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Abstract: Unmanned Underwater Vehicles (UUVs) are pivotal in ocean exploration, research, and
various industrial activities such as marine mining and offshore engineering. However, traditional
methods of navigating these vehicles face significant challenges, mainly due to the inefficacy of
electromagnetic waves in water, leading to signal loss. To address these limitations, researchers are
increasingly turned learning, an artificial intelligence technique capable of learning from data-
enhancing underwater navigation, mainly through visual Simultaneous Localization and Mapping
(SLAM). This paper explores integrating deep learning methodologies and sensor technologies to
revolutionize underwater navigation for UUVs. Proprioceptive sensors, along with exteroceptive
sensors, are crucial in accurately measuring and comprehending the underwater environment.
Additionally, the paper provides detailed insights into the processes of underwater SLAM, camera-
based underwater positioning systems, sonar systems for underwater navigation, and the
utilization of Lidar in underwater navigation. Furthermore, it delves into applying deep learning
techniques in underwater SLAM, offering a comprehensive understanding of the innovative
processes driving advancements in underwater vehicle navigation. By leveraging these
advancements, this research aims to improve underwater navigation systems' precision, reliability,
and adaptability, thereby unlocking new frontiers in ocean exploration and industrial applications
for UUVs.

Keywords: visual simultaneous localization and mapping (SLAM); unmanned underwater vehicle;
deep learning; underwater navigation; sensor integration

I. Introduction

Navigating the vast and mysterious underwater world is no easy feat, especially when faced
with challenges like electromagnetic wave attenuation and limited visibility [1]. How can we improve
the precision and reliability of underwater navigation? This research paper delves into integrating
multiple sensors and deep learning techniques to enhance underwater navigation and perception,
offering innovative solutions to longstanding obstacles.

i) Background Context

The Earth's oceans cover about 71% of the planet's surface, holding immense value for resources,
scientific exploration, and environmental understanding [2,3]. Unmanned Underwater Vehicles
(UUVs) [4,5] are instrumental in various applications, from marine mining to pipeline inspection, but
their effectiveness is hindered by the limitations of traditional navigation methods [6,7]. These
methods, such as inertial sensors and acoustic beacons, struggle in challenging underwater
conditions due to cumulative errors, limited range, and environmental interference [7,8]. Unique
optical obstacles like low lighting, turbidity scattering, and wavelength absorption affect the quality
and reliability of visual data. Moreover, the absence of access to global positioning systems (GPS) [9-
11] complicates precise location pinpointing, data collection, etc. The quest for more reliable and
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accurate underwater navigation has led to exploring deep learning techniques, particularly in the
context of visual Simultaneous Localization and Mapping (SLAM), as a promising avenue for
improvement. Underwater navigation poses formidable challenges due to limited visibility, high
pressure, harsh conditions, complex terrain, limited communication, sensor integration issues, and
the absence of reliable navigation references like GPS. These challenges render traditional SLAM
algorithms inadequate for subsea navigation, as they struggle with sensor unsuitability,
environmental variability, feature scarcity, and communication constraints. Despite these challenges,
the quest for more reliable and accurate underwater navigation has led to exploring deep learning
techniques, particularly in visual SLAM, as a promising avenue for improvement along with sensor
fusion.
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Figure 1. Underwater SLAM process.

ii) Introduction of standard sensors and methodologies for underwater navigation and
perception
Underwater sensors are specialized electronic devices that measure physical and environmental
parameters in the ocean, enabling data collection for navigation, research, and monitoring purposes
in challenging underwater conditions. There are different types of sensors used for a specific task.
Underwater vehicle sensors are classified into proprioceptive and Visual Sensors (a subset of
Exteroceptive Sensors).
ii.1 Proprioceptive sensors
Proprioceptive sensors, including accelerometers, gyroscopes, and sometimes magnetometers,
provide critical insights into a system's internal state and motion, measuring parameters like position,
velocity, acceleration, and orientation. Widely applied in robotics and navigation, these sensors
bolster awareness of the device's movements, enabling precise control. Commonly used
proprioceptive sensors, such as the depth sensor, Doppler velocity log, inertial measurement unit,
and compass, utilize various technologies, including acoustic measurements and magnetic field
detection [3,12,13]. This diverse sensor suite ensures accurate measurements of parameters, such as
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depth, velocity, acceleration, and orientation, further enhancing awareness for precise control in
applications like robotics and navigation.

Compass:

The magnetic compass relies on the magnetic field but is prone to bias. The gyrocompass relies
on fast spinning and is unaffected by metal, but it is more expensive.

Pressure Sensors:

Barometers or pressure sensors can be used for depth measurements. They provide essential
information for underwater vehicles to determine their depth, aiding navigation, control, and safety.

DVL (Doppler Velocity Log):

Employs acoustic measurements for tracking the seafloor and calculating velocity. Captures
Autonomous Underwater Vehicle's (AUV) sway, surge, and heave velocities. Utilizes transmitted
acoustic pulses to gauge Doppler shifts from seabed returns [14,15].

IMU (Inertial Motion Unit) Sensors:

Initially developed for aircraft navigation by Ford, IMU sensors now have broad applications,
such as in mobile phones and pedometers. The industry standard is MEMS-based IMUs, including
those from manufacturers like Analog Devices, EMCORE, Honeywell, and Collins Aerospace. IMUs
offer fast data collection and sensitivity but are prone to cumulative errors and have limited runtime.
In SLAM, IMUs are often combined with visual and laser sensors to mitigate mistakes by estimating
IMU zero bias [16]. To calculate a vehicle's orientation, velocity, and gravitational forces,
accelerometers and gyroscopes (sometimes magnetometers) are combined.

Gyroscope:

Measures angular rates using either Ring Laser/Fiber Optic or MEMS technology. The Ring
Laser employs mirrors or fiber optic cables to detect angular rates by observing changes in light.
MEMS uses an oscillating mass in a spring system, where gyroscope rotation causes a perpendicular
Coriolis force on the mass to calculate the angular rate.

Accelerometer:

It measures the force needed to accelerate a proof mass and comes in various designs like a
pendulum, Micro-Electro-Mechanical Systems (MEMS), and vibrating beams [17].
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Figure 2. Proprioceptive Sensors Overview.

ii.2 Exteroceptive Sensors
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ii.2.1 Visual sensors

Visual SLAM employs cameras to perceive the environment. Mono, stereo, and depth cameras
are utilized [18,19]. Visual SLAM employs cameras to perceive the environment. Mono, stereo, and
depth cameras are utilized [18,19]. Visual SLAM primarily depends on cameras as exteroceptive
sensors to perceive external environmental information. The camera's function is based on optical
imaging principles, capturing images using photoreceptors. They come in different types, including
monocular, stereo, and depth cameras. SLAM algorithms based on visual inputs are classified into
monocular, stereo, and RGB-D categories, contingent on the type of camera employed [20].
Furthermore, specific algorithms, such as ORB-SLAM3, demonstrate adaptability for use with both
pinhole and fisheye cameras, broadening their applicability in visual SLAM scenario

Underwater Camera
Sensors Module

Underwater Front-End
(Feature tracking)

Back-End Module
(Feature Tracking)
Loop closing module
Error correction)

Mapping Module
(Environment
Reconstruction)

Figure 3. The typical architecture of a visual SLAM system.

Monocular or single-lens camera:

Singular lenses and monocular cameras provide economical and straightforward imaging
solutions. Mono SLAM pioneered in establishing real-time monocular vision SLAM [21,22]. In
underwater research, Hidalgo et al. investigated ORB-SLAM through controlled experiments
featuring diverse conditions. Their study confirmed ORB-SLAM's effectiveness under adequate
illumination, minimal flicker, and abundant scene features. Monocular Visual Odometry (V.O.)
computes relative motion and 3D structure from 2D bearing data, establishing the initial distance
between the first two camera poses as one due to the unknown absolute scale. The subsequent
processing of images infers the relative scale and camera pose of the initial frames using either 3D
structure information or the trifocal tensor [23].

Stereo Camera

Stereo cameras, with a baseline affecting measurement range, calculate depth using parallax [24].
Stereo cameras offer a promising solution for accurate underwater robot localization and proximity
operations, as they can calculate distance using parallax, unlike monocular cameras that lack depth
information. Researchers have developed innovative methods utilizing stereo cameras [8,25-27],
such as a relative SLAM approach that employs a topological metric representation for real-time
processing. Additionally, some methods fuse visual and inertial data to eliminate noise and achieve
precise underwater robot localization, with less than 3% of typical localization errors. These
advancements demonstrate the potential of stereo cameras in enhancing underwater robotics [28].

Depth Camera
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Depth or RGB-D cameras utilize structured light or time-of-flight mechanisms to measure
distances between the camera and objects. These physical methods reduce computational demands
compared to software-based distance estimation used by binocular cameras. However, depth
cameras face challenges, including limited measurement ranges, high noise levels, restricted fields of
view, susceptibility to sunlight interference, and difficulty in measuring translucent materials due to
the characteristics of reflected light [18]. Also known as a depth sensor, it captures color (RGB) and
depth information, creating a 3D representation of the environment by measuring distances. Various
technologies, such as structured light and time-of-flight, are used in depth cameras. Underwater
RGB-D cameras, like Kinect v1 and v2, face limitations due to the weakened infrared light. Modern
RGB-D sensors use active stereo technology for robust depth acquisition, which is suitable for various
applications. Challenges include sensor errors and semiconductor performance, especially in
underwater environments [29,30].
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Figure 4. Process of Camera in Underwater Positioning System.

ii.2.2 Sonar Sensors
Sonar sensors, categorized as active and passive, utilize sound waves for underwater detection.
Here's a Summary of Sonar Sensor Types and Their Applications in Underwater Environments.

Table 1. Sonar Types and Applications.

Sonar Type Description Reference
Active Sonar Employed for search and positioning in underwater environments.  [16]
Passive Sonar Tracks target distance in underwater settings. [16]
A single-beam scanning sonar for imaging in low-visibility conditions
Single-beam Sonar offers distance information over several meters and is immune to [31,32]
water turbidity.

Utilizes multiple beams to measure seafloor depth and characteristics
Multibeam Sonar rapidly and accurately. Ideal for high-resolution 3D mapping in [33,34]
various underwater applications.

Side-scan Sonar/ They are widely used for detecting underwater objects like wrecks

forward-looking and mines, providing high-resolution acoustic images of seafloor [17,35]

morphology.
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ii.2.3 LIDAR Technology for Underwater Mapping and Navigation
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LiDAR sensors excel in providing accurate and high-frequency range measurements, even in
challenging underwater conditions [6,36]. They offer superior 3D data resolution in texture-limited
underwater scenes, contributing valuable point cloud data for SLAM systems. LiDAR aids in precise
seafloor mapping [37], creating detailed 3D models, and detecting objects to enhance navigational
maps. Famous for underwater mapping and navigation, Laser SLAM employs 2D or 3D LiDAR
sensors. 2D LiDAR provides real-time obstacle scanning in a single plane, while 3D LiDAR offers
high accuracy, comprehensive coverage, and 3D imaging for dynamic and static environments. The
critical difference lies in 2D LiDAR lacking height information and imaging capabilities, whereas 3D
LiDAR excels in generating three-dimensional real-time images and reconstructing spatial data [16].
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Figure 9. Exteroceptive Sensors Overview.

iii)Trends of visual slam for underwater navigation and mapping

The developments include integrating visual and inertial sensors to enhance accuracy, applying
deep learning for robust feature extraction in challenging environments, increasing utilization of 3D
vision methodologies for richer depth information, and incorporating adaptive algorithms capable
of adjusting to varying underwater conditions. The integration of SLAM in Autonomous Underwater
Vehicles (AUVs) for autonomous navigation, the fusion of visual SLAM with underwater LiDAR for
comprehensive mapping, and the rising adoption of open-source SLAM frameworks are prominent
trends. Additionally, real-time processing, edge computing, collaborative SLAM strategies, and the
emergence of standardized benchmarks and datasets contribute to the ongoing efforts to advance the
capabilities of underwater SLAM systems, shaping the landscape of autonomous underwater
exploration and research.
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Figure 10. Trends in visual SLAM for UUV.

iii) Objective and contribution of our paper
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The primary objective of our paper is to investigate the innovative aspects of underwater
Simultaneous Localization and Mapping (SLAM) or odometry, focusing on integrating multiple
sensors and applying deep learning techniques. Specifically, we aim to identify and assess the
advancements in SLAM and odometry methodologies that result from integrating various sensors,
emphasizing the synergy among them to enhance accuracy and robustness. Additionally, our
research delves into the role of deep learning in these underwater systems, evaluating how it
contributes to feature extraction, mapping, and navigation in challenging underwater environments.
By highlighting these novel approaches, we seek to contribute to the evolving field of underwater
robotics and exploration, providing valuable insights for researchers and practitioners working on
underwater SLAM and odometry systems.

The paper's layout follows Session 1, which delves into the comprehensive description of
standard visual SLAM algorithms' performances in underwater applications. In Session 2, we
summarise papers that involve multiple sensor integration in SLAM odometry, highlighting their
strengths and weaknesses. Shifting the focus to deep learning techniques, Session 3 offers a summary
of the applications of deep learning in underwater image processing, navigation, and perception.
Additionally, a detailed analysis of their performance and future potential is provided. Session 4
summarises papers involving deep learning-based underwater SLAM or odometry navigation,
presenting their respective strengths and weaknesses. Session 5 compiles a list of commonly used
datasets for evaluating underwater SLAM algorithms. Lastly, in Session 6, we present our prediction
development directions based on the abovementioned content.

II. Common Underwater SLAM Advancements and Algorithm Performance

SLAM has undergone significant advancements, particularly with the Extended Kalman Filter
(EKF) SLAM, commonly used for probabilistic robot pose and landmark estimation. Challenges arise
in complex, nonlinear environments due to their linearization assumptions, prompting the utilization
of the Square Root Information Filter (SRIF) algorithm. SRIF enhances stability, numerical reliability,
and operational efficiency for underwater Unmanned Underwater Vehicle (UUV) navigation by
effectively managing the covariance matrix and addressing numerical instability.

Diverse SLAM techniques cater to varied challenges in different environments. Graph-based
SLAM optimizes a graph representation for configuration identification, Particle Filter SLAM excels
in highly nonlinear scenarios, RBPF SLAM enhances computational efficiency, and Bayesian SLAM
adopts a Bayesian estimation perspective. In the underwater domain, addressing sensor limitations
is crucial, with innovative solutions like sonar-based mapping and loop closure detection playing
vital roles. Deep learning integration enhances SLAM solutions, utilizing neural networks to improve
mapping accuracy and navigation efficiency in challenging underwater environments, particularly
when coupled with lidar and vision sensor advancements.

Various Visual SLAM algorithms have been evaluated for underwater applications. ORB-SLAM
offers robust performance in well-lit, feature-rich environments, while ROVIO excels in dynamic
underwater settings by leveraging visual and inertial data. LSD-SLAM efficiently maps large, texture-
rich underwater environments, and DVO-SLAM handles depth changes effectively. MSCKF
combines visual and inertial measurements for precise navigation, while SVO suits lightweight
underwater vehicles with real-time efficiency. VISLAM algorithms enhanced with deep learning
handle challenging underwater conditions, aiding in feature extraction and mapping. FAB-MAP,
adapted for underwater scenarios, excels in environments with distinctive visual features. The choice
of algorithm depends on specific environmental conditions and mission requirements, with ongoing
research contributing to advancements in the field.

ITI. Multiple Sensor Integration in Slams Odometry: Strengths and Weaknesses

The accuracy and resilience of underwater SLAM systems through sensor fusion techniques
encompasses vision-inertial SLAM, laser-vision SLAM, and multisensor SLAM [37,38]. Multisensor
fusion is classified into data layer, feature layer, and decision layer fusion [39,40]. Visual SLAM faces
challenges with low-quality images, while IMU-assisted sensors improve
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To enhance the accuracy and robustness of underwater SLAM systems, researchers often
combine multiple sensors, leveraging sensor fusion techniques. This fusion approach results in a
more precise and resilient underwater SLAM. Standard fusion methods include vision-inertial SLAM
(utilizing vision and IMU), laser-vision SLAM (combining laser and vision), and multisensor SLAM
(incorporating sonar, IMU, vision, etc.). Multisensor fusion can be categorized based on fusion level
into data, feature, and decision layer fusion. The complexity of coupling can further be divided into
loosely coupled, tightly coupled, and ultralight coupled systems [28]. Visual SLAM algorithms have
advanced significantly but struggle with low-quality images caused by rapid camera movements and
varying light conditions. IMU-assisted sensors offer improved angular velocity and local position
accuracy compared to odometers. They complement each other, with IMUs providing clear images
of dynamic objects during fast camera movements and cameras correcting IMU-generated
cumulative errors during slower movements. This combination enhances SLAM performance and is
cost-effective. Visual-inertial fusion methods can be loosely coupled. IMU and camera motions are
estimated separately and then fused or tightly coupled, involving joint construction of motion and
observation equations before state estimation [41].

A novel crack assessment technique combines multisensor fusion SLAM and image super-
resolution [42]. A modality prediction approach is explored using LiDAR point cloud prediction from
3D acoustic ultrasonic sensor data [39]. Fusion SLAM algorithms also combine 2D LiDAR and RGB-
D SLAM, offering a comprehensive visual representation [43]. Considerations in sensor fusion
systems include the fusion objective and sensor constraints [44]. An innovative self-localization
system uses low-cost sensors and an Extended Kalman Filter [74]. Multi-beam sonar is employed for
underwater landmark detection, and an AUV utilizes tightly coupled lidar-visual-inertial SLAM [33].

Multi-Sensor Fusion System

v

LiDAR FUSION

e Integrate data from both
2D and 3D LiDAR
sensors for a complete 3D
mapping and navigation

Figure 11. A multisensor fusion overview.

Visual SLAM faces challenges with low-quality images, while IMU-assisted sensors improve
accuracy. Visual-inertial fusion methods can be loosely or tightly coupled [41]. Incorporating
modalities such as sonar or radar poses a challenge since existing methods are often specialized for
conventional sensors. Da Bin Jeon et al. present a Lie theory approach for unmanned underwater
vehicle navigation, addressing misalignment issues through Lie algebra operations. It enhances
estimation accuracy, stability, and convergence of covariance. However, potential weaknesses may
include challenges in real-world implementation, computational complexity, and the need for
thorough validation in diverse operational scenarios. Ongoing research aims to refine and validate
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the method for broader applicability and to address any identified limitations. Sensor Fusion for
Underwater Vehicle Navigation Compensating Misalignment Using Lie Theory.

SVIn2 presents an advanced underwater SLAM system, integrating diverse sensors(Sonar, Visual,
Inertial, and water-pressure information) for robust performance in challenging environments. The
real-time framework overcomes traditional weaknesses, demonstrating exceptional accuracy and
reliability in benchmark datasets and real-world scenarios. However, potential sensor dependencies
and generalization across diverse underwater settings pose considerations for further exploration
[45]. Chunying Li et al. introduce an innovative Multi-Source Information Fusion (MSIF) model for
Spherical Underwater Robots (SURs), enhancing precision and addressing critical issues in
Autonomous Underwater Vehicles (AUVs). However, reliance on low-cost sensors may impact
accuracy, and performance could vary based on environmental conditions.

Further refinement is needed for robustness in diverse scenarios and adaptability to varying
sensor qualities [46]. Researchers proposed a cost-efficient and precise solution for underwater
pipeline inspection utilizing an Autonomous Underwater Vehicle (AUV). Successfully navigating the
pipeline with minimal sensors, the system exhibits robust performance under varying current
velocities, incorporating fuzzy logic for enhanced stability. The ROS/Gazebo-based simulation
environment facilitates efficient development and testing. However, challenges in visibility
variations and obstacles require further refinement, suggesting potential enhancements through
expanding the sensor fusion framework and integrating adaptive parameters in image processing.
Future research directions include addressing dynamic surface wave effects through real-world
experiments, with consideration given to a down-scaled AUV for pool testing [40]. Di Wang et al.
introduce a multisensor fusion method for underwater integrated navigation systems, focusing on
SINS/DVL/USBL. It addresses frame system inconsistencies due to velocity errors, demonstrating
enhanced accuracy, especially in scenarios with long-distance USBL signal challenges. However,
further validation in diverse underwater environments is needed to establish its broader applicability
and reliability [47].

IV. Deep Learning Techniques Applied in Underwater Image Processing, Navigation, and
Perception, along with Their Performance and Future Potential

Deep learning techniques represent a revolutionary paradigm in machine learning,
characterized by using neural networks with multiple layers to model and interpret complex patterns
in data. Convolutional Neural Networks (CNNs) excel in image-related tasks, capturing hierarchical
features for image recognition and computer vision applications. Recurrent Neural Networks (RNNs)
are pivotal in processing sequential data, such as language and time-series information, owing to
their ability to retain context and dependencies. Transfer learning strategies leverage pre-trained
models to boost performance on specific tasks, facilitating effective knowledge transfer. Generative
Adversarial Networks (GANSs) introduce a novel approach to realistic data generation. At the same
time, advanced natural language processing models like BERT and GPT showcase remarkable
capabilities in understanding and generating human-like language.

Deep learning techniques have emerged as powerful tools in underwater applications across
image processing, navigation, and perception domains. Convolutional Neural Networks (CNN5s)
have been extensively applied in underwater image processing, showcasing remarkable proficiency
in object detection, recognition, and segmentation tasks. Their performance is notable for robust
feature extraction in challenging underwater environments, enhancing the accuracy of visual
perception systems. Transfer learning, particularly with pre-trained CNN models, has effectively
overcome data scarcity issues, yielding promising results in various underwater scenarios.
Additionally, Recurrent Neural Networks (RNNs) contribute to navigation tasks by processing
sequential data, aiding in trajectory prediction and underwater vehicle control. The fusion of sensor
data, including acoustic and visual inputs, using deep learning architectures enhances perception
capabilities, allowing for more accurate mapping and environmental understanding; despite
advancements, challenges persist, such as limited labeled underwater datasets and the need for real-
time processing.
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The future potential of deep learning in underwater applications hinges on several critical areas
of development. Refining model architectures is crucial for greater precision and adaptability to
diverse underwater environments. Addressing domain adaptation challenges will further enhance
the robustness of these techniques across varying conditions. Optimizing algorithms for efficiency
ensures real-time processing capabilities while expanding the application scope, which broadens the
utility of deep learning in underwater systems. Additionally, exploring unsupervised learning
methods holds promise for advancing autonomy in underwater applications. Continued research
and innovation in these areas are essential to unlock further advancements in underwater image
processing, navigation, and perception applications.

V. V. Deep Learning-Based Underwater SLAM and Odometry Navigation: Strengths and
Weaknesses

Jayashree Rajesh et al. propose a system to properly recognize and classify underwater life and
objects in underwater images. It provides a new way to identify and categorize many classes,
broadening the model's uses. The study uses statistical, hardware, and software solutions, focusing
on deep learning approaches like YOLOv4 and CNN to accurately classify underwater objects [48].
ANWAR KHAN et al. review recent underwater target detection algorithms for wireless sensor
networks. It categorizes and assesses these algorithms, discussing their applications, strengths, and
weaknesses. A comparative analysis and trend evaluation over the last decade is provided [49]. Ali
Khandouzi et al. use deep learning and classical image processing to enhance underwater images. A
lightweight colour retrieval network updated histogram equalization for contrast improvement, and
an attention module for synergistic integration comprise the three-module framework. The approach
solves underwater picture problems with minimum computational load. However, potential
drawbacks include picture augmentation, dataset-specific effectiveness, algorithm complexity,
generalization across various contexts, and overfitting to specific conditions [50]. A CNN and
intensity changes improve underwater image quality in two steps, according to Laura A. Martinhol
et al. 2024. The approach performs well on various datasets, including a new Amazon dataset.
Effective deep learning-based augmentation and dataset development are strengths. Lack of
extensive comparison insights and explicit future inquiry objectives are weaknesses [51]. A deep
learning model for underwater image restoration, the Combining Attention and Brightness
Adjustment Network (CABA-Net), mitigates colour-cast, low brightness, and low contrast. Ablation
investigations confirm the efficiency of individual network components, and the approach adapts to
underwater settings, boosting image contrast and color and aligning with human visual system
properties. However, the study lacks discussions on constraints, computing efficiency, and broader
applicability [52]. A unique integrated system for underwater object and temporal signal detection
employing 3D integral imagery in degraded settings is proposed. Deep learning improves 2D
imaging performance. 3D integral imaging improves image reconstruction and segmentation,
enhancing detection accuracy. The method's weaknesses include undiscovered computational
complexity and color distortion. Future directions include optimal configuration research and
resolving issues in increasingly complicated underwater environments [53]. Researchers use
convolutional neural networks (CNN) and recurrent CNN to estimate ego-motion in autonomous
underwater robots' forward-looking sonar (FLS). Both models can learn from synthetic and field data,
but the recurrent model predicts synthetic data better. FLS sensor configurations imaging terrains
need further study, according to the study. It advises using larger field datasets and diverse sensor
features to improve model performance [54]. Yelena Randalll et al. present unique forward-looking
underwater stereo-vision and visual-inertial datasets essential for testing autonomous systems and
algorithms in challenging underwater conditions. The datasets cover various scenarios, providing
synchronized images, ground truth depth maps, calibrations, and known object measurements [55].
An autonomous underwater vehicle (AUV) with an intelligence system recognizes and tracks
underwater objects. Semi-Global Block Matching (SGBM) methods forecast depth maps, and Deep
Q-Network (DQN) localizes disparity map objects. The system detects objects using a Faster Region-
based Convolutional Neural Network (R-CNN). DQN optimization of SGBM parameters, 3D point
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cloud images for object information calculation, object 3D information convergence with increasing
learning episodes, and wave height's effect on object size estimation and AUV maneuvering
performance are notable findings [56]. A new neural network uses autoencoder architecture and
SIFT-based descriptors to detect underwater visual loops quickly and reliably. Its unsupervised
training method beats others, making it suited for AUVs with limited computational resources [57].
The underwater visual simultaneous localization and mapping (VSLAM) system ULL-SLAM was
developed by Zhichao Xin et al. to handle low-light problems. The model's end-to-end design
includes a low-light enhancement branch with a non-reference loss function, allowing image
augmentation without paired low-light data. A self-supervised feature point detector and descriptor
extraction branch improves matching without pseudo-ground truth. The suggested method ensures
trajectory continuity, stability, and accurate state estimation under demanding underwater
environments to improve VSLAM performance. The research mentions features including better
feature point extraction in low-light circumstances but does not examine limitations, computing
efficiency, or the approach's generalizability to varied underwater exploration settings [58].
Researchers suggest computer vision-based AUV position estimates to alleviate navigation errors.
The method uses deep learning and computer vision to analyze real-time environmental photos to a
Digital Surface Model map. The approach lowers positioning errors (30-60 m) and works with
incomplete land representations. It can extract land features accurately, reduce dead reckoning
errors, and adapt to difficult sea situations. The technique could enable fully autonomous AUV
navigation in GNSS-denied conditions, improving low-cost AUV technology [59]. A comprehensive
dataset from a controllable AUV with high-precision fiber-optic inertial sensors, a Doppler Velocity
Log (DVL), and depth sensors by Can Wang et al. advances autonomous underwater vehicle (AUV)
navigation. The dataset includes numerous natural scenarios from multiple locations and timelines,
both beneath and on the surface, to address the lack of publically accessible data for training machine
learning algorithms in underwater navigation. Rigorous testing and algorithmic evaluations of real
and calculated positions prove the dataset's usefulness. Limitations and use cases of the dataset are
not discussed in the study. Its influence on autonomous exploration in limited underwater habitats
needs additional study [60].
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Figure 12. Process of deep learning in underwater SLAM.

An improved visual-inertial odometry system called Semantic SLAM uses semantic
characteristics from an RGB-D sensor to improve camera localization in Visual Simultaneous
Localization and Mapping (VSLAM). It excels in indoor conditions with little camera input and is
scene-agnostic. A convolutional short-term (ConvLSTM) network refines the semantic map,
improving pose estimation by 17% over VSLAM. The semantic map provides interpretable
information for robot navigation tasks, including path planning and obstacle avoidance. The public
code shows that semantic aspects in SLAM systems are feasible [65]. SplaTAM, a pioneering SLAM
system for a single unposed monocular RGB-D camera, uses a 3D Gaussian Splatting radiance field
for map representation. It suggests ways for more advanced and efficient SLAM systems to analyze
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scenes [61]. GO-SLAM, a real-time dense visual SLAM system, optimizes camera postures and 3D
reconstruction using neural implicit representations. It outperforms state-of-the-art algorithms in
robust posture prediction, loop closing, and online total bundle adjustment. The versatile approach
supports monocular, stereo, and RGB-D inputs and dynamically changes the continuous surface
representation for global consistency. It excels on varied datasets of lengthy monocular trajectories
without depth information [67]. An uncertainty learning method for dense neural SLAM estimates
pixel-wise depth uncertainties without ground truth data, improving mapping and tracking
accuracy. The method outperforms alternatives on many datasets, demonstrating its multisensor
input flexibility [62]. Researchers introduced NICE-SLAM, a dense visual SLAM system that
improves scalability, efficiency, and resilience by combining neural implicit representations with
hierarchical grid-based scene representation. The method enhances mapping detail, tracking
accuracy, and speed with less processing. NICE-SLAM outperforms neural implicit SLAM methods
in mapping and tracking tough datasets without over-smoothing [63]. Point-SLAM, a dense neural
SLAM system for monocular RGBD input, uses a dynamically produced neural point cloud to adapt
density to input information. It performs better than existing tracking, mapping, and rendering
algorithms on numerous datasets, improving resource utilization and 3D scene representation
accuracy [64].

Table 2. Deep Learning-Based Underwater SLAM Strengths and Weaknesses.

d
Methods Strength Weaknesses/limitations Frameworkc0 .e Year
available

The SemanticSLAM system

introduces innovation with The paper exhibits limitations, including
scene-agnostic functionality a restricted performance evaluation,
. across diverse environments,  sparse details on system implementation,
Semantic Yes

SLAM constructing a semantic map for unclear generalization to outdoor Pytorch 2024
interpretability and utilizing a environments, and a lack of concrete
ConvLSTM network to correct plans to address identified limitations in
errors and enhance pose future work.

estimation.

SplaTAM demonstrates
remarkable performance,
achieving up to 2x state-of-the-
art results in camera pose

The paper lacks comprehensive insights
into the system's generalization across
diverse environments, fails to address the
computational requirements for real-time
applications thoroughly, relies on
assumptions about the universal
suitability of Gaussian Splatting, and
would benefit from a more in-depth
comparative analysis with existing SLAM
methods to enhance credibility.

estimation and scene
reconstruction, leveraging an
SplaTAM innovative 3D Gaussian
Splatting representation for fast
rendering, optimization, and
explicit spatial awareness in a
single unposed monocular RGB-
D camera setup with structured
map expansion capabilities.
GO-SLAM introduces global
optimization for camera poses GO-SLAM exhibits potential concerns,
and 3D reconstruction, ensuring including the risk of error accumulation
improved tracking and accuracyover time in complex scenarios,

Pytorch Yes 2023

across versatile inputs, challenges on resource-constrained
GO- including monocular, stereo, devices due to computational demands,
SLAM and RGB-D setups, while potential hindrance in understanding ~ Pytorch  Yes 2023
maintaining real-time and implementation due to algorithmic
performance for dynamic complexity, and the need for further
environments and continuous investigation into its performance under
adaptation for global highly variable real-world conditions.

consistency.
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Innovative uncertainty learning
UncLe- for dense neural SLAM Limited depth sensor comparison,

demonstrated performance . . . Pytorch 2023
SLAM . s reliance on self-supervised training.

improvement adaptability to

multisensor inputs.

NICE-SLAM excels with a

hierarchical scene

representation, ensuring The method's predictive capability is

detailed reconstruction and confined to the scale of the coarse

scalability. It achieves efficiency,representation, and loop closures are not

competitive mapping, and currently incorporated. Exploring loop
NICE- tracking quality, overcoming  closures presents an intriguing avenue

A da. YE 2022
SLAM: over-smoothing challenges. The for future research. While traditional Anaconda. YES 0

model adeptly fills small holes, methods lack certain features, a gap
extrapolates scene geometry,  remains to be bridged with learning-
and benefits from geometric ~ based approaches.

priors for enhanced

reconstruction in large indoor

scenes.
Table 3. List commonly used data sets to evaluate underwater slams.
MARAS It wa's ?ollected iljl the. Mediterrz'mear} Sea, ' MARAS MAI'{AS: A Dataseft for
providing acoustic, visual, and inertial sensing Marine Robot Assistance
Dataset Dataset
data. Systems
UW-ETH- Captured in various environments, this dataset UW-ETH-

ASL from ETH Zurich includes RQB-]? data and ASL NICE-SLAM
ground truth for benchmarking visual and

Dataset inertial SLAM algorithms. Dataset
SAUVC z:teairt‘g:ﬁﬁe r;:ﬁ:fhiﬁri‘ﬁe (SAEX%. jone SAUVC  SLAM-Based Navigation for
Dataset ’ €0 Wi § POOT CONCAUONS, 1y 1 iset  an AUV in Indoor Pools

includes visual and inertial sensor data.
Developed by the UUST (Underwater Robotics
URB and Imaging) group, URB provides datasets for URB

Multi-Modal Underwater

. . . Simultaneous Localization
Dataset  visual and acoustic SLAM under challenging  Dataset

conditions. and Mapping

The Link6ping University Underwater (LIU- GraphSLAM for Underwater
LIU-UW UW) dataset includes data from various LIU-UW 3D Reconstruction with
Dataset underwater environments, providing visual and Dataset =~ Stereo Camera and Inertial

inertial measurements. Measurement Unit

An Underwater Stereo

A benchmark dataset for underwater 3D
D D for 3D
gz\t]j’set reconstruction, UW3D includes RGB-D images UWs3 Camera System for 3

Dataset R tructi d Object
and is designed to evaluate SLAM algorithms. atase econstruction an jec

Identification

ScanNet is a dataset of annotated 3D ScanNet
ScanNet reconstructions of indoor scenes used for GO-SLAM, NICE-SLAM
. . . Dataset
research in scene understanding and robotics.
Dataset featuring photorealistic 3D
reconstructions of indoor scenes, commonly Replica

Replica . . ’ UncLe-SLAM, NICE-SLAM
used for research in computer vision and virtual dataset
reality.

TUM- A dataset containing synchronized RGB and

RGBD  depth images captured from indoor scenes is Point-SLAM

often used to research visual SLAM
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(Simultaneous Localization and Mapping), 3D

reconstruction, and scene understanding.
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM. FIDCE: Filter-Guided Inverse Dark Channel
Inversion Exposure Compensation/ MFONet: MobileNetV2 Feature Extraction Network.

VI. Advantage of Deep Learning Relative to the Conventional Method

Deep learning, a transformative paradigm in artificial intelligence, brings several advantages to
underwater Simultaneous Localization and Mapping (SLAM) navigation compared to conventional
methods. One significant strength is its ability to comprehend complex underwater scenes, as neural
networks excel at discerning intricate patterns within underwater data, providing a nuanced
understanding of the environment, crucial for navigating challenging conditions characterized by
low visibility or uneven terrain [65,66]. Matias Valdenegro-Torol introduces a CNN-based approach
for accurate sonar image matching in AUV applications, outperforming traditional methods. The
study anticipates improvements with more significant, diverse datasets. Despite constraints, the
proposed method holds promise for enhancing AUV perception, with future work aiming to develop
unsupervised learning for sonar image similarity functions [67]. Researchers introduce an
underwater loop-closure detection method using an unsupervised UVAE network, achieving a
92.31% recall rate in dynamic underwater scenarios. It addresses challenges like viewpoint changes,
textureless images, and fast-moving objects. The system includes semantic object segmentation and
an image description scheme for efficient information access. Real-world testing demonstrates
robustness and real-time performance. Future work aims to enhance accuracy in complex underwater
environments and explore decentralized visual SLAM for multiple AUVs in more significant
scenarios [68]. Bryan Pedraza and Dimah Dera present a Bayesian Actor-Critic (A2C) reinforcement
learning approach for robust simultaneous localization and mapping (SLAM) in noisy environments.
Leveraging Bayesian inference, the model generates robot actions while quantifying uncertainty. The
proposed framework has broad applications in underwater robots, biomedical devices, micro-robots,
and drones, emphasizing its adaptability and reliability in uncertain environments [69]. Researchers
proposed an article that assesses Visual Odometry (V.O.) in challenging underwater conditions,
comparing classical and deep learning methods. Traditional systems struggle with initialization and
tracking, while deep learning architectures exhibit superior performance, providing continuous pose
estimation in complex scenarios. The study emphasizes the potential of data-driven approaches for
robust underwater robot navigation [70]. Zhengyu Xing et al. introduce an enhanced underwater
image enhancement model based on ShallowUWnet, utilizing convolutional blocks, batch
normalization, and LeakyReLU activation. The model, incorporating various loss functions,
outperforms advanced methods in evaluation metrics, showcasing superior performance and
generalization. Practical testing on engineering cases highlights its effectiveness, offering a faster
processing alternative to deep neural network methods for underwater image enhancement [71]. In
the dynamic realm of underwater navigation, deep learning's holistic approach stands out.
Traditional SLAM systems often involve separate modules for localization and mapping, requiring
intricate integration. Deep learning models employ end-to-end learning, enabling the system to grasp
its location and construct a map simultaneously, simplifying the navigation process for more efficient
underwater exploration [72,73]. Another advantage is the flexibility of deep learning in handling
different sensors commonly used in underwater navigation, such as sonar, LiDAR, and cameras.
Deep learning models can seamlessly integrate information from these diverse sensors, learning to
interpret varied data sources coherently. This adaptability contrasts with traditional SLAM systems,
which may require complex calibration and synchronization processes when dealing with multiple
sensors [74,75]. Thanks to neural networks' ability to model nonlinear relationships and adapt to
dynamic changes, deep learning's prowess becomes evident in navigating tricky underwater
situations. This makes them well-suited for handling unpredictable underwater scenarios, where
traditional methods may struggle without sophisticated filtering techniques [76]. Transfer learning,
a key feature of deep learning, introduces another layer of advantage. Pre-trained models can be
adapted for underwater navigation, where obtaining large labeled datasets can be challenging. This
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capability significantly accelerates the training process, allowing for quicker deployment of models
in real-world underwater exploration scenarios [77]. Moreover, the ability to effectively fuse
information from different sensors is a distinctive strength of deep learning [74]. Deep learning
models can harmoniously integrate these disparate data sources in underwater environments, where
a combination of sonar, LiDAR, and optical sensors is common. Traditional SLAM systems may face
challenges in achieving such seamless integration, requiring intricate adjustments and coordination.
While acknowledging these advantages, it's essential to consider practical factors such as
computational requirements and interpretability. Deep learning's computational demands can be
significant, and the 'black-box' nature of neural networks may raise interpretability concerns.
Nevertheless, the suite of advantages presented by deep learning positions it as a transformative
force in advancing the capabilities of underwater SLAM navigation, offering a promising avenue for
further exploration and research in this dynamic field. Integrating Deep Learning methods into
underwater navigation represents a revolutionary stride in enhancing the capabilities of Unmanned
Underwater Vehicles (UUVs). Under the umbrella of Artificial Intelligence (Al), these methods enable
UUVs to delve deeper into the intricacies of underwater environments through sophisticated data
processing. Deep Learning-based SLAM algorithms [78] empower UUVs with advanced cognitive
abilities to make real-time decisions, adapt to dynamic underwater conditions, and navigate with
unparalleled accuracy [39]. Deep Learning algorithms excel at extracting intricate patterns and
representations from sensor data, encompassing visual, inertial, and acoustic inputs. This enables
UUVs to construct highly detailed maps of their surroundings and concurrently estimate their precise
positions within the underwater landscape. The adaptive learning capabilities of Deep Learning
methods empower UUVs to continually refine their navigation strategies based on accumulated
experiences [8]. The fusion of Deep Learning methodologies with UUVs elevates the accuracy and
reliability of underwater operations. It propels these vehicles to new frontiers of exploration and
research in the marine domain [4]. It positions UUVs as intelligent entities capable of autonomously
navigating through challenging underwater terrains, leveraging the power of advanced neural
network architectures for unparalleled adaptability and performance. Researchers have
demonstrated the application of deep neural networks [78] to predict interframe poses, replacing
traditional visual odometry. A keypoint rejection system is used to supervise neural network
training, improving the reliability of visual ego-motion estimation by filtering out unsuitable vital
points [43]. Dr J. Priscilla Sasi et al. explore Convolutional Neural Networks (CNNs) in autonomous
underwater robot navigation, emphasizing their effectiveness in overcoming challenges like low
visibility and object detection. Case studies showcase CNNs' potential for transforming underwater
robotics, highlighting the need for ongoing research to enhance adaptability in challenging
environments [79]. Olaya Alvarez-Tu' n"on et al. survey the landscape of visual simultaneous
localization and mapping (SLAM) algorithms in geometry-based and learning-based frameworks. It
introduces a comprehensive SLAM pipeline formulation, categorizes implementations, and evaluates
their performance under varying environmental challenges. The study emphasizes the shift towards
end-to-end pipelines driven by deep learning, addressing efficiency limitations and the need for
generalizability in diverse deployment conditions. The findings highlight the potential of merging
geometry and learning-based approaches for future advancements in visual SLAM [80]. Self-
organizing maps (SOMs), another neural network approach, are employed for multi-robot SLAM,
offering unsupervised training capabilities [17]. A refined super-resolution reconstruction method
enhances and recovers underwater images by decomposing RGB attenuation to calculate
transmission maps and improve image quality [78]. All these methods show how deep learning
SLAM is in the field of underwater SLAM. Below are some practical examples implemented in the
domain, starting with a proposed deep-learning sensor fusion algorithm. The research introduces a
novel FIDCE algorithm for precise biofouling identification in underwater images alongside the
MEFONet model for pixel-level segmentation. FIDCE enhances image quality and accurately identifies
biofouling, which is vital for ship maintenance. MFONet outperforms classical algorithms, offering
superior speed and accuracy, enabling automated cleaning and maintenance planning for
underwater vehicles [81]. Laura A. Martinho et al. propose a learning-based approach for enhancing
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the quality of underwater images. It involves two main steps: Firstly, a Convolutional Neural
Network (CNN) Regression model learns optimal parameters for enhancing different types of
underwater images. Second, intensity transformation techniques are applied to raw underwater
images to compensate for the loss of visual information [51].

VII. Predictions about Future Development Directions Based on the Above Content

This study establishes a strong foundation for advancing Unmanned Underwater Vehicle (UUV)
navigation, focusing on refining AI-SLAM algorithms, particularly those driven by deep learning.
Future research endeavors will involve optimizing multiple sensor fusion techniques, incorporating
technologies like multi-beam sonar, stereo cameras, Lidar, IMU (INS), and methods such as
SBL/USBL and DLV to enhance UUV navigation accuracy in complex underwater environments.
Exploring the integration of emerging technologies, such as machine learning and advanced
computer vision, holds promise for developing even more robust UUV navigation systems.
Scalability for different UUV types and mission requirements is a crucial consideration, and
collaborative efforts among researchers, industry experts, and policymakers are essential for
standardizing and implementing these advancements in practical applications. As technology
evolves, the future of underwater navigation and Simultaneous Localization and Mapping (SLAM)
is poised for significant growth, driven by deep learning applications. Anticipated developments
include refining model architectures, addressing domain adaptation challenges, optimizing
algorithms for real-time processing efficiency, expanding application scopes, integrating deep
learning with sensor advancements, exploring unsupervised learning methods, and fostering
interdisciplinary collaborations. These efforts aim to propel the field towards more precise,
adaptable, and robust underwater navigation systems, harnessing the transformative capabilities of
deep learning in navigating complex and dynamic underwater environments. Future research may
also explore other Deep Reinforcement Learning (DRL) algorithms like Deep Deterministic Policy
Gradient (DDPG), Soft Actor-Critic (SAC), and Proximal Policy Optimization (PPO) for further
optimization of the 3D image model reconstruction.

Conclusion/Significance

Integrating multiple sensors and deep learning techniques represents a significant leap forward
in improving underwater navigation. By overcoming the limitations of traditional methods through
innovative approaches like visual SLAM and sensor fusion, this research opens new possibilities for
using Unmanned Underwater Vehicles in a wide range of applications, from scientific exploration to
marine resource management. Advancements in precision and reliability enhance the capabilities of
UUVs and contribute to our understanding and stewardship of the Earth's oceans, making this work
a crucial step in the ongoing evolution of underwater technology.
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