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An Autonomous Underwater Vehicle Simulation
with Fuzzy Sensor Fusion for Pipeline Inspection

I-Chen Sang , William R. Norris

Abstract— Underwater pipeline inspection is an important topic in
off-shore subsea operations. ROVs (Remotely Operated Vehicles)
can play an important role in multiple application areas includ-
ing military, ocean science, aquaculture, shipping, and energy.
However, using ROVs for inspection is not cost-effective, and the
fixed leak detection sensors mounted along the pipeline have lim-
ited precision. Although the cost can be significantly reduced by
applying AUVs (Autonomous Underwater Vehicles), the unstable
current, low visibility and loss of GPS signal make the navigation
of AUVs underwater very challenging. Previous studies have been
conducted on coordinate-based, vision-based, and fusion-based
navigation algorithms. However, the coordinate-based algorithms
suffered from the denial of GPS signals while the vision-based
methods typically relied on terrain and landscape knowledge that required collection prior to the mission. As a result
of these issues, a navigation system for an AUV (Autonomous Underwater Vehicle) that incorporates vision and sonar
sensors is presented in this paper. In a ROS/Gazebo-based simulation environment, the AUV had the ability to find and
navigate towards the pipeline and continuously traverse along its length. Additionally, with a chemical concentration
sensor mounted on the AUV, the system demonstrated the capability of inspecting the pipeline and reporting the leak
point with a resolution of 3 meters along the pipeline.

Index Terms— Autonomous Underwater Vehicle, Fuzzy Controller, Pipeline Inspection, ROS, Sensor Fusion, Simulation

I. INTRODUCTION

A. Motivation

UNDERWATER pipelines are essential infrastructure for
the transportation of oil and gas. However, cracks are

likely to be found on pipelines due to the extreme ma-
rine environments. Furthermore, underwater pipelines become
more vulnerable as they age, thereby exposing them to more
damage [1]. Gas and oil leaks, and other forms of ocean
pollution caused by pipeline systems are extremely expensive
to repair and negatively impact fuel reserves. As a result,
periodic inspection of underwater pipelines is a necessary and
important issue in oceanic engineering.

Before the development of advanced autonomous vehicle
technology, pipeline inspections were primarily performed
using visual inspection and sensor networks [2]. Visual inspec-
tions are carried out by examining close-up images collected
by divers or ROVs. Fluorescent dyes could be added to
raise the accuracy of the leak detection. Apart from visual
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inspections, acoustic sensors or chemical sensors installed
along the pipelines could indicate the presence of a leak [3].
When detecting a leak, a signal is sent either through the
network, or to cruising ROVs [4]. These approaches have
several weaknesses as sensor networks are vulnerable and
have limited precision due to the distance between sensors. In
addition, the power required for a sensor or receiver network
increases complexity for the whole system.

ROVs and AUVs were introduced to the field of underwater
pipeline inspection in order to overcome precision and mobil-
ity issue. [5] Among the two options, AUVs outperform ROVs
due to better automation and reduced workforce requirement.It
was first proposed in [6], that inspections can be performed
by Autonomous Underwater Vehicles (AUVs) with predefined
task flows. After finding the pipeline, AUVs can navigate along
the pipeline to conduct the inspection mission.

Despite the improvements made possible by AUVs, the
highly complicated environment underwater makes the nav-
igation of AUVs extremely challenging. For example, limited
access to GPS signals significantly constrains localization
precision. Low visibility and shadows add to the complexity
of capturing and interpreting vision-related data. Moreover, the
current flow and disturbances pose an even greater challenge
to controlling AUVs.

The goal of this study was the development of a navigation
algorithm that can overcome the difficulties mentioned above.
Under a GPS-denied environment with typical sea currents
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and limited visibility, the algorithm is expected to navigate
the AUVs to follow the pipeline and conduct leak detection
tasks.

B. Related Work

There have been many studies exploring the navigation of
an AUV along pipelines [7]. One of the popular approaches
has been to save the coordinates along the pipeline, and use
the current AUV position for navigation [8] [9]. Reinforcement
learning [10] and fuzzy logic [11] [12] were used for increased
precision. However, due to the lack of GPS signals and drift
in inertial sensing, the precision of coordinate-based methods
was limited.

In order to overcome the GPS issue in coordinate-based nav-
igation, the vision-based approach was widely used to assist
the systems. Given the limited visibility in this simulation,
navigation methods using natural landscapes as references
were excluded due to the extended distances. The systems
searched for features from nearer objects, such as the seabed
[13], artificial landscapes [14], or the pipeline. A common
approach involved extracting underwater pipelines from im-
ages using edge detection algorithms [15] [16] [17] [18].
Learning-based models were used to translate the acquired
image into corresponding control commands. [19]. However,
the reliabilities of vision-only approaches were dominated by
visibility, and the difficulties in acquiring underwater datasets.
[20].

Sonar images from scanning sonar sensor arrays have been
commonly used in AUV navigation in order to overcome the
visibility issues. Thus, similar edge detection techniques could
be applied toward sonar images to localize along the pipeline
[21] [22] [23] [24]. Semi-automated pipeline inspection using
scanning sonar sensors has been introduced into the market
as they are not limited by underwater visibility. However, the
cost of sonar array sensors is much higher than RGB cameras.

The research community has been exploring potential so-
lutions combining the vision-only and sonar-only approaches
given the advantages and disadvantages previously discussed.
Sensor fusion is the most promising approach for providing ro-
bust vision-only navigation methods [25]. Underwater camera
information can be fused with various sensors for navigation
purposes.

The fusion of the camera with other sensors has been used
in a variety AUV general localization studies. Karras et al used
the fusion result of the Inertial Measurement Unit (IMU) and
a downward-looking camera to obtain the position of the AUV
[26]. Billings et al combined a stereo camera and a fish-eye
camera to construct a SLAM (simultaneous localization and
mapping) structure [27]. Similarly, Vargas et al incorporated
acoustic odometry with an onboard camera for a robust SLAM
algorithm.

In the field of underwater pipeline inspections, few at-
tempts of applying sensor fusion have succeeded. Acosta et
al combined detection results from the multi-beam sonar and
magnetometer to follow a pipeline [28]. The studies performed
by Jacobi et al [6] [25] proposed a pipeline inspection frame-
work incorporating cameras, multi-beam echo sounders, sub

bottom profilers, and magnetic sensors. A probability map was
generated by combining the detection result of all the sensors.
The result demonstrated successful map construction, but there
were no navigation experiments.

C. Contribution and overview of the study

A fuzzy control method for fusing image and sonar data
is presented in this study in order to achieve higher levels of
reliability and lower cost. Instead of using side-scan sonar, a 4-
unit sonar sensor was utilized to lower the cost. Moreover, with
the pipeline detection algorithm in this study, a predetermined
map of the terrain and others features was not required. The
navigation method enabled the AUV to successfully cruise
along the pipeline and simultaneously report the chemical
concentration in the simulation environment.

In verifying the proposed framework, experiments were
conducted in a simulation environment including complica-
tions from limited visibility and shadows. The experiments
demonstrated that even without access to GPS signals, the
algorithm could navigate the AUV to follow the underwater
pipeline and detect leaks in the pipeline with a precision of
3m.

The remainder of this paper describes a method, result
and conclusion for the study. All theoretical derivation and
experimental setup are illustrated in detail in section II. The
errors from the pipeline detection, navigation and during leak
detection are all presented in section III. The conclusion of the
proposed study and several potential future research topics are
proposed in section IV.

II. METHOD

The proposed algorithm integrated vision and sonar data,
enabling precise path following without access to GPS data.
By interpreting vision and sonar data into navigation error
measurements, the fuzzy controller was leveraged to make the
proper decision and control the propellers.

The validation of the proposed algorithm was done under
a simulation framework where all physical properties were
simulated and captured. It was shown that the AUV could suc-
cessfully approach the underwater pipeline, follow it precisely,
and identify the leak point simultaneously. In this section, the
simulation environment, navigation algorithm, leak detection
algorithm and grid map construction methods are described
respectively.

A. Simulated Environment

1) Physical properties simulation: A simulation environment
[29] based on ROS/Gazebo platform was adopted to verify
the proposed algorithm. As Gazebo did not have a default
underwater model available, an “Ocean box” model simulated
the role of the ocean.

The attenuation of light over depth, distance, and wave-
lengths were included in the simulation. The exponential
attenuation followed the equation

ic,m = ice
−rac + (1− e−rac)bc (1)

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2023.3250721

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I-CHEN SANG et al.: AN AUTONOMOUS UNDERWATER VEHICLE SIMULATION WITH FUZZY SENSOR FUSION FOR PIPELINE INSPECTION 3

(a) (b)

Fig. 1. Size and position setup of the underwater pipeline (a)global view
(b)detailed view in the turning point (the marked box in (a))

where c was the notation of the channel (R,G,B). ic and ic,m
were the intensity value of channel c before/after the attenu-
ation. bc was the background intensity. r was the distance to
the object, and ac was the attenuation factor of each channel.
In the default setting of the simulator, 0.1/0.1/0.03 represented
ac in red/green/blue respectively. The system noise was added
to the camera by post-processing the data. Moreover, shadow
was also made visible, which helped in simulating real world
issues such as locating the pipeline with cameras.

According to [29], some dynamic properties have not been
added to the model. For example, the floating particles in
the ocean were not included in the simulation. Moreover, the
model did not consider surface waves and their resulting light
damping effect.

The precision of the visibility range was a limitation of this
simulator. Though the attenuation factors were provided in the
source code, they could change significantly with the water
quality and backscattering of the underwater particles. Precise
estimation of the visibility range was out of the scope of this
paper. But, according to [30], a visibility range of around 10m
was usually used for underwater vision systems.

As a result, the study used the visibility range estimate of 10
meters. The AUV was assumed to start the navigation process
at a distance of less than 10m away from the underwater
pipeline. When the AUV was released from the boat to start
the mission, the GPS position was known. With the use of
dead reckoning, the AUV maintained its position even after
losing the GPS signal with increasing depth. A recent study
of underwater dead reckoning [31] showed that the drift could
be controlled to 5m over a time frame of two hours, making
the assumption of having a drift amount less than the visibility
range reasonable. Once the AUV reached the required depth,
it searched for the pipeline.

The simulation world was composed of the “ocean box,”
the pipeline, and the AUV. The radius of the pipeline was 1
meter. To create a gradual turn, the pipeline was separated into
four parts. Their size and positions are shown in Figure 1. The
AUV used in the simulated environment had a dimension of
1.5(W )×2.6(L)×1.6(H)m3. It was spawned at a fixed depth
of 90 meters. Apart from the essential components, several
objects other than the pipeline were placed along the way to
test the system’s capability to identify the correct target. The
setup of the virtual world is shown in Figure 2. To better
simulate the complicated environment underwater, constant
sea current was also applied to the simulation.

2) The software structure: The experiment was a closed-
loop simulation system. The complete structure is shown
in Figure 3. Using the current position of the AUV, the

Fig. 2. The simulated underwater world setup.

Fig. 3. The complete closed-loop structure of this research

ROS/Gazebo world simulated and reported the output from
various sensors. With a self-developed Python program, cur-
rent navigation errors were calculated and published to the
ROS core. Additionally, the Fuzzy control module was utilized
to send velocity commands to the AUV after making decisions
according to the navigation errors.

B. The dynamic model of AUV
The position of the AUV was estimated using an Extended

Kalman Filter (EKF). A derivation of 6 DoF (Degrees-of-
Freedom) dynamic model with a simplification to 4 DoF was
presented in [32].

The relation between the force from the thrusters and the
velocity was expressed with the equation below

Mv̇ + C(v)v +D(v)v + g(η) = τ (2)

where M was the inertia of the AUV, C(v) was the Coriolis
effect matrix, D(v) was the fluid drag matrix, and g(η) was the
acceleration sum of gravity and buoyancy, and η represented
the vehicle position and pose. At the other side of the equation,
τ represented the generalized force-torque vector exerted on
the vehicle, including the force generated by the actuators,
wind and the waves. Using the equation above, the state-space
model was derived as[

v̇
η̇

]
=

[
M−1τ −M−1(C(v) +D(v))v −M−1g(η)

J(η)v

]
(3)

where J was the coordinate transformation matrix between the
body frame and the global frame.
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Fig. 4. Graphical explanation of orientation error, heading error and
horizontal error in the proposed Fuzzy controller module

The velocity measurements in the EKF were collected
from the DVL(Doppler Velocity Log) and the IMU(Inertial
Measurement Unit) sensors, while the acceleration terms were
derived by reading the force output from the eight thrusters
on the AUV. With this dynamic model, the error of position
estimation was around 0.7 meter. The detailed derivation is
included in [32].

C. Fuzzy controller module
Fuzzy systems, also called expert systems, are constructed

using the knowledge of experts. The system makes decisions
with proper reasoning [33]. A rule-based fuzzy expert sys-
tem was adopted for the proposed algorithm. One distinct
advantage of the fuzzification process in fuzzy systems is in
improving the noise tolerance in the underwater environment.
The fuzzy control framework in [32] [34] was applied. The
motion of the AUV was determined by analyzing three navi-
gation errors - heading error, orientation error and horizontal
error. The heading error was the angle difference between the
current heading and the straight line from the AUV to the
next designated point. The orientation error was the angle
difference between the current heading and the pipeline’s
orientation. The horizontal error was the horizontal distance
between the AUV and the pipeline. The graphical explanation
of all three navigation errors is shown in figure 4.

According to the input values, the fuzzy control module
evaluated the magnitude of all errors with their predefined
linguistic variables (Figure 5). With the number of categories
in each error, 5× 7× 5 = 175 rules were expected in the rule
base. To reduce the size, the hierarchical rule base reduction
approach introduced in [34] and [35] was applied, reducing the
number to 29. The rule base used in this study is presented in
Table I. The final navigation decisions of the AUV were made
accordingly.

The output value was then defuzzified according to the
function in Figure 6. In this experiment, the angular velocity
of the AUV was assigned according to the output value of
the fuzzy controller with a fixed linear velocity of 0.15 m/s
(forward).

(a)

(b)

(c)

Fig. 5. Linguistic variable membership functions of the (a)heading error
(b)horizontal error (c)orientation error

Fig. 6. Defuzzification function of the fuzzy controller in this study

D. Interpretations of visual and sonar data

In leveraging the fuzzy controller, the data retrieved from the
camera and the sonar sensor was interpreted into the navigation
errors.

1) Visual data: Two reference points mentioned in Figure
4 were analogized in the image data. Figure.7 is an example
of the detected image. When a pipeline was present in the
image, the middle point of the pipeline was analogous to the
next designated point, and the pipeline’s intersection with the
bottom of the image was referenced as the close point.

Different from the original approach where a series of
coordinate points are predefined, the “next designated points”
and “close points” were updated with every incoming images
in the proposed algorithm. Therefore, the resolution of the
route was also increased, leading to a more precise navigation.

The reference points were translated from its image coordi-
nates into vehicle coordinates through matrix transformation
calculation considering the geometry and specifications of the
camera system. Assuming the focal length of the camera was
f , the image resolution was H(height) × W (width), and
the camera was mounted at (x0, y0, z0) with yaw angle of
θ relative to the vehicle, the coordinate of the object relative
to the camera was expressed as

xc =
(a− 2/W )× zc

fsin(θ)
(4)

yc =
(b− 2/H)× zc

fsin(θ)
(5)
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TABLE I
RULE BASE OF THE FUZZY CONTROLLER IN THIS STUDY

Horizontal error Front angle error Orientation error Steering
Far left Far left Right3
Far left Near left Right2
Far left Close left Right1
Far left Zero Zero
Far left Close right Left1
Far left Near right Left2
Far left Far right Left3

Close left Far left Right3
Close left Close left Right2
Close left Zero Right1
Close left Close right Right1
Close left Far right Right1

Zero Far left Right2
Zero Close left Right1
Zero Zero Zero
Zero Close right Left1
Zero Far right Left2

Close right Far left Left3
Close right Close left Left2
Close right Zero Left1
Close right Close right Left1
Close right Far right Left1
Far right Far left Left3
Far right Near left Left2
Far right Close left Left1
Far right Zero Zero
Far right Close right Right1
Far right Near right Right2
Far right Far right Right3

Fig. 7. An analogy was made between the image and physical space.
The definition of next designated point and close point can be referred
to Figure 4

zc =
h

sinθ + b−2/H
f cosθ

(6)

where h is the current distance between the vehicle and the
ground.

A coordinate transform from image coordinates to AUV
coordinates was then applied with the equation below.Xv

Yv

Zv

 =

x0

y0
z0

+

0 0 1
0 −1 0
1 0 0

1 0 0
0 cosθ sinθ
0 −sinθ cosθ

xc

yc
zc


(7)

The three error values required for the fuzzy controller,
horizontal error, front error and orientation error, were de-
rived from the coordinates of the reference points. Assum-
ing that the AUV coordinate of the next designated point

Fig. 8. Illustration of the sonar configuration on an AUV.

and the close point were derived to be (xnext, ynext, znext)
and (xclose, yclose, zclose), then the navigation errors were
expressed as

Ehorizontal = −yclose

Eheading = tan−1 ynext − yclose
xnext − xclose

(8)

Eorientation = tan−1 ynext
xnext

2) Sonar data: Horizontal error, heading error and orienta-
tion error can also be derived from the detected ranges from
a 4-unit DVL sonar sensors. Assuming that the pipeline has a
radius of r, the four sonar sensors are installed at the four
corners of the AUV. The sensors are separated from each
other at a distance of 2m from the left to the right side, and
2n from the front to the back. An illustration is shown in
Figure. 8. Viewing from the top of the AUV, the sonar sensors
detect the distance at four different directions. The four sonar
sensors point toward the seabed slantingly. The end of the
arrow represents the position where the sonar beam touches
the ground.

Since the size of the pipeline and the distance from the
vehicle to the ground were known values, distinguishing
whether a single sonar sensor detected the pipeline was not
difficult. According to the detection result of four sonar
sensors, 24 = 16 cases could be listed. And the navigation
errors corresponding to each case were derived by averaging
their probabilities.

When all four sonar sensors detected the pipeline, the
averaged position/orientation of the vehicle is shown in Figure.
9(a). In this case, the navigation errors were

E[Errorhorizontal] = 0 (9)

E[Errororientation] = E[Errorheading] = 0 (10)
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Fig. 9. Averaged position of the AUV when (a)all four sensors detected
the pipeline (b)only the two diagonal sensors detected the pipeline
(c)only one of the sensors did not detect the pipeline (d)only one of
the sensors detected the pipeline.

The notation E[·] represented the expected value of the pa-
rameter inside the bracket.

When only the two diagonal sensors detected the pipeline,
as shown in Figure. 9(b), the averaged condition led to the
result

E[Errorhorizontal] = 0 (11)

E[Errororientation] = E[Errorheading] = tan−1(
m

n
) (12)

In the case where the vehicle was horizontally flipped, that
is, only the sensor at front-right and back-left detected the
pipeline, the sign of the two angular errors were reversed.

If only one of the four sensors was out of the area of
the pipeline, as shown in Figure. 9(c), the horizontal position
relative to the pipeline had an offset to the left side. Therefore,
the expected value of the errors were

E[Errorhorizontal] = −0.5r (13)

E[Errororientation] = E[Errorheading] = tan−1(
m

n
) (14)

Similar calculation could be done on the case where the AUV
was horizontally or vertically flipped.

In the last case shown in Figure. 9(d) where only one
sonar sensor detected the pipeline, the AUV deviated from
the pipeline at a larger distance than the previous cases. The
expected value of the errors were

E[Errorhorizontal] = −1.5r (15)

E[Errororientation] = E[Errorheading] = tan−1(
m

n
) (16)

Although the navigation errors in most of the cases could be
estimated with the equations above, four special cases could
not be successfully interpreted. When only two adjacent sonar
sensors detected the pipeline, while the other two did not,
the situation became indeterminate. One example is shown in
Figure. 10. If only the two sensors at the front of the AUV
detected the pipeline, the AUV could possibly be at the left or
the right side relative to the pipeline. A similar situation was
also found when only the sensor on the left/right/back side of
the AUV detected the object. In these four cases, the naviga-
tion errors were not derivable. Under these circumstances, the
image processing results were referred to for the navigation
errors.

Fig. 10. Illustration of one of the indeterminate cases.

TABLE II
NAVIGATION ERROR INTERPRETATION OF EVERY POSSIBLE DETECTION

RESULT.

1 2 3 4 Eheading Eorientation Ehorizontal

+ + + + 0 0 0

+ + + - −tan−1(m/n) −tan−1(m/n) 0.5r

+ + - + tan−1(m/n) tan−1(m/n) −0.5r

+ + - - N/A N/A N/A

+ - + + tan−1(m/n) tan−1(m/n) 0.5r

+ - + - N/A N/A N/A

+ - - + tan−1(m/n) tan−1(m/n) 0

+ - - - −tan−1(m/n) −tan−1(m/n) 1.5r

- + + + −tan−1(m/n) −tan−1(m/n) −0.5r

- + + - −tan−1(m/n) −tan−1(m/n) 0

- + - + N/A N/A N/A

- + - - tan−1(m/n) tan−1(m/n) −1.5r

- - + + N/A N/A N/A

- - + - tan−1(m/n) tan−1(m/n) 1.5r

- - - + −tan−1(m/n) −tan−1(m/n) −1.5r

- - - - N/A N/A N/A

Combining the results derived above, the navigation errors
are represented in Table II. In this table, ‘+’ represents
‘detected’ while ‘-’ represents ‘not detected’. The order of
the sensors is front-left, front-right, back-left, back-right.

The interpreted navigation errors from both visual and
sonar sensors were processed by the fuzzy controller, thereby
navigating the AUV towards the predetermined route. This
function was verified with a series of experiments done in a
simulated environment.

E. Navigation in the simulated environment
The proposed navigation algorithm was applied on the

simulated AUV. The detection data from the Gazebo world
and the calculated navigation command was communicated
through the ROS core of the system.

1) Image processing: The camera mounted on the simulated
AUV had a resolution of 768×492 with 8-bit RGB depth. The
camera was installed at a position of (1.15, 0, 0.4) with respect
to the AUV. Furthermore, the line of sight of the camera was
tilted toward the ground at an angle of 0.6 rad. The sketch
of the spatial relation between the AUV and camera is shown
in Figure 11. The horizontal and vertical field of view of the
camera were 124.2(deg) and 100.8(deg) respectively.
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Fig. 11. Position and line of sight of camera relative to AUV

TABLE III
INSTALLATION DIRECTIONS OF SONAR SENSORS

Sensor# Yaw Pitch Direction

1 -0.4 0.1 Front-left

2 -0.4 -0.1 Front-right

3 0.4 0.1 Rear-left

4 0.4 -0.1 Rear-right

After acquiring the image, an enhancement process was
applied to the image. A detailed block diagram is shown in
Figure 12. After the image was converted to grayscale, it went
through a plateau histogram equalization [36] process with a
threshold value of 10 to present an image with better contrast.
A 3 × 3 median filter [37] was then applied to eliminate
speckle noise from the environment. After noise reduction,
a Sobel edge detection filter [38] was applied in the x and y
direction on the image respectively. Since the simulated AUV
was intended to cruise along the pipeline, the weights of the
vertical edge is weighted more than horizontal edge. The ratio
were set to be 2 : 1. This weight adjustment enhanced the
system’s capability in recognizing the pipeline that aligned
with the vehicle’s direction.

After the image enhancement processes, a Hough transform
[39] was applied to the image. 10 detected straight lines with
the highest response were recorded. In order to represent the
detected pipeline with one single line, the 10 recorded lines
were averaged and expressed as

ximgcosθavg + yimgsinθavg = ρavg (17)

where θavg and ρavg were the average value of all 10 recorded
lines. An example of the detection result is shown in Figure
13. In this figure, the red line represents 10 lines with the
highest response and the yellow line represents their average.

The averaged pipeline detection results were then applied to
the proposed algorithm (Equation (8)), deriving the appropriate
motion commands.

2) Sonar processing: In the simulated AUV, a 4-unit sonar
sensor was mounted at (−1.4, 0,−0.312) relative to the ve-
hicle. The 4 single sonar sensors were installed in different
directions (Table III) with respect to the coordinate axis as
shown in Figure 14.

The single sonar sensors returned the range measurements
in the corresponding directions. With a fixed AUV depth,
the sonar sensors’ detection points were directly measured to

TABLE IV
NAVIGATION ERROR INTERPRETATIONS FOR EVERY DETECTION

RESULT.

1 2 3 4 Eheading Eorientation Ehorizontal

+ + + + 0 0 0

+ + + - -0.18 -0.18 0.5

+ + - + 0.18 0.18 -0.5

+ + - - N/A N/A N/A

+ - + + 0.18 0.18 0.5

+ - + - N/A N/A N/A

+ - - + 0.18 0.18 0

+ - - - -0.18 -0.18 1.5

- + + + -0.18 -0.18 -0.5

- + + - -0.18 -0.18 0

- + - + N/A N/A N/A

- + - - 0.18 0.18 -1.5

- - + + N/A N/A N/A

- - + - 0.18 0.18 1.5

- - - + -0.18 -0.18 -1.5

- - - - N/A N/A N/A

be 0.64m from the vertical center line and 3.4m from the
horizontal center line. A clear graphical description is shown
in Figure 15.

Based on the sonar sensors’ detection direction and the size
of the underwater pipeline, the detected range was between
8.2m (center line of pipeline) and 10.4m (seabed.) Therefore,
the detection threshold was set to be 8.5m. Any range value
smaller than 8.5m was categorized as “detected”.

With only four sonar sensors, precise navigation errors
were not feasible. However, with the fuzzy controller and
the proposed interpretation algorithm, precise navigation was
achieved. Given the configuration of the simulated sonar
system, Table IV provides the corresponding navigation errors
under most cases. In this table, ‘+’ represents ‘detected’ while
‘-’ represents ‘not detected’.

3) Sensor fusion: As discussed, four single sonar sensors
could not provide navigation errors under all conditions.
Moreover, the line detection algorithm was more susceptible
to errors due to other objects and noise. The coordination
between the camera and sonar sensors was beneficial for the
navigation system.

Since the camera had a much larger field of view than the
single sonar sensors, the camera was used in the initial search
of the underwater pipeline. When the AUV was close enough
to the pipeline, the sonar could cooperate with the camera and
contribute to the navigation process. In this scenario, since
the AUV was already approaching the pipeline, large errors
that appeared suddenly were unlikely to be found. These large
errors could have been a false alarm that came from other
nearby objects. When the navigation errors from both sensors
were present, the one with the smaller value was adopted. The
fused navigation errors were then sent to the fuzzy controller
for the motion control.
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Fig. 12. Detailed block diagram of the image enhancement process

Fig. 13. Example of the pipeline detection results.

F. Leak detection
A leak detection mission was implemented for further

experimentation. A plume package developed by [40] was used
to simulate a leaking pipeline. A random number of chemical
particles were generated with random moving velocities. Each
existing particle contributed to the concentration distribution
function. A chemical particle concentration sensor detected the
sum of the concentration distribution function and published
it to the ROS core. Detailed derivations were included in [40]
as well. The sensor was mounted on the AUV and reported
the chemical concentration value with respect to the center of
the AUV.

In this experiment, the leak point was set up at (0, 0,−99).
The position with the highest chemical concentration were
recorded and reported after the inspection was finished. This
point was marked as a leak point and reported to the users.
Figure 16 shows the chemical concentration readout in one of
the trials.

III. RESULTS

With the simulation environment setup as described in the
method section, a series of experiments were conducted to

Fig. 14. Detection direction of sonar was defined relative to the
coordinate system shown in this figure

Fig. 15. Detection point by direct measurement is shown in this figure.
(Top view of the AUV)

verify the ability of the system to navigate and detect leaks.
The AUV was operated at a depth of 90m while the depth of

the ocean was set to 100m. The current wave ranging from 0
to 1.2m/s was applied to the vehicle. The static optical effects
and noise had been included in the simulation model. Detailed
experimental results, errors and analysis are provided.

A. AUV navigation
In evaluating the system’s abilities in navigation, the AUV’s

trajectory was measured while it navigated towards/along
the pipeline. Its precision was assessed by the Root Mean
Square(RMS) error of all points along the trajectory.

1) Pipeline following precision: In this experiment, the AUV
was spawned on top of the pipeline at a coordinate of
(0, 0,−90) heading in the positive y direction. The trials
were conducted under image-only and sensor fusion control
schemes respectively. The RMS position error was 0.905 m
(image-only) and 0.481 m (sensor fusion) respectively. The
results showed that the navigation result was greatly improved
by introducing the sonar sensor.

The improvement of navigation error mainly came from the
turning part of the pipeline. Since the camera had a relatively
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Fig. 16. Example of chemical concentration measurement during a
inspection mission in simulation environment

Fig. 17. Squared deviation of the trial

large field of view, the turning point ahead of the AUV was
detected before reaching it. As a result, the AUV reacted to
the turning point earlier than it should have, leading to a larger
error. On the other hand, the sonar sensor only detected the
pipeline 3.4m ahead and behind the AUV (see Figure 15).
Therefore, the data retrieved from the sonar sensors navigation
improved the turning precision. However, as shown in Table II,
some of the conditions could not be interpreted with just sonar
sensors. In addition, it was impossible to retrieve the pipeline
once all four sensors lost track. As a result, a combination of
sonar and image sensors was the best solution.

2) Pipeline approach precision: In this experiment, the AUV
was spawned away from the pipeline at (10, 0,−90) to eval-
uate the system’s performance in approaching the pipeline.
The squared deviation is shown in Figure 17 while the RMS
trajectory error is provided in Table V. All position data during
the experiment were plotted in order. The x-axis is the order
while the y-axis shows the deviation value. The black frame
shows where the pipeline turns.

From the measured results, it was observed that the AUV
navigated towards the pipeline properly initially. However,
an increased error could be found on the figure during the
pipeline turn. Moreover, it was found that the proposed sensor
fusion algorithm decreased the RMS error significantly when
the AUV cruised along the bending part of the pipeline. This

TABLE V
RMS TRAJECTORY ERROR OF TWO TEST TRIALS THAT STARTED AWAY

FROM THE PIPELINE.

Control type Image-only Sensor fusion

RMS error before turning (m) 2.610 2.539

RMS error during turning (m) 1.182 0.968

RMS error overall (m) 2.339 2.057

TABLE VI
RMS TRAJECTORY ERROR OF TEST TRIALS THAT STARTED AWAY FROM

THE PIPELINE UNDER DIFFERENT LEVELS OF SEA CURRENT

MAGNITUDES. (UNIT:M)

Sea current speed (m/s) Image-only Sensor fusion

0 2.339 2.057

0.4 2.439 2.272

0.7 2.465 2.292

1.0 2.493 2.390

1.2 2.514 2.470

result corresponded to the previous test where the AUV started
on top of the pipeline. In conclusion, image data dominated
the navigation when the AUV searched and approached the
pipeline. Whereas, the inclusion of a sonar sensor helped the
navigation system further decrease the error in trajectory when
the AUV was cruising along the pipeline.

3) System robustness evaluation: In order to evaluate the
system’s robustness over a range of complex disturbances, a
constant sea current of various magnitude was applied to the
simulation environment. The setup of sea current magnitude
followed [41]. Similar to the pipeline approaching experiment,
the AUV was spawned at (10, 0,−90). The coordinate of the
vehicle was recorded compared with the ground truth, which
was the coordinate of the pipeline.

The experimental result is shown in Table. VI. Though the
navigation error increased with sea current speed, the AUV
approached the pipeline and followed it. This successfully
demonstrated the robustness of the navigation framework in
noisy environments. In addition, a comparison between image-
only and sensor fusion approaches are also provided in this
table. A reduction in the navigation error resulted from the
inclusion of sonar sensors.

4) Comparison to previous work: A comparison was per-
formed between the proposed method and previous studies.
With the input of the position data, study in [12] navigated
the AUV to follow specific paths leveraging fuzzy logic.
The measured navigation error was 1.02 and 1.09 m in two
different trajectories. On the other hand, [9] used adaptive PID
control and the GPS signal to navigate the AUV. A comb-
shaped trajectory was chosen for the experiment. It was shown
that the RMS error in the main part of the route was less than
1m. The work in [42] proposed using a proximity sensor to
execute the pipeline following mission. The RMS error was
approximately 2m when initialized on top of the pipeline.

Without relying on GPS data, the proposed navigation
framework reached the same level of accuracy as the position-
based algorithms. In addition, in the experiments where the
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TABLE VII
COMPARISON BETWEEN THE PROPOSED WORK AND PREVIOUS WORKS.

(UNIT:M) (* APPROXIMATED FROM THE TRAJECTORY PLOT)

Requires GPS Path Starting point Error

[12] Yes tanh / spiral 4m away 1.02-1.09

Proposed No Segments 4m away 1.07m

[9] Yes Comb shape on the path < 2m *

[42] No Segments on the path < 2m *

Proposed No Segments on the path 0.48m

TABLE VIII
EXPERIMENTAL RESULT OF THE LEAK DETECTION TEST.

PStart Heading PNear PDetection

(10,-20) +y (1.79, 0.35) (1.16, 4.22)

(10,-25) +y (1.05, 0.16) (0.75, 3.29)

(10,-30) +y (0.55, 0.07) (0.39, 2.88)

(10,-35) +y (0.54, 0.01) (0.49, 2.79)

(-10,-20) +y (-2.09, 0.38) (-1.92, 1.34)

(-10,-25) +y (-1.44, 0.19) (-1.15, 2.22)

(-10,-30) +y (-1.04, 0.09) (-0.63, 3.12)

(-10,-35) +y (-0.77, 0.05) (-0.52, 2.24)

(10,20) -y (1.94, -0.36) (1.41, -3.61)

(10,25) -y (1.20, -0.16) (0.87, -2.77)

(10,30) -y (0.64, -0.05) (0.53, -1.38)

(10,35) -y (0.36, -0.01) (0.30, -2.35)

(-10,20) -y (-2.07, -0.30) (-1.65, -3.13)

(-10,25) -y (-1.37, -0.16) (-1.10, -2.83)

(-10,30) -y (-0.98, -0.06) (-0.80, -3.78)

(-10,35) -y (-0.76, -0.01) (-0.73, -1.6)

AUV started on the designated path, the proposed algorithm
significantly outperformed the previous work. The comparison
table is shown in Table. VII.

B. Leak detection

To evaluate the system’s performance in recognizing a leak
point on the pipeline, the plume package mentioned previously
was used to generate a virtual leak point. The plume source
was set to be (0, 0,−99). The AUV was spawned at 16
different points (PStart) with a depth of 90m. The AUV was
navigated towards the pipeline with the chemical concentration
sensor. The points where the AUV was nearest to the plume
source (PNear) and where the AUV detected the highest
chemical concentration (PDetection) were recorded to evaluate
the precision of leak detection. With the difference between the
two points, an error was calculated to assess the performance
of the leak detection. The experimental data is shown in Table
VIII.In the table, PStart is where the AUV was released.
PNear is where the AUV’s position is nearest to the plume
source. PDetection is where the largest chemical concentration
was detected.

From the experimental data, it was found that the detected
leak point had an error between 0.97 to 3.92m. The average er-
ror and standard deviation was 2.58 and 0.79(m) respectively.
Apart from the magnitude of the errors, their direction was also

consistent. From the data, it was concluded that Pdetection was
always found once the vehicle reached PNear. The reason is
that the plume source kept releasing chemical particles even
after the AUV passed the point nearest to it. This caused a
delay in the detection of leak points.

IV. CONCLUSION

In this study, a precise and cost-efficient way to conduct
underwater pipeline inspection was demonstrated in a GPS-
denied environment. All of the presented challenges in the
underwater environment have been considered. With only a
camera and four-unit sonar sensors, the AUV successfully
navigated toward the pipeline and cruised along it with a
precision that outperformed the previous studies. Additionally,
with fuzzy logic included in the navigation framework, the ro-
bustness of the navigation framework was demonstrated under
various current velocities. Finally, when using the proposed
navigation system, it was shown that the AUV could achieve
a much higher precision compared to the conventional leak
detection sensors.

The navigation framework proposed in this study has shown
great potential for application to autonomous underwater
pipeline inspection. This method can also be translated to
other vision systems working under environments with limited
visibility.

In future research, the system’s robustness for visibility
variations and obstacles could be enhanced. For instance,
including additional sensors into the fusion framework is
promising. In addition, using adaptive parameters as inputs
in image processing can help in significantly increasing the
environmental tolerance of the system. Finally, the dynamic
surface wave effects that were not included in the simulator
can be determined through real-world experiments. A down-
scaled AUV that can be tested in pools is currently under
consideration.
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