we address the challenging problem of ROV state estimation in an
underwater environment that is nonlinear and non-Gaussian. Due to the complexity of
the underwater environment, the process noise of ROV sensors is non-Gaussian, which
poses a significant challenge to state estimation. To overcome this issue, we propose a
state estimation algorithm that operates effectively in a non-Gaussian noise environment.
Specifically, we apply the CKF to the PF framework to compute the mean and variance of
the importance density function, generate a new posterior probability density distribution,
and regenerate new particles. The problem of particle degradation is alleviated by using
MOG instead of a single Gaussian noise distribution in the EM algorithm, which also
reduces the amount of calculation required during resampling. Simulation trials are used
to confirm the algorithm’s efficacy and noise resistance.

The rest of this paper is as follows. Section 2 analyzes the ROV motion state and
establishes a four-degree-of-freedom dynamic model. Section 3 selects state quantities
and observations and reviews the CKF algorithm. Section 4 introduces the proposed EM-
MOGCPF algorithm. Section 5 presents the simulation results. Then, Section 6 summarizes
the main work of this paper.

2. ROV Modeling
2.1. Description

The research object of this paper is an anchor chain cleaning robot; the three-dimensional
model is illustrated in Figure 1. The ROV features an octahedral open frame structure,
with a maximum operational water depth of 500 m.
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Figure 1. This is an ROV 3D model that has an electrical machine, regulating device, electronic
module, and buoyancy material.

The crawling state of the anchor chain is shown in Figure 2. The operation process of
the ROV is divided into five steps, namely lifting into the water, underwater movement,
cleaning operation, inspection operation, and recovery.

Figure 2. The ROV is designed to operate on the mooring line.

2.2. Coordinate System

According to Figure 3, this paper establishes a dynamic model of the ROV in two
coordinate systems, namely the earth frame O-XYZ and the body-fixed frame o-xyz. The
earth frame is a fixed system with O as the origin, where OX and OY are two horizontal
directions perpendicular to each another, and OZ points vertically to the water surface.
Meanwhile, the ROV’s position and direction are described by the body-fixed frame, which
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is a local coordinate system fixed on the moving rigid body. The body-fixed frame has o as
the origin, where ox represents the front of the ROV movement, oz represents the bottom,
and oy and the other two axes form a right-handed coordinate system.

Figure 3. ROV coordinate system.

The ROV has six-degree-of-freedom (DOF) motions: three translational motions, surge
(X), sway (Y), and heave (Z). There are three Euler angles, roll (ϕ), pitch (θ), and yaw
(ψ), which represent the position and attitude of the ROV relative to the inertial system.
The linear velocity and angular velocity of the ROV are denoted by (u, v, w) and (p, q, r),
respectively.

The motion state of the ROV on the anchor chain is constrained according to the
working state specified in Section 2.1, and the self-stabilizing roll and pitch motions make
it unnecessary to consider the roll and pitch angles. Therefore, the ROV motion model’s
4-DOF are simplified, and the motion parameters are defined as presented in Table 1 [27].

Table 1. Definition of motion parameters.

DOF Motions Forces and Moments Linear and Angular
Velocities

Position and Euler
Angles

1 Surge X u x
2 Sway Y v y
3 Heave Z w z
4 Yaw N r ψ

In the inertial coordinate system, the attitude vector is η = [x y z ψ]T, where xyz is
the three-axis translation displacement, and ψ is the heading angle. The motion coordinate
system’s velocity vector is V = [u v w r]T, where uvw is the linear velocity, and r is the
angular velocity around the z-axis. A few assumptions are made as follows:

• The ROV density is distributed uniformly;
• There is low-speed movement;
• The center of buoyancy and gravity are congruent.

The space conversion equation is given by

η̇ = J(η)V, (1)

where J(η) is Jacobian matrix

J(η) =
[

J1(η) 03×3
03×3 J2(η)

]
(2)
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J1(η) and J2(η) are given by

J1(η) =

 cosψ −sinψcosϕ + cosψsinθsinϕ sinψsinϕ + cosψsinθsinϕ
sinψcosθ cosψcosϕ + sinϕsinθsinψ −cosψsinϕ + sinθsinψcosϕ
−sinθ cosθsinϕ cosθcosϕ

, (3)

J2(η) =

1 sinϕtanθ cosϕtanθ
0 cosϕ −sinϕ
0 sinϕsecθ cosϕsecθ

, (4)

2.3. ROV Dynamic Model

In Fossen’s theory [27], ROV dynamics consist of a rigid body force, hydrodynamic
force, and water surface static force:

MV̇ + CRB(V)V + CA(V)V + ...

DNL(V)V + DL(V)V + g(η) + gr = τ + τenv,
(5)

The system inertia matrix M ∈ R4×4, M = MRB + MA, composed of the rigid-body
and added mass matrices,

MRB =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 Iz

, MA =


−Xu̇ 0 0 0

0 −Yv̇ 0 0
0 0 −Zẇ 0
0 0 0 −Nṙ

, (6)

The Coriolis-centripetal matrix C(V) ∈ R4×4, C(V) = CRB(V) + CA(V) is composed
of the rigid-body and added mass effects:

CRB(V) =


0 0 0 −mv
0 0 0 mu
0 0 m 0

mv −mu 0 0

, CA(V) =


0 0 0 Yv̇v
0 0 0 −Xu̇u
0 0 0 0
−Yv̇v Xu̇u 0 −Nṙ

, (7)

The damping matrix D(V) ∈ R4×4, D(V) = DL + DNL(V) is composed of the linear
and nonlinear hydrodynamic damping:

DL =


−Xu 0 0 0

0 −Yv 0 0
0 0 −Zw 0
0 0 0 −Nr

, (8)

DL =


−X|u|u|u| 0 0 0

0 −Y|v|v|v| 0 0
0 0 −Z|w|w|w| 0
0 0 0 −N|r|r|r|

, (9)

g(η) and g(0) are the restoring forces that try to bring the system to its natural
equilibrium; it is implemented as

g(η) =


0
0

−(W − B)
0

, (10)

where W and B are, respectively, buoyancy and gravity.
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For the ROV, τ gives propulsion. There are only four different motions, surge, sway,
heave, and yaw, because the ROV is attached to an anchor chain; hence, τ ∈ R4×1, τ =
[τx τy τz τψ]

The ROV is exposed to environmental disturbance forces and moments in the water
throughout the diving process, which are made up of secondary wave forces, ocean currents,
and wind forces. The bias model ḃ is

ḃ = Fb + wb, (11)

where wb is a zero mean Gaussian white noise vector, and Fb is a environmental distur-
bance matrix.

2.4. Complete ROV State Space Model

The complete mathematical model of an ROV is represented using a state space
formulation that integrates the coordinate system and dynamic model. By combining
Equations (1) and (5), we obtain a state space model.

η̇ = R(ψ)V,

V̇ = M−1[−C(V)v− D(V)V − g(η)− gr + τ + τenv],
(12)

where, as in Table 1, it has 4-DOF; when moving on the anchor chain, the transverse rolling
and pitching movements do not need to be considered. The transformation matrix J(η) is
simplified to a pure rotational matrix R(ψ).

3. State Estimation Based on Nonlinear Gaussian Systems
3.1. Observer Design

The Kalman filter is designed on the ROV of the 4-DOF dynamic model, and the
dynamic model of the ROV has been given in Section 2.3. The state variables are defined as
follows:

x̂ = [x y z ϕ u v w r bx by bz bϕ], (13)

where x̂ ∈ R12×1. In a linear system, the state space equation can be expressed as

ẋk = Axk−1 + Buk−1 + Ewk−1,

zk = Hxk + vk,
(14)

Expanding the matrices in Equation (14) yields

A =


R(ψ)V

M−1(−D(v)v− C(v)v + RT(ψ)b)
Fb

09×1

, B =

 0
M−1

0

, (15)

E =

0 0 0
0 M−1 0
0 0 14×4

, H =
[
14×4 04×8

]
, (16)

where A ∈ R12×1, is the state-transition matrix, B ∈ R12×4 is the input matrix, E ∈ R12×12

is the noise matrix, H ∈ R4×12 is the measurement, w is the process noise, w ∼ (0, Qk), and
v is the measurement noise, v ∼ (0, Rk).

3.2. CKF Algorithm

In underwater scenarios, the kinematic characteristics of ROVs are highly nonlinear
due to the interconnections between each degree of freedom. Therefore, linear Kalman
filtering is not suitable for modeling such scenarios. To address this issue, Arasaratnam
and Haykin [12] proposed the CKF, which can overcome the divergence problem of the
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EKF. Unlike the EKF, the CKF does not rely on linearizing the nonlinear system, but instead
transforms it to calculate the first- and second-order moments of the filter distribution. As a
result, the CKF is applicable to a wide range of nonlinear systems, as long as the error
remains within acceptable limits.

The following Gaussian noise nonlinear system model is formed:

ẋk = f (xk−1, uk−1) + wk,

zk = h(xk) + vk,
(17)

where f (•) and h(•) represent the nonlinear process and measurement equation.
Step 1: Initialize
To produce 2n cubature points, CKF applies the third-order spherical radial volume

rule as shown:

x̂k = E(x0),

Pk = E(x0 − x̂k)(x0 − x̂k)
T,

(18)

and substituting Equation (17) into Equation (18) yields

x̂k = E[ f (xk−1, uk−1) + wk−1]. (19)

Since wk−1 is assumed to be zero-mean and independent of past measurements, we obtain

x̂k= E[ f (xk−1, uk−1) + wk−1]

=
∫

f (xk−1, uk−1)p(xk−1|Yk−1) dxk−1

=
∫

f (xk−1, uk−1)×N (xk−1; x̂k−1|k−1, Pk−1|k−1) dxk−1,

(20)

where N is a symbol for the Gaussian density, Yk−1 = [ui, zi], i = 1...k− 1 indicates the
input measurement from 1 to k− 1, and p(xk−1|Yk−1) is the old posterior density at time
k− 1,

Similarly, we can obtain the error covariance Pk−1:

Pk= E(x0 − x̂k)(x0 − x̂k)
T

=
∫

f (xk−1, uk−1) f T(xk−1, uk−1)×N (xk−1; x̂k−1|k−1, Pk−1|k−1) dxk−1

−x̂k|k−1 x̂T
k−1|k−1 + Qk−1,

(21)

Step 2: Time Update
In order to avoid the non-positive definite phenomenon of the system state covariance

array caused by using Cholesky decomposition in traditional CKF, singular value decom-
position (SVD) is adopted instead of Cholesky decomposition in this paper. Calculate the
cubature point:

Pk−1 = Uk−1

[
Sk−1 0

0 0

]
UT

k−1,

xi
k = Uk−1

√
Sk−1ξ i + x̂k, i = 1, 2, ..., 2n,

ξi =

{√
n[1]i, i = 1, 2, ..., 2n,
−
√

n[1]i, i = n + 1, n + 2, ..., 2n,

(22)

where Sk−1 is a diagonal matrix, cubature point ξi, n represents the state variable dimension,
n = 12 according to Section 3.1, [1]i denotes the column i of [1], and [1] is a symmetric
matrix with a dominant diagonal line of 1.
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Propagate the cubature point:

xi
k+1|k = f (xi

k), (23)

The state variable predicted values and error covariance predicted values are

x̂k+1|k =
1

2n

2n

∑
i=1

xi
k+1|k ,

Pk+1|k =
1

2n

2n

∑
i=1

xi
k+1|k(xi

k+1|k)
T − ˆxk+1|k( ˆxk+1|k)

T + Q,

(24)

Step 3: Measurement Update
Perform the matrix decomposition with SVD and calculate the cubature point:

Pk+1|k = Uk+1|k

[
Sk+1|k 0

0 0

]
UT

k+1|k ,

xk+1|k = Uk+1|k
√

Sk+1|kξ
i
+ x̂k+1|k ,

(25)

Propagate the cubature point:

zi
k+1|k = h(xi

k+1|k), (26)

Calculate the measured predicted values:

ẑk+1 =
1

2n

2n

∑
i=1

zi
k+1 , (27)

The measurement error covariance and cross-covariance at time k+1 have the
following forms: 

Pz
k+1 = 1

2n

2n
∑

i=1
zi

k+1(z
i
k+1)

T − ˆzi
k+1(z

i
k+1)

T + R,

Pxz
k+1 = 1

2n

2n
∑

i=1
xi

k+1(z
i
k+1)

T − ˆxk+1( ˆzk+1)
T,

(28)

The Kalman gain, states, and error covariance are expressed as follows:

Kk+1 = Pxz
k+1(Pxy

k+1)
−1,

x̂k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1),

Pk+1 = Pk+1|k − Kk+1PZ
k+1KT

k+1,

(29)

4. State Estimation Based on Nonlinear/Non-Gaussian Systems
4.1. CPF Algorithm

The underwater motion of the ROV is affected by various environmental factors,
such as wind, waves, and currents. The complex relationship between these disturbance
variables results in a non-Gaussian noise distribution, which cannot be handled by the
classical Kalman filter. Therefore, it is difficult to meet the actual system’s requirements,
and the Kalman filter fails to achieve optimal estimation performance.

In nonlinear and non-Gaussian systems, the particle filtering algorithm can approx-
imate the posterior probability density of random variables satisfying any distribution
(Gaussian or non-Gaussian) and state (linear or nonlinear) as the number of particles in-
creases. However, the importance density function of traditional particle filtering is the state
transfer probability function, which does not consider the latest quantitative information.
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As a result, the particles are prone to degeneracy. To alleviate this problem, the cubature
Kalman filter is applied to the particle filtering framework.

At time step k, the CKF algorithm is employed to compute the mean and variance of
the importance density function based on the observed data. A new posterior probability
density distribution is then generated, which can generate new particles. The weights of the
particles are calculated, normalized, and resampled to complete the state estimation process.

The importance density distribution used in the PF is designed by the CKF algorithm,
which is obtained by the calculations described in Section 3.2.

q(x̂i
k|k|x̂

i
k|k−1, zk) = N(x̂i

k|k, Pi
k|k), (30)

where N is the total number of particles, which is sampled from the importance function at
moment k:

xi
k ∼ N(x̂i

k|k, Pi
k|k), (31)

When i = 1, 2, ...N, calculate the importance weights of the particles again and normalize:

wi
k =

p(xk|Xi
k)p(xi

k|x
i
k−1)

q(x̂i
k|k|x̂k|k−1i , zk)

,

wi
k = wi

k[
N

∑
i=1

wi
k]
−1,

(32)

When the weights of the particles fall below the designated threshold, the particles are
resampled, resulting in N particles with equal weights (Xi

k, 1
N ). Calculate state estimates

as follows:

x̂k|k =
1
N

N

∑
i=1

xi
k,

P̂k|k =
1
N

N

∑
i=1

(xi
k − x̂k|k)(xi

k − ˆxk|k)
T,

(33)

4.2. MOGCPF

In this paper, we propose a modified algorithm, MOGCPF, based on the CPF algorithm.
CPF leverages the CKF to obtain a Gaussian distribution, which is used as the importance
density function. However, in practice, the importance density function cannot always
be accurately approximated by a Gaussian distribution, which limits the accuracy of
CPF. To address this issue, we leverage MOG, which can approximate any posterior
probability density. By selecting appropriate mixture components, we obtain an improved
approximation for the importance density function, which enhances the accuracy of the
MOGCPF algorithm.

In the framework of CPF, using the MOG approximation, the posterior density of
states and the densities of process and measurement noise at moment k are assumed to be
approximated as follows:

pG(xk|zk) =
G

∑
i=1

wi
k N(xk; ui

k, Pi
k),

pG(vk) =
T

∑
a=1

ra
k N(vk; ua

v,k, Qa
k),

pG(qk+1) =
M

∑
m=1

γm
k+1N(qk+1; um

r,k+1, Rm
k+1),

(34)
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where G is the number of mixed components; ωi is mixed weights. The MOG-approximated
predicted density pG(xk|zk) of states at time k + 1 is

pG(xk+1|zk) =
∫

p(xk+1|xk)p(xk|zk) dxk,

≈
K

∑
r=1

G

∑
i=1

wi
kri

k ×
∫

N(xk+1; f (xk) + ub
v,k, Qb

k)× N(xk+1; f (xk) + ui
k, Pi

k) dxk,
(35)

where G′ = GK, i = 1, 2, . . . , G, r = 1, 2, . . . , K, i′ = 1, . . . , G′, with mixed weights wi′
k+1

wi′
k+1 =

wi
kri

k
G
∑

i=1

K
∑

r=1
wi

kri
k

, (36)

During the CKF time update,

xi′
k = ui

k ,

Si′
k =

√
Pi

k ,
(37)

Calculate the cubature point (l is the number of dimensions):

Xi′
l,k = Si′

k

√
n[I]l + xi′

l,k,

Xi′
l,k+1 = f (Xi′

l,k) + ub
v,k,

x̂i′
k+1|k =

1
2n

2n

∑
i=1

Xi′
l,k+1,

Pi
k+1|k =

1
2n

2n

∑
i=1

Xi′
l,k+1(Xi′

l,k+1)
T − x̂i′

k+1|k(x̂i′
k+1|k)

T + Qb
k,

(38)

and let ui′
k+1 = xi′

k|k+1, Pi′
k+1 = Pi′

k+1|k; thus, the MOG of the prior density function is

pG(xk+1|zk) =
G

∑
i=1

wi
k+1N(xk; ui′

k+1, Pi′
k+1), (39)

Similarly, in the CKF measurement update phase, the posterior density function

pG(xk+1|zk) =
G′′

∑
i′′′=1

wi′′′
k+1N(xk; ui′′

k+1, Pi′′
k+1), (40)

It can be seen that in the time update, the Gaussian component increases from G
to G′, and the Gaussian component increases from G′ to G′′ in the measurement update;
as the estimation process proceeds, it leads to an increasing amount of computation, so it is
necessary to reduce G′ to G during resampling.

4.3. EM-MOGCPF

The EM algorithm [28] is used on the basis of MOGCPF to calculate MOG parameters
in the set of importance-sampled particles, which reduces Gn to G, improves the problem
of particle sample degradation, and reduces the computational effort. The algorithm flow
is shown in Figure 4.
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Figure 4. EM-MOGCPF algorithm.

The mixture weights for each model are set to wg = 1
G , the mean ug is set to a random

number, the covariance matrix Pg is set to a unit matrix, and we calculate Pg, wg and take
the proportion of each type of sample to the total number of samples:

ρ = [(w1, u1, P1), (w2, u2, P2), ..., (wi, ui, Pi), ...](i = 1, ..., G), (41)

Calculate r1(xk), r2(xk), ..., ri(xk), k = 1, 2, ..., N by ρ.

ri(xk) =
αi N(xk; ui, Pi)

G
∑

i=1
αi N(xk; ui, Pi)

, (42)

Obtain the new mean ûi, variance P̂i, and mixture weights ŵi:

ûi =

N
∑

k=1
ri(xk)xk

N
∑

k=1
ri(xk)

,

P̂i =

N
∑

k=1
ri(xk)(xk − ûi)(xk − ûi)

T

N
∑

k=1
ri(xk)

,

ŵi =
1
N

N

∑
k=1

ri(xk),

(43)

Let ρ̂ = [(ŵ1, û1, P̂1), (ŵ2, û2, P̂2), ..., (ŵi, ûi, P̂i), ...]; the iteration stops when |ρ− ρ̂| < v
(v is a minimum value); otherwise, obtain ρ = ρ̂ and return to Equation (42) to calculate ri(xk).

When wi
k+1 = ŵi, ui

k+1 = ûi, Pi
k+1 = P̂i, obtain the new posterior density:

pG(xk+1|zk+1) =
G

∑
i=1

wi
k+1N(xk+1; ui

k+1, Pi
k+1), (44)

from the EM algorithm; we can observe a reduction in the number of mixture components,
Gn to G, which has the effect of reducing the posterior probability density at moment k + 1.
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State estimate at moment k + 1:

x̂k+1 =
G

∑
i=1

wi
k+1ui

k+1,

P̂k+1 =
G

∑
i=1

wi
k+1[P

i
k + (ui

k+1 − x̂k+1)(ui
k+1 − x̂k+1)

T],

(45)

5. Experimental and Analysis
5.1. Experimental Settings

The ROV is measured to have a mass of 26 kg; moment of inertia Iz = 1.04 kg·m2. The
buoyancy and gravity counterweights are balanced. Meanwhile, the overall structure of the
ROV designed in this paper is symmetrical front-to-back, up-and-down, and left-to-right,
with the center of gravity coordinates as the origin of the coordinate axis.

By the above analysis and calculation, we can obtain the rigid-body matrix:

MRB =


26 0 0 0
0 26 0 0
0 0 26 0
0 0 0 1.04

, (46)

The added mass matrix:

MA =


−24.56 0 0 0

0 −34.27 0 0
0 0 −39.19 0
0 0 0 −2.01

, (47)

The linear hydrodynamic damping matrix:

DL =


−30.57 0 0 0

0 −42.21 0 0
0 0 −89.10 0
0 0 0 −0.028

, (48)

The nonlinear hydrodynamic damping matrix:

DNL(V) =


−97.43 0 0 0

0 −79.39 0 0
0 0 −117.40 0
0 0 0 −1.25

, (49)

The evaluation index adopted in this study is the root mean square error (RMSE),
which represents the square root of the ratio of the squared difference between the predicted
and true values to the number of observations N. The RMSE value serves as a measure of
the model’s performance, with smaller values indicating more accurate prediction results.
The calculation formula for RMSE is presented below:

RMSE = 2

√√√√ 1
N

N

∑
i=1

(ŷ− y)2, (50)

where N is the total number of samples, ŷ is the predicted attitude of the ROV, and y is the
ROV’s actual attitude.
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Due to the complexity of simulating the real state of the anchor chain underwater, it is
necessary to approximate the anchor chain as a suspension line. The suspension line can be
described by the general equation

y = acosh(
x
a
− 1), (51)

where a is the distance from the vertex of the curve to the horizontal coordinate.
The motion state of the ROV is influenced by varying sea states, which are presented

in Table 2 [29] below. The strength of ROV interference increases as the sea state degree
increases. When the sea state degree is 0, the impact of waves and sea wind can be mostly
disregarded, and only the influence of ocean currents needs to be considered. Therefore,
a Gaussian noise model can be assumed during this time. Conversely, when the sea state
degrees are 1–3, the impact of waves, sea wind, and ocean currents must be taken into
account, and a non-Gaussian noise model should be used.

Table 2. State of the sea.

Degree Wind Wind Speed (m/s) Wave Wave Height (m)

0 Calm 0−0.2 Calm glassy /
1 Light air 0.3−1.5 Calm rippled 0−0.1
2 Light breeze 1.6−3.3 Smooth wavelet 0.1−0.5
3 Gentle breeze 3.4−5.4 Slight 0.5−1.25

State vector x̂ = 0, covariance matrix p0 = diag[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3], T = 200, particles N = 300, anchor chain length a = 60.845. Our proposed
algorithm is subjected to comparison with CKF, CPF, and PF.

5.2. Results and Discussion
5.2.1. Sea State Degree: 0

At a sea state degree of 0, the surface of the sea is calm with no wind or waves.
The only external noise present is caused by underwater currents, and it is assumed that
this noise follows a Gaussian distribution. Process noise wk ∼ N(0, Q), measurement noise
vk ∼ N(0, R), R = diag[0.3, 0.2, 0.3, 0.05], Q = diag[0, 0, 0, 0, 3, 4, 5, 0.02, 2, 2, 2, 0.5].

Figures 5 and 6 present the errors in the estimated displacement and velocity of
the ROV using the proposed algorithm, as well as three other algorithms: CPF, CKF,
and PF. It is evident that the PF algorithm suffers from particle degradation over time,
which leads to a decrease in estimation accuracy and filter divergence. On the other
hand, the estimation accuracy of CKF in the presence of Gaussian noise is consistent
with expectations, and CPF effectively addresses the particle degradation issue by using
CKF for importance density function calculation. Consequently, the proposed algorithm
outperforms the other algorithms at a sea state of 0.

5.2.2. Sea State Degree: 1−2

There is a light breeze and smooth wavelet on the sea surface at a sea state of 1–2, and the
measurement noise is non-Gaussian distributed, vk ∼ 1.875N(0, R)+ 0.04N(0.357 ∗R), R =
diag[0.4, 0.3, 0.3, 0.4]. Figures 7 and 8 demonstrate that the CKF algorithm diverges in both
the XYZ axis and yaw angle estimation when the noise distribution is non-Gaussian. This
indicates that CKF is only suitable for Gaussian noise environments. Furthermore, in the
estimation of Y and Z axis displacement, particle degradation gradually occurs in PF
after a certain period of time. The importance density function of CPF cannot always be
approximated by a Gaussian distribution, as evidenced by the small divergence observed
at sea state levels 1–2. Hence, the proposed algorithm shows improved noise immunity
by incorporating a mixed Gaussian model. Overall, the results suggest that the algorithm
presented in this paper outperforms CKF, PF, and CPF under mixed noise conditions.
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Figure 5. XYZ-axis and yaw angular error at sea state of 0. (a) X-axis position estimation error;
(b) Y-axis position estimation error; (c) Z-axis position estimation error; (d) Yaw angular position
estimation error.

Figure 6. XYZ-axis and yaw angular velocity error at sea state of 0. (a) X-axis velocity estimation
error; (b) Y-axis velocity estimation error; (c) Z-axis velocity estimation error; (d) Yaw angular velocity
estimation error.
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Figure 7. XYZ-axis and yaw angular error at sea state of 1–2. (a) X-axis position estimation error;
(b) Y-axis position estimation error; (c) Z-axis position estimation error; (d) Yaw angular position
estimation error.

Figure 8. XYZ-axis and yaw angular velocity error at sea state of 1–2. (a) X-axis velocity estimation
error; (b) Y-axis velocity estimation error; (c) Z-axis velocity estimation error; (d) Yaw angular velocity
estimation error.
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5.2.3. Sea State Degree: 3

A sea state of 3 represents the maximum sea state in which an ROV can operate
effectively. Beyond this level, the use of an ROV is not recommended. In such chal-
lenging environments, the benefits of the improved algorithm become apparent. More-
over, when the sea surface is affected by slight waves and a gentle breeze, the measure-
ment noise follows a non-Gaussian distribution, vK ∼ 0.1N(0, R1) + 0.9N(0, 150 ∗ R2),
R1 = diag[0.4, 0.3, 0.3, 0.4], R2 = diag[0.2, 0.2, 0.1, 0.003]. In Figures 9 and 10, it is evident
that the estimation error of the CKF algorithm increases as the sea state level rises and the
external noise becomes more complex. The filter exhibits multiple divergences in these
scenarios. Specifically, when estimating the Z-axis displacement and bow angle, the CKF
algorithm’s error is even larger than that of the PF algorithm, which suffers from particle
degradation and multiple outliers in the estimation due to its inability to consider the latest
measurement information. Moreover, the complexity of the noise model makes it difficult
to approximate the mixed Gaussian noise using only a single Gaussian distribution.

Figure 9. XYZ- axis and yaw angular error at sea state of 3. (a) X-axis position estimation error;
(b) Y-axis position estimation error; (c) Z-axis position estimation error; (d) Yaw angular position
estimation error.

The CPF algorithm’s error starts to increase when estimating the X-axis displacement
after T > 100 s, and when estimating the Y-axis displacement after T > 40 s, indicating
that CPF cannot guarantee estimation accuracy over a long time. On the other hand,
the algorithm proposed in this paper not only has no outliers, but also avoids diver-
gence in long-term estimates, while significantly improving the accuracy compared to
other algorithms.

Table 3 and Figures 11 and 12 demonstrate that the RMSE values of x, y, z, ψ attitudes
can be found.

(1) In sea state degree 0, the particle filtering has a maximum RMSE in all four attitudes
due to the appearance of particle degeneracy. The CKF algorithm performs better
than the particle filtering algorithm in a Gaussian noise environment. CPF reduces
particle degradation after importance density sampling with CKF, and the estimation
accuracy is improved by 55.37%, 49.35%, 82.06%, 40.41% in x, y, z, ψ compared to
particle filtering, respectively. This indicates that CPF was able to solve the particle
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degradation problem. The algorithm EM-MOGCPF proposed in this paper has the
best estimation accuracy, compared with the best phenotypic performance of CPF,
and the four attitudes were improved by 32.06%, 27.5%, 24.76%, 38.77%, respectively.

(2) In sea state degree 1–2, underwater noise is non-Gaussian distributed under the
influence of wind and waves. The RMSE of the CKF algorithm is slightly greater than
that of particle filtering for the x-axis and yaw angular ψ estimates. CKF’s estimation
accuracy decreases and it is not suitable for state estimation under non-Gaussian noise.
Although CPF combines the applicability of particle filtering for non-Gaussian noise,
it is applicable to a single noise model; the EM-MOGCPF algorithm incorporates the
MOG model, which effectively improves the estimation accuracy under mixed noise.

(3) As the sea state degree rises to 3, the RMSE of CKF in three attitudes is greater
than that of particle filtering; it shows that as the noise environment becomes more
complex , the accuracy of CKF estimation is worsened. Similarly, the performance
of CPF at this sea degree is also poor. By comparison, the estimation accuracy of
EM-MOGCPF is also the highest among the four algorithms. RMSE does not show
large values as the sea degree increases, and it has good noise immunity in complex
environments. Compared to CPF, which has the best relative stability, the accuracy is
improved by 53.67%, 81.37%, 81.26%, 68.47%. This shows that EM-MOGCPF has good
estimation accuracy even at the maximum operating conditions.

Figure 10. XYZ- axis and yaw angular velocity error at sea state of 3. (a) X-axis velocity estimation
error; (b) Y-axis velocity estimation error; (c) Z-axis velocity estimation error; (d) Yaw angular velocity
estimation error.
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Table 3. RMSE of different algorithms in three sea states.

Simulation Case Attitude PF CKF CPF EM-MOGCPF

Sea state degree: 0

X 1.8577 1.0618 0.8291 0.5633
Y 1.2232 0.9602 0.7297 0.5290
Z 3.8294 0.8827 0.6871 0.5140
ψ 2.5201 1.5164 1.5018 0.9196

Sea state degree: 1–2

X 0.8289 1.1010 0.6611 0.4392
Y 2.6940 1.4307 0.8125 0.3738
Z 6.9908 3.9050 1.0363 0.4771
ψ 1.6541 1.7259 0.8849 0.4083

Sea state degree: 3

X 2.1690 3.5037 1.2855 0.5956
Y 7.5129 5.0190 1.6607 0.3094
Z 5.9652 10.9400 3.3708 0.6318
ψ 8.7070 14.6010 6.7736 2.1357

Figure 11. RMSE of sea state degree 0.

(a) (b)

Figure 12. (a) RMSE of sea state degree 1–2, (b) RMSE of sea state degree 3.

6. Conclusions

In this paper, we propose the EM-MOGCPF algorithm, an improved state estimation
approach based on the CPF framework, for underwater robots operating in environments
with nonlinear and non-Gaussian noise distributions. Our algorithm leverages a hybrid
Gaussian model to approximate the significant type density function, and employs the EM
algorithm instead of traditional resampling to mitigate the particle degradation problem.
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We also use a modified algorithm for underwater anchor chain cleaning robot observation,
and validate the performance of the algorithm under three different sea state conditions.
Our experimental results demonstrate that the proposed algorithm can accurately estimate
the robot state and achieve strong convergence even in the presence of different noise
distributions, while effectively resisting the influence of noise. The algorithm exhibits
good environmental adaptability and can address the problem of robot state estimation in
underwater nonlinear and non-Gaussian environments. Moreover, the proposed algorithm
can be applied to other state estimation fields.

Future research includes developing a simulation platform for underwater robot
state observation, exploring underwater robot models with more degrees of freedom
and parameter estimation, and conducting additional underwater experiments to further
evaluate the real-time performance and accuracy of the algorithm.
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