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To provide reliable input for obstacle avoidance and decision-making, unmanned surface

vehicles (USV) need to have the function of sensing the position of other USV targets in

the process of cooperation and confrontation. Due to the small size of the target and

the interference of the water and sky background, the current algorithms are prone to

missed detection and drift problems when detecting and tracking USV. Therefore, in

this paper, we propose a fusion algorithm of detection and tracking for USV targets. To

solve the problem of vague features in the single-frame image, high-resolution and deep

semantic information are obtained through a cross-stage partial network, and the anchor

and convolution structure in the network has been improved given the characteristics of

USV; besides, to meet the real-time requirements, the detected target is quickly tracked

through correlation filtering, and the correlation characteristics of multi-frame images are

obtained; then, the correlation characteristics are used to significantly reduce missed

detection, and the tracking drift problems are corrected, combined with high-resolution

semantic features of a single frame. Finally, the fusion algorithm is designed. In this paper,

we constructed a picture dataset and a video dataset to test the effect of detection,

tracking, and fusion algorithm separately, which proves the superiority of the fusion

algorithm in this paper. The results show that, compared with a single detection algorithm

and tracking algorithm, the fusion one can increase the success rate by more than 10%.

Keywords: unmanned surface vehicle (USV), deep learning, object detection, object tracking, fusion of detection

and tracking

INTRODUCTION

As a new type of water surface equipment, unmanned surface vehicles (USV) can complete
reconnaissance missions with lower costs and higher efficiency, which has important strategic
significance in maritime games. In the process of cooperation and confrontation of USV, detection,
and tracking algorithms are used to perceive the position of other USV and provide reliable input
for autonomous path planning and decision-making. The USV is usually small in size, whichmakes
it difficult to be found by the visual system with vague features. For object detection algorithms, too
few features lead to missed detection; at the same time, affected by the background of the water
surface (Fefilatyev et al., 2012), the tracking algorithm will inevitably learn the background noise,
and the drift problem that exists, which affects the detection accuracy.
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Object detection includes traditional image processing
methods (Dalal and Triggs, 2005; Felzenszwalb et al., 2010)
and deep learning methods. Traditional methods have higher
requirements for the images to be recognized. They can perform
better in the situation that the water surface is well lit and
the target greatly differs from the background. However, the
robustness is poor when applied to specific scenes. Deep learning
algorithms generally include two-stage algorithms based on
candidate boxes and one-stage algorithms based on regression.
Two-stage algorithms for general object detection often perform
high accuracy and low speed, such as Fast-RCNN (He et al.,
2019), Faster-RCNN (Ren et al., 2015), Mask-RCNN (Zhang
et al., 2020), etc.; one-stage algorithms, such as the You Only
Look Once (YOLO) series (Cai et al., 2020), Single Shot Multibox
Detector (SSD) (Liu et al., 2016), RetinaNet (Lin et al., 2017a),
etc., usually perform faster detection speeds. Object detection
algorithms designed for small targets include feature pyramid
network (FPN) (Lin et al., 2017b), Scale Invariance in Object
Detection (SNIP) (Singh and Davis, 2018), Cascade R-CNN (Cai
and Vasconcelos, 2018), ALFNet (Liu et al., 2018), DetNet (Li
et al., 2018), etc. At present, there are few results for water surface
object detection, and most of them use traditional algorithms,
and the robustness is relatively poor.

The object detection algorithm generally only analyzes the
spatial features in a single frame without using the relationship
between the video frames, which is also at a low speed. The object
tracking algorithms are based on correlation filtering (Tang et al.,
2020), which firstly extract image features and then calculate the
relevance between the current frame and the previous one. Bolme
et al. (2010) proposed the MOSSE algorithm, which selects the
minimummean square error-index to calculate the characteristic
response map to quickly obtain the target pixel coordinates.
Henriques et al. (2012) designed CSK, the KCF (Henriques et al.,
2015) algorithm, a circulant matrix was introduced to enhance
the data samples; thus, the accuracy of tracking can be improved,
and gradient histogram features are adapted to describe the

FIGURE 1 | An algorithm framework diagram.

foreground and background; furthermore, the HOG feature is
used to describe the foreground object and the background
in the KCF algorithm, and the Gaussian kernel function is
introduced to achieve a better tracking effect and real-time
performance at the same time. The feature extraction process of
these algorithms is often relatively simple, so they are likely to
be affected by the drift problems and other phenomena during
the tracking process. With the fast development of deep learning
algorithms, object tracking algorithms based on convolutional
neural networks perform better in accuracy (Zhang et al., 2017).
Chen et al. (2020) proposed MDNet, which uses a multi-domain
convolutional neural network for tracking tasks. Nam and Han
(2016) approached the tracking problem using a correlation filter
with a convolutional feature. Danelljan et al. (2015) used RNN
and the attention model to get better performance. However,
neural networks would cost a lot of computing resources, so, they
are slow.

To solve the problem of missed detection and the drift
problem in the detection and tracking of USV on the water
surface, we propose a fusion algorithm of detection and tracking
for USV, which applies a deep learning object detection algorithm
to extract the precise position information of USV in a single
frame. In the video sequence, the correlation filter tracking
algorithm is used to obtain the correlation characteristics
between video frames to reduce the probability of missed
detection. Finally, the output of detection and tracking is merged
to realize the complementation of the two algorithms.

MATERIALS AND METHODS

The fusion algorithm of detection and tracking is designed for
the USV targeting, which includes deep learning detection on
a single frame of the image, correlation filter tracking on video
sequence, and a fusion module. At first, we detected the objects
in the video image through the YOLOv5 algorithm, and then
we used the KCF algorithm to continuously track the surface
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FIGURE 2 | A detection algorithm network structure diagram.

target. After tracking a certain number of frames, the detection
mechanism is introduced again, and then the output of the target
frame is completed through the feature fusion algorithm based
on machine learning; if new targets appear in the field of view,
then the new ones are initialized and tracked. The algorithm
framework is shown in Figure 1.

Object Detection for USV
In this paper, we adopted the framework based on the YOLOv5
(you only look once) algorithm to realize the feature extraction
and detection of the targets in a single frame.

At the input part, firstly, the Mosaic data enhancement
method is applied to improve the algorithm effect at the sample
level, and then, the centralized convolution (Focus) operation
is applied to convert the original input image (with the size of
608 × 608 × 3) into a feature map (with the size of 304 ×

304 × 12) through a slicing operation. After the convolution
operation, the feature map is finally generated with the size
of 304 × 304 × 32. The cross-stage partial (CSP) module
is used to divide the feature map of the base layer into two
branches, which reduces the amount of calculation and reduces
the possibility of gradient disappearance. The network contains
two cross-stage structures, which are referred to as cross-stage
partial 1 (CSP1) and cross-stage partial 2 (CSP2). The feature
pyramid network (FPN) structure (Chen et al., 2020) is also
introduced to improve the detection accuracy of small objects.
It is realized by the following method. First, the top-level features
are up-sampled and merged with the lower-level feature maps,
and then, high-order semantic features and shallow features

with high-resolution are merged to complete the process. After
the FPN layer, a PAN structure that conveys strong position
features from the bottom up is added to further improve the
feature-extracting ability. Finally, three different scales of the
feature maps are exported, which will be used for prediction. The
network structure is shown in Figure 2, where the convolution
module represents the cascade of convolutional layers, batch
normalization, and activation functions.

The YOLOv5 network makes full use of the CSP structure.
The principle is as follows: Before the feature maps are sent to
a series of residual modules, we extract half of the channels as
the input of Branch 1, which we directly send to the output
of the CSP structure. The rest of branch 2 performs intensive
convolution operation, and finally performs Concat operation
on the output of the two branches and merges them into one
layer. The CSP structure can also be easily combined with
other networks. A cross-stage connection is used in Branch 1,
and Branch 2 adopts the original method of the network. The
structure of CSPResNet and ResNet adopted in this paper is
shown in Figure 3. The parameter n represents the number of
cascaded modules.

There are two advantages by increasing the learning function
of the cross-stage partial branches:

(1) The problem of gradient disappearance caused by multiple
residual structures is avoided. Multi-round convolution
may cause the problem of gradient disappearance in the
backpropagation process of the network. The parameters
are connected to the output terminal by directly drawing a
branch in the CSP structure so that part of the information
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FIGURE 3 | ResNet and CSPResNet structure.

transmission process avoids multi-round convolution to
alleviate the gradient disappearance.

(2) The number of network calculations is balanced. In addition
to the disappearance of gradients, multiple convolutions will
also bring a huge amount of calculation. However, when
the CSP residual module performs dense convolution, only
half of the channels are used, and the other half is directly
connected to the output end so the part that participates in
multi-round convolution calculations is less compared with
the classical residual module. Nearly half of the calculation
amount can be reduced in the end.

The CSP structure is combined with the residual network, and
there are two CSP structures in Figure 4. The former is designed
to be applied in the feature extraction part of the backbone
network in the first half of the network, and the latter is designed
for the feature analysis part, which is at the end of the network.
Among them, the convolution module is an important part of
the CSP structure, including the convolution layer + the BN
(batch normalization) layer+ the activation layer, which extracts
information through the cascade. In the backbone network,
the dense convolution part of the CSP structure includes a

convolution module, and then features are extracted through

a series of residual modules, and the other branch is merged

with the dense convolution branch after a layer of convolution

(Concat). At the end of the network, the dense convolution

of the CSP structure does not apply to the residual module

but makes use of a multi-layer cascaded convolution module
instead. The other branch is the same as in the backbone network.

After passing through a convolution layer, it is combined with

the dense convolution branch. The structure in the backbone
network is shown in Figure 4 as CSP 1, and the structure in the
feature analysis network is shown in Figure 5 as CSP 2.

The YOLOv5 algorithm has achieved good results on the

public dataset, but there is a certain difference between object

detection of boats on the water and object detection in the public

dataset. The anchor frame adaptive calculation method included
in the original YOLOv5 does not match the water surface dataset
enough. To solve this problem, we improved the initial value of
the anchor frame to adapt to the surface object.

The difference between the shape and size of USV and the
object in the public dataset is mainly reflected in the aspect ratio.
The shape of the boat is mostly designed as a long rectangle, and

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2022 | Volume 16 | Article 808147

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. Fusion Algorithm for USV

FIGURE 4 | CSP1 structure in backbone.

FIGURE 5 | CSP2 structure in the feature analysis layer.

the highest points of the boat, such as masts and antennas, are
generally much smaller than the boat. Therefore, the aspect ratio
of USV on the image is very large, and there is a big difference
compared with the public dataset. To make the object detection
algorithm fit the real frame faster, in this article, we analyzed the
distribution of the width and height ratios of the boat.

The aspect ratio of the object is only a one-dimensional vector,
so the fast convergence K-Means algorithm is used for clustering,
and the dense value area of the aspect ratio is obtained. The
anchor box of the algorithm in YOLOv5 has 3 initial values, so the
cluster center is set to the results of 2.3, 3.5, and 4.8. Theoretically
speaking, the aspect ratio data of the USV object are distributed
around these three-aspect ratios. However, in experiments, it is
found that if the anchor frame is set only to consider the cluster
center of the target aspect ratio distribution, it will reduce the
coverage of the three anchor frames, and it is difficult to identify
objects with too large and too small aspect ratios. Additionally,
if the aspect ratio of the anchor frame is not set to a value of
1:1, the accuracy of the algorithm will be greatly reduced. So,
the aspect ratio is set to 1, 2.3, and 4.1. Finally, on the surface
USV dataset, the accuracy is improved by 2.3% compared with
the original algorithm.

We also adjusted the activation function of YOLOv5,
replacing SiLu with Leaky ReLu. The difference is that, when the
input is negative, the output is not all 0. Suppose the input of
the activation layer is x, then the output y of Leaky Relu can be
expressed as:

y =

{

x if x ≥ 0
ax if x < 0

(1)

In this algorithm, a is 0.5. For the negative semi-axis, the input
of different x will still have an impact on the network, which
is smaller than the positive semi-axis but can optimize the
transmission of the gradient.When the input of the SiLu function
used by the original network is <-1, the output will become 0,
which will invalidate the neuron and affect the recognition of
surface ships.

Object Tracking for USV
To ensure the real-time performance of the algorithm, the
tracking part adopts the KCF algorithm, which has a great
advantage in speed. At the same time, considering the
characteristics of large changes in the scale of the water surface
target, a multi-scale adaptive module is added.

The algorithm uses the gradient histogram feature (FHOG)
to describe the image and uses the ridge regression model to
optimize the weight coefficient w of the filter. The objective
function of ridge regression is:

min
w

∑

i

(f (xi)− yi)
2 + λ||w||2 (2)

functional of training is to find a function f (z) = wTz that
minimizes the squared error over samples xi and their regression
targets yi. The λ is a regularization parameter that controls
overfitting. The minimizer has a closed form, which is given by

w =
(

XHX + λ
)−1

XHY (3)
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FIGURE 6 | An overall framework of the tracking algorithm.

where X is the input feature matrix, Y is the input label, and XH is
the Hermitian transpose. Equation (3) is the vector form of the
filter parameter solution.

The original target sample is cyclically shifted, and then a
large number of training samples can be obtained, and data
enhancement can be realized. According to the diagonalization
of the circulant matrix, the operation in the time domain can be
transformed into the frequency domain:

X = Fdiag(x̂)FH (4)

where F is a constant matrix that does not depend on x, and x̂
denotes the DFT of the generating vector, x̂= F(x).

To simplify the calculation, the features obtained by linear
space ridge regression are mapped to high-dimensional space
through the kernel function. Through the mapping function, the
filter becomes:

f (xi) = wTϕ(xi) (5)

Since the filter parameters can be expressed using a linear
combination of input eigenvectors, we suppose w =

∑

i
αiϕ(xi)

so that the solution of w becomes the solution of α. The
kernel function can be constructed, and the solution of the
ridge regression based on the kernel function and Fourier
diagonalization can be obtained:

α = (K + λI)−1y (6)

where K is the kernel matrix and α is the vector of coefficients αi,
which represent the solution in the dual space.

The response of the test sample is as follows:

f (zj) = âφ(X)φ(zj) (7)

The tracking algorithm framework is shown in Figure 6. Firstly,
we extract the HOG feature from the initial image, train the filter,
and obtain the filter template. In the next input video, we extract
the feature and perform correlation calculation with the filter
template to obtain the feature response map. The coordinates are
the object position.

The water surface environment has a wide field of
vision and the scale of the target changes during the
movement. Therefore, based on the original template, two
additional templates with different scales and the same
center point coordinates are calculated, and the response
is finally obtained, and the strongest response is obtained
after comparison:

R = max(R0,R+1,R−1), (8)

where R0,R+1, and R−1 are the response of three different
templates, and R is the final response obtained.

The most responsive template is used as the output scale,
which realizes multi-scale adaptation, has a small amount of
calculation, and is highly efficient and feasible.

Limitations of Detection and Tracking
Both object detection and object tracking have certain
limitations. Object detection extracts single-frame image
features, which has the advantages of higher accuracy and
robustness, but it lacks correlation of time information
between different frames of the video image, resulting in
lower speed and missed inspections. The object tracking
algorithm is realized by extracting the correlation characteristics
of continuous frame images and training the filter. The
calculation amount is small, and it has the advantage of fast
running speed, but it is easy to accumulate errors and cause
target drift.
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FIGURE 7 | Missed detection circumstances.

In the video displayed in Figure 7, an obvious problem of
missed detection can be seen. Among the 69–72 frames of images,
only the first and last frames have the target detected. The shape
of the unmanned boat in these frames hardly changes, but the rate
of missed detection can be as high as 50% in the four frames of
the intercepted fragment. Such a missed detection rate obviously
cannot support the task of autonomous obstacle avoidance and
unmanned boat confrontation.

There are three main reasons for the missed
detection situation:

1. The object detection algorithm does not use the relationship
between video frames. The purpose of the object detection
algorithm is to classify and locate the target appearing in a
single image, so only the features of one frame of the image are
extracted and analyzed. The object generally exists in multiple
consecutive frames, and the detection of adjacent frame image
features can also be used as a reference basis for detection and
recognition. This part of the feature is not used in the target
detection process. Therefore, even if the object is detected
in adjacent frames, it is difficult to use the information in
different video frames.

2. The scale of the boat object in the image is relatively small.
The accuracy of the object detection algorithm in the public
data set can reach about 80%, which is much higher than
in Figure 7. This is because, under the background of USV
confrontation, it is necessary to detect and track theUSVwhen
it is far away. In this case, the size of the unmanned boat is

small, the resolution is insufficient, and it is difficult for the
algorithm to extract sufficient features, which would be used
for judgment, thereby affecting the recognition effect.

3. The image quality under the water surface environment is
limited. Most of the objects in the public data set are clear,
while the objects on the water are more susceptible to light and
waves, making the image quality poor. This impact on image
quality is difficult for the human eye to capture, but these
small differences result in the different outputs of adjacent
frames. The poor image quality further exacerbates the missed
detection problem.

The object tracking algorithm has the problem of tracking drift.
As shown in Figure 8, the frame number is marked in the upper
left corner.

There are two reasons for drift problems in the object
tracking algorithm:

1. The template tracking algorithm is difficult to keep up with

when the object shape changes significantly. When the object

is rapidly deformed, the characteristics of the object will also

change rapidly. The template update of the tracking algorithm

is determined by the current frame and multiple frames in

the past. Although the current frame has learned the feature

change, the previous frame still retains the feature before the
deformation, and, finally, under the weighting of the current
frame and the past frame by the learning rate parameter,
the algorithm tends to use the features in the past frame to
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FIGURE 8 | The tracking drift problem.

match the object position so that the tracking frame cannot be
enlarged or zoomed out with the deformation of the object.

2. A large amount of similar background noise in the water
surface environment. The existence of background noise
makes it impossible to increase the learning rate parameter
to solve the problem of the drift because when the learning
rate parameter is increasing, it means that the information
of the current frame will be more reflected in the template,
and noise will inevitably be introduced into the tracking. If
background noise is learned in the template of the current
frame, it will have a greater response to the background
in the next frame, and the background noise on the water
surface is relatively similar, so the response of the template
may quickly deviate from the target area, causing a greater
degree of drift. The error caused by drift will increase
with the accumulation of time. There is only a slight drift
in the 77th frame, while the drift in the 156th frame is
very visible.

Fusion Module
In response to the above problems, time feature information and
spatial feature information are integrated, and the advantages
of both are used to improve the detection and tracking effect
of USV objects. Firstly, the detection algorithm is used to
determine the position of the object in the first frame of the
image, and then the position is used as the input information
of the tracking algorithm, and the object is tracked for 40

frames to avoid the problem of missed detection. Due to the
good real-time performance of the tracking algorithm, the
running speed of the algorithm can also be improved. After 40
frames of tracking, a re-detection mechanism needs to be run
to ensure the accuracy of continuous video tracking, and the
newly emerging objects are input into the tracking algorithm
for initialization. The setting of parameters is based on rules
of thumb. In our algorithm, the frequency of detection would
influence both accuracy and computing speed. We tested a series
of values and found that the algorithm can perform better with
parameters set as 40 frames. The fusion block diagram is shown
in Figure 9.

Firstly, we calculated the degree of coincidence between the
detection candidate frame and the tracking candidate frame
and judge whether the detection result and the tracking result
are the same targets. In this article, we used the intersection-
union ratio (IOU) as the criterion for judging the degree of
coincidence. IOU is a standard for measuring the accuracy
of detecting corresponding objects in a specific data set.
IOU is a simple measurement standard. As long as it is a
task to obtain abound in the output, IOU can be used to
measure. IOU means the ratio of the intersection of the two
candidate frames to the union. The calculation method is
as follows:

IOU =
Si

⋂

Kj

Si
⋃

Kj
(9)
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If ∀Kj, IOU
(

Si,Kj

)

< 0.4, it will be regarded as a new target
and output, participating in the initialization of the tracking
algorithm. If ∃Kj, IOU

(

Si,Kj

)

> 0.4, it is considered that
the detection frame and the tracking frame have detected the
same target. At this time, the confidence level of the output
frame of the detection algorithm conf(Si)is compared with
the normalized response of the output frame of the tracking
algorithm. However, it is difficult to directly compare the value
of the two different algorithms’ confidence. Therefore, based on
the above detection and tracking, the additional features of the
target are extracted, and the support vector machine is used

for fusion. Since the confidence of the detection algorithm is
obtained through multiple rounds of convolution, it is robust
to the different foreground and background inputs, and the
confidence of the output is relatively reliable; However, the
normalized response output of the target tracking algorithm has
a large fluctuation in value with the difference of the input. In
order to improve the robustness of the output response of the
tracking algorithm, the response mean value avg(Kj) and the
tracking frame scale of the 3 × 3 areas centered on the peak of
the response graph are additionally extracted, and the detection
confidence and tracking response are input to the support vector

FIGURE 9 | A candidate frame selection strategy flow chart.
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machine for classification, and the output −1 means that the
result of the detection algorithm is better than that of the
tracking, and the output +1 means that the value of the tracking
frame is more accurate. Using a more accurate frame as the initial
value of the tracking algorithm can reduce the introduction of
background noise, thereby reducing the possibility of tracking
frame drift.

RESULTS

The experiment uses three different sizes of unmanned boats:
USV-120, USV-180, and USV-320 independently developed by
the team as the tested objects. The lengths of the three boats are
1.2, 1.8, and 3.2m, respectively, as shown in Figure 10.

In this paper, 1,550 photos are collected as a picture set;
80% of which are used for training, and 20% are used for
testing detection algorithms. The learning rate was set to 0.001,
and 30,000 pieces of training were performed on NVIDIA
GeForce GTX 1080TI, and the average accuracy on the test set
was finally 93.8%. We select 3 pieces of video to analyze the
effect of the fusion algorithm. In Video 1, the object is 30m
away from the camera to test the effect of the scale change
of the USV. Video 2 tests the impact of the viewing angle
change on the detection and tracking, and the object is 60–
70m away from the camera. Video 3 is the detection effect of
the USV at a long distance. The distance is more than 100
meters, and the object scale is <0.5% of the original image.
The evaluation index used on the video set is the success rate.
When the overlap rate of the output of the algorithm and the
real frame of the video exceeds a certain threshold, it is regarded
as a successful recognition. The ratio of the number of frames
successfully recognized to the total number of video frames is
the success rate. The algorithm test platform is the NVIDIA
Jetson TX2 board, which contains CPU and GPU, and its power
consumption is only 15W, which is convenient for deployment
on unmanned systems.

The detection and tracking effect of the USV target is
shown in Figure 11, where the yellow box is the detection
algorithm, the green box is the tracking algorithm, and

the red box is the fusion algorithm. Visibly, the yellow
detection frame is not marked in some frames, indicating
that the detection algorithm has a certain degree of missed
detection, and the result of the green tracking algorithm
often cannot accurately frame the object, which is caused
by the drift of the tracking frame. The overall effect of the
fusion algorithm’s output red frame is better, which solves
the problems of missed detection and drift problems to a
certain extent.

The quantitative analysis of the algorithm is shown in
Table 1; Figure 12. When the object overlap ratio (IOU)
threshold is set to 0.5, the average coincidence rate of the
fusion algorithm on the video set is 81.3%, while the average
success rate of a single detection algorithm is 59.7%, and the
average success rate of a single tracking algorithm is 69.5%.
The success rate of the video set is numerically lower than
that of the picture set. This is because the image quality
in the actual collected video is not often ideal; the object
is not clear, and the distance is too far. But the video set
is more compatible with the picture set when applied on
specific scenes.

DISCUSSION

It occurs to Video 1 the problem of changing the scale from large

to small, and the experimental results are shown in Figure 13.

The size of the USV-320 itself in this video is larger than
the USV-120, so it occupies more pixels in the image, and
the extraction of target features is relatively easy. The output
frame is more accurate when the object is detected on a single
frame. At this moment, the detection algorithm works well. It
is useful for tracking, but the problem of missed detection of
some frames may also occur. The reason for the poor effect of
the tracking algorithm is drifting. The drifting phenomenon of
tracking can be observed in Figure 11A. The green frame of
the tracking output only contains the main part of the hull in
the figure, and the mast and antenna areas are not detected.
This is because the tracking algorithm considers that there is
more background information near the mast in the process of

FIGURE 10 | Unmanned surface vehicles for the experiment.
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FIGURE 11 | Comparison of detection and tracking results of three fusion algorithms in Videos 1∼3 (A–C). Red bounding box: fusion algorithm, yellow bounding box:

YOLOv5, green bounding box: KCF.

TABLE 1 | An algorithm processing result on the video set (IOU@.5).

Video

number

Environmental

impact factors

Success rate for

detection only

Success rate for

tracking only

Success rate for

fusion algorithm

Velocity (FPS) for

fusion algorithm

1 Scale change 0.927 0.872 0.982 40

2 Scale change 0.426 0.529 0.676 25

3 Small target 0.436 0.709 0.782 38

4 Small target 0.473 0.84 0.734 38
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FIGURE 12 | The success rate of the test dataset.

FIGURE 13 | Comparison of detection and tracking success rates using KCF, Yolov5, and fusion algorithms (Video 1).
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FIGURE 14 | Comparison of detection and tracking success rates using KCF, Yolov5, and fusion algorithms (Video 3).

continuously updating the template, while the frame of the hull
part contains less background, and the response is relatively high,
which makes the tracking algorithm tend to use smaller frames as
output. The fusion algorithm avoidsmissed detection by focusing
on tracking and uses the detection algorithm to correct the
drift of the holding frame. The highest success rate is achieved
when the threshold is 0.5. Although the detection algorithm will
have a small amount of missed detection, the output result is
more accurate. In the case of a high overlap threshold, a single
detection algorithm shows better results. However, in general, the
international community does not pay attention to the success
rate under excessively high coincidence. The missed detection
problem that occurs in the detection has a greater impact on
the perception system. Overall, the effect of fusion on the video
is better.

In Video 3, we mainly tested the detection and tracking
effect of long-distance USV objects, and the success rate curve
is shown in Figure 14. Since the measured object is far from the
camera, the problem of missed detection is obvious. Even if the
overlap threshold is set to 0.1, the detection algorithm still has
a large number of targets difficult to detect. The KCF tracking
algorithm performs better in the tracking of extremely small
targets. There is almost no missed detection, and the overlap
between the output frame and the real frame is also quite high.
The fusion algorithm can accurately judge the results of the
two algorithms, retaining the high success rate of the tracking
algorithm, and, at the same time, after the detection algorithm

TABLE 2 | The fusion algorithm test.

Dataset Video 1 Video 2 Video 3 Video 4

Training 0 37 13 0

Test 47 51 82 48

gets better results, it can output better results through the fusion
algorithm and participate in the tracking initialization. So the
fusion algorithm can work better under the overlap threshold
of 0.5.

The next design experiment proves the effectiveness of the
fusion algorithm. This paper extracts 50 sets of detection and
tracking samples in video sets 2 and 3 for the fusion part
of the training algorithm and conducts actual tests on 180
samples selected in the entire video set. The number of test
and training samples is in the video set. The distribution
is shown in Table 2, where the detection accuracy is greater
than the tracking samples accounting for about 65% of
the total.

Experiments show that the accuracy of the test set can reach
87.5%, indicating that the support vector machine can select a
more reliable output in the fusion stage, and the input features
selected by the algorithm, namely, target scale, tracking response
graph partial mean value, tracking response peak. The confidence
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FIGURE 15 | The success rate of public datasets.

levels of target detection and object detection both play a role in
the fusion process.

We also tested on Singapore maritime dataset (SMD) (Kahou
et al., 2017) and multi-modal marine obstacle detection dataset
2 (Prasad et al., 2017) (MODD2), which are publicly available
marine datasets for both object detection and object tracking.

There are 40 videos in the on-shore class of the SMD dataset,
and 4 representative videos (Videos 5–8 in Figures 15, 16)
are selected to verify the effectiveness of our method. Multi-
modal marine obstacle detection dataset 2 (MODD2) consists
of 28 video sequences of variable length, amounting to 11,675
stereo-frames at resolution of 1,278 x 958 pixels each. So, we
reverted the video sequences to original videos by frame and
tested 2 representative videos (Videos 9–10 in Figures 15, 16).
In the background of the sea and sky, certain large ships remain
relatively stationary, but we pay more attention to the moving
boats for object tracking. Therefore, we extracted data of moving
boats for testing. Compared with the previous experiment,
the boats in these datasets are smaller in the field of view,
which puts forward higher requirements for the performance
of the algorithm. The overall average accuracy is relatively
lower than before, but it still has a good recognition effect on
small moving objects. The results are shown in Figures 15, 16
(Video 5: MVI_1479_VIS; Video 6: MVI_1612_VIS; Video 7:

MVI_1622_VIS; Video 8: MVI_1640_VIS; Video 9: kope67-00-
00025200-00025670; Video 10: kope67-00-00040950-00041190).

CONCLUSIONS

To meet the needs of USV confrontation on the surface
battlefield in the future, in this paper, we propose a detection
and tracking fusion algorithm for USV objects. For the tracking
drift problem, the deep learning detection algorithm is used
to extract the single-frame image information to accurately
detect the position of the target; for the missed detection
problem, the relevant filter tracking is used to obtain the time
information, making full use of the inter-frame correlation
characteristics; finally, the fusion algorithm is designed to
make the detection information and tracking information
become complimented to meet the reconnaissance missions of
unmanned boat targets in different scenarios. To verify the
effectiveness of the system, experiments were conducted on
three types of unmanned boats. The results show that the
detection and tracking fusion algorithm can efficiently detect
and track the unmanned boat targets in different scenarios,
and the success rate exceeds that of a single detection and
tracking algorithm.
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FIGURE 16 | Results of public datasets.
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