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Abstract: Underwater optics have seen a notable surge of interest in recent years, emerging as a 
critical medium for conveying information crucial to underwater resource exploration, autonomous 
underwater vehicle navigation, etc. The intricate dynamics of underwater optical transmission, in-
fluenced by factors such as the absorption by the water and scattering by multiple particles, present 
considerable challenges. One of the most critical issues is that the optical information representation 
methods fail to take into account the impact of the underwater physical environment. We conducted 
a comprehensive review and analysis of recent advancements in underwater optical transmission 
laws and models. We summarized and analyzed relevant research on the effects of underwater par-
ticles and turbulence on light and analyzed the polarization effects in various environments. Then, 
the roles of various types of underwater optical propagation models were analyzed. Although op-
tical models in complex environments are still mostly based on Monte Carlo methods, many under-
water optical propagation mechanisms have been revealed and can promote the impacts of optical 
information expression. We delved into the cutting-edge research findings across three key do-
mains: the enhancement of underwater optical image quality, the 3D reconstruction from monocu-
lar images, and the underwater wireless optical communication, examining the pivotal role played 
by light transmission laws and models in these areas. Drawing upon our extensive experience in 
underwater optics, including underwater optical sensor development and experiments, we identi-
fied and underscored future directions in this field. We advocate for the necessity of further ad-
vancements in the comprehension of underwater optical laws and physical models, emphasizing 
the importance of their expanded application in underwater optical information representations. 
Deeper exploration into these areas is not only warranted but essential for pushing the boundaries 
of current underwater optical technologies and unlocking new potential for their application in un-
derwater optical sensor developments, underwater exploration, environmental monitoring, and be-
yond. 

Keywords: underwater optical transmission; underwater optical image; 3D reconstruction;  
underwater optical communication; deep learning 
 

1. Introduction 
The ocean harbors a wealth of biological and mineral resources, including marine 

fish and seabed oil. As terrestrial resources are increasingly depleted and the demand for 
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modern industrial development grows, the exploration and utilization of marine re-
sources have emerged as a vital strategy for coastal countries. In this context, acquiring 
precise and clear environmental and target information in the variable and largely un-
charted underwater realms of the ocean is crucial for the accurate surveying and rational 
exploitation of these resources [1,2]. Underwater optical information, characterized by its 
rich colors, distinct boundaries, and diverse dimensions and types of information, signif-
icantly enhances the precision of resource exploration efforts. It facilitates the discovery 
of deep-water biological entities and the exploration of seabed minerals, positioning itself 
as a critical medium for underwater data collection and one of the essential methods for 
accessing marine resource information [3,4]. 

However, light propagation in water is significantly influenced by absorption and 
scattering, with the underwater environment further complicated by the presence of ir-
regular particles, turbulence, and other phenomena. These factors lead to the rapid atten-
uation of underwater light energy and non-uniform attenuation rates, which in practical 
applications manifest as instability in the information carried by light. Consequently, un-
derwater optical information often appears blurred or distorted. The advent of substantial 
advancements in optical equipment has catalyzed interest in underwater optical infor-
mation perception, marking its wide-ranging application, especially with the integration 
of deep learning technologies [5]. This integration has propelled underwater image en-
hancement, 3D reconstruction, and optical communication to the forefront of research and 
practical applications. 

The Xi’an Institute of Applied Optics, 705 Research Institute of China State Shipbuild-
ing Corporation Limited (CSSC), and Shaanxi University of Science and Technology have 
engaged extensively in underwater optical experiments, including seawater blue–green 
laser transmission, light transmission in bubble-containing water mediums, underwater 
optical imaging, and underwater target range gating, etc. We have generated a vast da-
taset, shedding light on the complex and dynamic nature of underwater environments 
and the significant challenges posed to light transmission and imaging therein. From an 
engineering perspective, we have tackled numerous challenges associated with underwa-
ter light transmission. Innovations such as optical range gating amidst underwater envi-
ronmental disturbances and the automatic acquisition of imaging parameters in bubble-
containing environments represent key advancements.  

However, the inherent underwater physical environments limit the ability of shed-
ding light on information expression, although deep learning methods yielded promising 
results across various underwater optical scenarios. The relatively poor interpretability of 
deep learning poses challenges for its application in architecture design, parameter set-
ting, and hardware integration. It is significant to bridge these gaps by providing a com-
prehensive analysis and insights of the underwater physical principles and optical models 
by reviewing recent advancements. We integrate these latest theories and models in three 
aspects: enhancement of underwater image quality, 3D reconstruction from underwater 
monocular optical images, and underwater wireless optical communication. We attempt 
to improve the information representation ability of light and propose directions for fu-
ture research, as depicted in Figure 1. We advocate for a closer integration of physical 
models with deep learning approaches. Such integration is pivotal for advancing the un-
derstanding of underwater optical transmission principles and fostering the broader ap-
plication of technologies. Through this review, we aim to spur further research and appli-
cation breakthroughs in these critical areas.  
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Figure 1. Research on underwater optics. 

2. Underwater Influences on Light 
As light propagates through water, it is subjected to absorption and scattering, influ-

enced by water and underwater particles, such as sand, plankton, and dissolved organic 
matter. Figure 2 depicts the attenuation process of light as it travels underwater. The light 
intensity is range-dependent, and red light is absorbed stronger, succeeded by other 
longer wavelengths. At 20 m, only blue and green wavelengths are discernible, and at ap-
proximately 30 m, exclusively blue light prevails. It must be emphasized that prevalence 
of blue light exists only in clear water, and green light propagates farther than others in 
some contaminated water. The distance determines selective absorption and the profound 
impact on the spectral composition of underwater light. The propagation process is de-
scribed by the Lambert–Beer theorem: 

( )
0
- σ+γ d

rE = E  (1)

where E0 is the optical intensity when depth is 0, Er is the attenuated optical intensity, d is 
the depth, while σ and γ are the absorption coefficient and scattering coefficient, respec-
tively.  

 
Figure 2. Optical attenuation process underwater. 

Light is affected by water flow and particles. This interaction between light and water 
molecules or suspended particles alters the trajectory of light rays, causing them to veer 
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from their original path. As illustrated in Figure 3, underwater optics can be categorized 
into three components: direct, forward-scattered, and backward-scattered. The direct 
component consists of light from the source that directly reaches and reflects back from 
the target to the receiver. The forward-scattered component comprises light that, although 
reflected from the target, is deflected by waterborne particles. Conversely, the backward-
scattered component includes light from the source that is dispersed by particles back to-
ward the optical device.  

 
Figure 3. Underwater optical transmission. 

The intricacies of how optical information is modified in complex underwater envi-
ronments are yet to be fully understood. Light conveys extensive information through its 
color, brightness, and polarization. For instance, underwater optical imaging demands 
enhanced contrast and clarity, whereas underwater optical communication prioritizes sta-
bility and precision. To shed light on the recent advancements in research and their im-
plications for improving underwater optical information expression, this review delves 
into the influence of complex underwater conditions on light transmission. Special focus 
is paid to the roles of turbulence and polarization. We seek to encourage further explora-
tion and practical application of the findings in this field, aiming to advance our under-
standing and technological capabilities in underwater optical information processing. 

2.1. Underwater Environment Influence on Light 
The impact of the aquatic medium on light is characterized by energy intensity vari-

ations across different bands and disruptions along the light transmission path. Specifi-
cally, in marine environments, such as the ocean, which harbors abundant plankton in its 
surface and shallow waters, light transmission is significantly affected [6]. Research con-
ducted in the Baltic Sea has demonstrated that the spectral absorption coefficients of sus-
pended particulate matter, along with spectral scattering and backscattering coefficients, 
are intricately linked to the concentration and size distribution of particles. These relation-
ships can be quantitatively described using statistical methods to develop parametric for-
mulas for various inherent optical properties. This analysis allows for a detailed under-
standing of how particulate matter influences light absorption and scattering in aquatic 
environments [7]. In the Barents Sea, studies on underwater light field parameters and 
thermal energy absorption within the visible spectrum of the seawater column reveal that 
variations in chlorophyll concentration, as estimated by satellite bio-optical algorithms, 
have a minimal effect (30–50%) on the vertical distribution of light energy absorbed in the 
water column. This finding underscores the complexity of factors influencing light 
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absorption beyond biological constituents [8]. For five distinct types of core-shell algal 
particles (double spheroid, quadruple spheroid, filamentous cylindrical, ring-shaped fila-
mentous, and S-shaped filamentous) exposed to a 532 nm blue–green laser wavelength, it 
was observed that absorption and scattering coefficients increase with particle size. Nota-
bly, forward scattering intensity was the most pronounced, and the scattering intensity for 
all models diminished with an increase in the scattering angle. Larger algal models exhib-
ited more pronounced oscillations in their scattering matrix element ratios [9]. Addition-
ally, the sea surface microlayer (SML) exhibits unique physical, chemical, and biological 
characteristics distinct from the underlying subsurface water (USW). Correspondingly, 
the spectral absorption coefficients, volume scattering function, and particle size distribu-
tion (PSD) inherent optical properties of the SML also show marked differences [10]. This 
differentiation highlights the varied and complex nature of light interaction with aquatic 
environments, necessitating a nuanced understanding of these processes for accurate op-
tical analysis and applications, as presented in Table 1. Research on biological particle ef-
fects involves multiple types of particulates in different areas. From our lake and sea ex-
periments on optical transmission, biology effects occur mostly on the surface of near-
shore shallow water, special biological gathering areas, and human living areas, which 
have obvious regional and practical effects. 

Table 1. Biological particulates’ effects. 

No.  Type Area 
1 Plankton [6] Surface and shallow waters 
2 Concentration and size distribution of particles [7] Baltic Sea 
3 Chlorophyll concentration [8] Barents Sea 
4 Core-shell algal particles [9] Surface and shallow waters 
5 Sea surface microlayer (multi-particulates) [10] Surface and shallow waters 

In the dynamic and intricate ocean optical channel, photon scatterings increase with 
distance and the attenuation coefficient, resulting in an expanded received light spot. Sea-
water, considered a non-homogeneous medium, concentrates the energy of the downlink 
light spot more than in uniform seawater [11]. Within 400 nm to 500 nm, under varying 
turbidity levels, there is a non-linear enhancement in black and white pixel responses and 
scattering intensity, with a maximum color body spectral reflectance detection accuracy 
deviation of 5.3% [12]. At a 6500 K color temperature, the power of red (638 nm), green 
(520 nm), and blue (450 nm) lasers aligns with the transmission function, enabling the 
synthesis of white light from tri-color lasers to mitigate attenuation in transmission, par-
ticularly in seawater, where attenuation and its error margin are more significant [13]. 
Lidar-derived indices in southeastern Florida indicate a correlation between direct and 
diffuse backscatter near the coast, with lidar attenuation coefficients showing up to 57% 
variability in near-coast inherent optical properties [14]. Using the Henyey–Greenstein 
function and Monte Carlo simulations to assess photon scattering angles, the impact of 
underwater optical channel scattering and optical system parameters on the 3 dB optical 
intensity spot radius (OISR) was studied, revealing minimal influence of the laser source 
divergence angle in particle-dense channels [15]. Blue–green lasers generally transmit fur-
ther underwater, but in highly turbid waters, red light surpasses blue–green in extinction 
coefficient and bandwidth performance [16]. High-speed underwater vehicle navigation 
can induce cavitation, affecting the angle and distribution of the bubble group intercept-
ing the light, with received power varying based on the bubble coating absorption and 
thickness (0.01~1.0 µm) [17]. During seabed operations, cold seeps and hydrothermal 
vents revealed that both hydrothermal and cold-seep-related minerals, primarily sulfides, 
exhibit distinctive Raman bands between 300 and 500 Delta/cm, with consistent Raman 
spectra in the band position and normalized strength across mineral types [18]. The non-
biological factors that affect the light propagation are diversified, as depicted in Table 2. 
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Furthermore, the unconventional phenomena (including high turbulence, cold seeps, and 
hydrothermal), such as those researched in [12], would have an unconscionable effect on 
light, which should be considered in optical information representations. 

Table 2. Non-biological particulates’ effects. 

No.  Environment Effect 

1 Non-homogeneous medium [11] 
Concentrates the energy of the downlink light spot more than in 

uniform seawater 

2 Varying turbidity levels [12] 
Non-linear enhancement in black and white pixel responses and 

scattering intensity 

3 6500 K color temperature [13] 
The synthesis of white light from tri-color lasers to mitigate 

attenuation in transmission 
4 Near the coast [14] 57% variability in near-coast inherent optical properties 

5 Highly turbid waters [16] Red light surpasses blue–green in extinction coefficient and 
bandwidth performance 

6 Cavitation [17] Received power varying based on the bubble coating absorption 
and thickness 

7 Cold seeps and hydrothermal vents [18] Distinctive Raman bands between 300 and 500 Delta/cm 

Both biological particles and non-biological effects substantially influence underwa-
ter light transmission. While extensive studies have examined the impact of these individ-
ual factors on light, real-world conditions frequently involve a combination of elements—
such as simultaneous presence of biological entities and turbidity—along with variable 
medium properties, complicating the understanding of light information variation. How-
ever, if the aforementioned factors coexist, current models cannot describe the variations 
in different frequency bands and types of light waves. Based on our study of existing mod-
els, such a universal model would be extremely complex. We believe that quantifying or 
characterizing the impact of different underwater environments on light, understanding 
the variation patterns in underwater environments in key regions, and exploring the rela-
tionship between the environment and its impact would be the better breakthrough points 
and research directions in the future. Additionally, turbulence, a phenomenon more prev-
alent in the ocean than in the previously discussed environments, has emerged as a sig-
nificant area of interest due to its influence on underwater light transmission. These com-
plexities suggest that the principles governing light information changes under such mul-
tifaceted conditions merit further investigation.  

2.2. Underwater Turbulence’s Influence on Light 
The investigation into the effects of underwater turbulence on light transmission has 

captured the interest of prominent institutions, such as Johns Hopkins University [19], 
University of Washington [20], University of Southern California [21], and Woods Hole 
Oceanographic Institution [22], since the early 2000s. This period saw the development of 
advanced optical tools, such as submersible holographic cameras and deep-sea laser Ra-
man spectrometers, facilitating a range of experiments. Recent research has shifted the 
focus toward understanding the behavior of specialized light beams within diverse tur-
bulent conditions. 

The intricate dynamics of optical cos-Gaussian and cosh-Gaussian beams in under-
water environments show that smaller displacement parameters lead to increased average 
transmission rates, with source size enlargement also boosting transmission rates. Kinetic 
energy dissipation directly correlates with transmission rates, whereas mean-squared 
temperature dissipation shows an inverse relationship. In temperature-induced optical 
turbulence, transmission rates remain consistent. However, an uptick in salinity-induced 
turbulence notably decreases the transmission rates for both beam types [23]. Closed-form 
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Rytov variance expressions are derived by the simulations of plane and spherical wave 
propagations, linking the scintillation index to Rytov variance across different underwater 
turbulence intensities [24]. High-order Bessel–Gaussian beam signals and crosstalk orbital 
angular momentum (OAM) states’ probabilities are influenced by the propagation dis-
tance and oceanic turbulence, with receiver aperture adjustments potentially mitigating 
crosstalk OAM state probabilities [25]. Underwater turbulence reduces the scintillation 
index through effects such as piston, tilt, and astigmatism, tied to various parameters, in-
cluding the ratio of temperature to salinity contributions to the refractive index spectrum 
[26]. Remarkably, self-focusing fields carrying OAM prove exceptionally resilient against 
turbulence-induced degradation, showing significantly higher peak intensities and en-
ergy transmission efficiency exceeding 70% over approximately 100 m in moderately 
strong oceanic turbulence, with focusing properties potentially enhanced by increasing 
turbulence [27]. Higher-order cosh-Gaussian beams exhibit focusing characteristics on 
oceanic turbulence, with beam size at the receiver plane adjusting according to the turbu-
lence severity [28]. Laser beam array incidences in underwater turbulence reveal field cor-
relations, affected by various factors and indicating that turbulence diminishes the field 
correlation of laser arrays [29]. These insights underscore the profound effect of underwa-
ter turbulence on optical transmission, underscoring an urgent need for further research 
to advance underwater optical communications and sensing technologies in the face of 
turbulence-related challenges [30]. Underwater turbulence has obvious uncertainty and 
non-uniformity, and its description is usually based on statistical models or averaging 
methods. On this basis, the influence of turbulence on light is also full of uncertainty and 
unpredictability. The performance of light under different types of turbulence models and 
parameter settings is not the same. In recent years, research has focused on the influence 
of different forms of turbulence on specific types of beams. Some of the closed-form solu-
tions can be used in the characterization of optical signal changes, but they are limited to 
a certain beam shape or a certain environment, as shown in Table 3. Therefore, the influ-
ence of turbulence on light needs to be further strengthened to reveal its internal key 
changes to improve the optical information representation ability. 

Table 3. Underwater turbulence effects. 

No. Turbulence Conditions Optical Effect 

1 Kinetic energy dissipation per unit mass of fluid [23] 

Transmission rates remained consistent in 
temperature-induced optical turbulence, and the 

transmission rates decreased for both beam types in 
salinity-induced turbulence 

2 Plane and spherical wave propagations [24] Closed-form Rytov variation 

3 Isotropic homogeneous oceanic turbulence [25] 
High-order Bessel–Gaussian beam signal and 

crosstalk orbital angular momentum (OAM) states’ 
probability variation 

4 
Salinity-driven underwater turbulence over the 
temperature-driven underwater turbulence [26] 

Piston, tilt, and astigmatism, tied to various 
parameters, including the ratio of temperature to 

salinity contributions 

5 Turbulence-induced degradation [27] Higher peak intensities and energy transmission 
efficiency exceeding 70% 

6 Ensemble average of the oceanic turbulence [28] Higher-order cosh-Gaussian beams exhibit focusing 
characteristics 

7 Average over the underwater turbulence statistics [29] Laser beam array incidences reveal field correlations 

Over the past five years, the study of light transmission mechanisms and behavior in 
turbulent environments has remained a focal point, but it appears underemphasized. Re-
cent research efforts have concentrated on modeling and interference mitigation to 
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address turbulence’s effects on light. Despite advancements in models and applications, a 
gap persists in understanding the fundamental mechanisms and patterns, suggesting a 
need for breakthroughs in related theories. Moreover, current models do not take into 
account the real turbulence characteristics, such as turbulence intensity, inner and outer 
scales of turbulence, and anisotropy. Therefore, we believe it is imperative to study the 
impact of anisotropic underwater turbulence on different types of light waves, as well as 
the consistency of the effects of turbulence at different stages on light.  

2.3. Underwater Environment’s Influence on Polarization Effects of Light 
Polarization, defined as the orientation of transverse wave oscillations relative to the 

light propagation direction, represents one of light’s four primary characteristics, along-
side amplitude, frequency, and phase. This attribute underscores the asymmetry in the 
vibration direction of light wave electric fields, offering a richer depiction of target optical 
properties. Polarized optical imaging, leveraging this light property, proves particularly 
advantageous for target detection within environments characterized by low signal-to-
noise ratios, intricate backgrounds, intense scattering, and dim lighting conditions [5]. 
This technique’s capacity to discern features under such challenging conditions under-
scores the potential for further exploration and application in enhancing optical imaging 
and communication technologies. 

Light propagating along the z-axis can be represented as the composite of two light 
waves oscillating orthogonally along the x-axis and y-axis. If the two oscillations of a cer-
tain frequency maintain a specific relative relationship, their composite light wave will 
trace a three-dimensional trajectory. The oscillation components can be represented as: 

2( , ) cos

2( , ) cos

x x x

y y y

E z t E t z

E z t E t z

πω ϕ
λ
πω ϕ
λ

  ′= − +   


  ′= − +   

 (1)

where ω λ,   are the angular frequency and wavelength of light, respectively. xE ′   and 

yE′ are amplitude in the x- and y-directions, respectively. xϕ  and yϕ are the initial phase 

in the x- and y-directions, respectively. x yϕ ϕ ϕ= −  is defined as the initial phase differ-

ence between the x- and y-directions. Both ( , )xE z t  and ( , )yE z t  propagate in the z-di-
rection, and the z-direction-synthesized light electric field satisfies the vector equation: 

22
22

cos siny x yx

x y x y

E E EE
E E E E

ϕ ϕ
  

+ − =    ′ ′ ′ ′   
 (2)

where the form of ϕ  determines the type of polarization. When ϕ  is a constant, the 
light is elliptically polarized. When ϕ  is an integer multiple of π , light is linearly po-

larized. When / 2ϕ π= ±   and x yE E′ ′=  , light is circularly polarized. When ϕ   is ran-
domly changing in time, light is non-polarized. The same scene possesses multiple differ-
ent polarization states, which can be described using three fundamental parameters: de-
gree of polarization, direction of polarization, and ellipticity angle. 

In structured light applications, optical anomalies, misalignments, and perturbations 
can alter the amplitude and phase of the spatial light pattern. However, the polarization 
inhomogeneity of vector-structured light remains unaffected by such disturbances, as-
suming they are singular in nature. This resilience is exemplified by vector vortex beams, 
which maintain their polarization inhomogeneity intact through highly aberrant systems, 
demonstrating unchanged polarization properties despite medium alterations [31]. In un-
derwater scenarios, polarization imaging detection faces challenges as the medium mod-
ulates the polarization degree of objects, and identical materials may exhibit varied 
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polarization characteristics. Polarization data are crucial for enhancing the detection of 
artificial targets, with the polarization state alterations at the underwater bubble interface 
significantly influenced by the observation geometry [32]. Light exhibits strong penetra-
tion at minimal incidence angles, with a gradual decay in radiation intensity. However, 
the polarization degree for forward and backward transmissions diverges with increasing 
distance [33]. Integrating a precise single-scattering model for randomly oriented spheroi-
dal scatterers with a radiative transfer model, employing Stokes formalism, accounts for 
the refraction of both direct unpolarized solar radiation and 100% linearly polarized radi-
ation at the air–water boundary, followed by single scattering. These models reveal that 
the non-sphericity of underwater solutes impacts light polarization characteristics [34]. 
The complexity of underwater polarization changes has led to the adoption of deep learn-
ing methods, which learn the correlation between an object’s radiance and polarization 
information through dense networks [35]. Despite over fifty years of research into under-
water polarization, recent efforts are still concentrated on understanding polarization 
traits and principles in intricate environments. Nonetheless, compared to studies on light 
amplitude, frequency, and phase, advancements in polarization remain limited, as shown 
in Table 4. Deep learning may uncover previously unrecognized patterns, yet concerns 
over interpretability persist. Theoretical and regulatory development lags, hampering 
broader application in critical domains. 

Table 4. Optical type or environment effect on polarization. 

No. Optical Type or Environment Polarization Effects 

1 Singular vector vortex beam [31] 
Polarization inhomogeneity is intact through highly 

aberrant systems 
2 Underwater bubble interface [32] Variation of objects’ polarization degree 

3 
Vector radiative transmission in underwater bubble 

environment [33] 
The polarization degree for forward and backward 

transmissions diverges with distance 

4 The non-sphericity of underwater solutes [34] 

Depolarization in the direct backscatter direction is 
highly dependent on the hydrosol size distribution 

for non-absorbing hydrosols; prolate spheroids cause 
a distinct polarization pattern 

In polarized light utilization for specific tasks, challenges such as noise interference 
and prior limitations have spurred a series of investigative efforts. Utilizing the polar de-
composition method to estimate the target Mueller matrix across the entire field of view 
facilitates the acquisition of polarization characteristics that exhibit global variation. This 
approach aids in reconstructing targets with differing optical properties by calculating 
illumination light with a globally varying polarization state to mitigate noise in computa-
tional imaging [36]. To address underwater signal light absorption variability with wave-
length and scene depth, a novel background area selection strategy based on an automatic 
attenuation difference map has been proposed for de-scattering. This method estimates 
background light to enable color restoration through absorption compensation, leverag-
ing intact color components and prior absorption constraints [37]. Further research em-
ploying a genetic algorithm to analyze the degree of linear polarization (DoLP) of target-
reflected and backscattered light has led to enhanced target imaging with optimal con-
trast. By incorporating constraints to bypass ineffectual scans, this technique effectively 
counters natural water-scattering effects. It computes the DoLP for both target and 
backscattered light, proving effective for complex targets in highly scattering environ-
ments without requiring prior knowledge of the target or background [38]. Polarization 
imaging necessitates capturing two frames of the target in orthogonal polarization states 
(I-max and I-min), with imaging potentially failing in the absence of a marked difference 
between these states. The similarity between two images is compared and quantified us-
ing the peak correlation energy (PCE) parameter, determining the optimal image based 



J. Mar. Sci. Eng. 2024, 12, 1055 10 of 27 
 

 

on minimal similarity [39]. For autonomous underwater image restoration devoid of back-
ground area or prior requirements, a novel restoration method through the degradation 
of intermediate variables has been introduced. This approach circumvents the need for 
estimating intermediate variables typical in traditional underwater imaging models, ac-
commodating underwater images with uneven lighting. It sidesteps the issue of subpar 
and unstable image restoration results stemming from inaccurate intermediate parameter 
estimations, offering a promising avenue for advanced underwater imaging applications 
[40]. The light polarization energy distribution, intensity, and trend can be utilized as im-
portant bases for improving the expression of optical information. However, there seems 
to be no unified polarization information processing method or polarization information 
evaluation method that can improve light expression, as shown in Table 5. Therefore, we 
believe that the introduction of polarization information in local tasks can effectively im-
prove the ability of optical information expression, but in a broader task similar to deep 
learning, further breakthroughs in optical polarization theory are needed. 

Table 5. Polarization methods for optical information expression improvement. 

No. Methods Achievements 

1 Polar decomposition method [36] 
Reconstructing targets with differing optical 

properties with a globally varying polarization state 
to mitigate noise in computational imaging 

2 
Background area selection strategy based on an automatic 

attenuation difference map [37] 

Enabling color restoration through absorption 
compensation, leveraging intact color components 

and absorption prior constraints  

3 Analyzing the degree of the linear polarization algorithm 
[38] 

Countering natural water-scattering effects in highly 
scattering environments 

4 The peak correlation energy quantification [39] Marked difference between orthogonal polarization 
states, I-max and I-min 

5 A restoration method through the degradation of 
intermediate variables [40] 

Estimating intermediate variables typical in 
traditional underwater imaging models, 

accommodating underwater images with uneven 
lighting 

Polarization of light in underwater environments holds significant potential for en-
hancing underwater optical image recognition and 3D reconstruction, aiming to improve 
both the accuracy and completeness of these processes. Despite advancements over the 
past five years, the specific polarization patterns of light under the diverse and complex 
optical conditions of underwater settings are yet to be fully understood. Various methods 
have been proposed to further the use of polarization technology in underwater applica-
tions. However, challenges persist that hinder its widespread adoption, including issues 
related to the stability and precision of polarization information and understanding the 
patterns of disturbances affecting it. Therefore, we believe that the key theoretical focus 
for polarization involves the physical process of optical information evolution or degra-
dation. In underwater environments, it is crucial to describe these physical processes and 
establish the connection between these processes and polarization. It is particularly im-
portant when considering the non-uniform scattering medium underwater. Additionally, 
the sensitivity of polarization to detailed changes might make it susceptible to environ-
mental factors, such as turbulence. Hence, the propagation characteristics of polarization 
in underwater turbulence and similar environments could be a significant area for future 
research. 
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3. Underwater Optical Transmission Model 
Underwater light transmission is principally influenced by absorption and scattering 

phenomena. Absorption involves the medium uptake of light energy, leading to the con-
version of photons into thermal energy, whereas scattering causes photons to deviate from 
their original path due to interactions with suspended particles and water molecules, 
without the photons being lost. From a theoretical standpoint, the model for underwater 
light transmission encapsulates the principles of how light absorption and scattering vary 
with distance. Nonetheless, accurately depicting these principles within the multifaceted 
underwater environment proves to be a formidable task. The attenuation of light beams 
in water follows the Lambert–Beer law: 

( )
0

a b r
rE E e− +=  (3)

where 0E  is the original light intensity, rE  is the intensity of light after it travels a cer-
tain distance in water, a is the absorption of light in water, and b is the scattering of light 
by particles in water. The underwater light transmission process is influenced by the com-
plex aquatic medium, making it difficult to represent a and b, and the transmission process 
is often modeled in a stochastic manner. 

The Monte Carlo method, leveraging computational capabilities to simulate random 
processes for modeling intricate states, has become a pivotal tool in studying underwater 
light transmission. This approach facilitates the generation of channel impulse response 
curves for various water types and transceiver configurations, with the simulation out-
comes being modeled using the Double Gamma Function (DGF) and Gaussian models 
[41]. Specifically, research has utilized Monte Carlo simulation alongside the Gamma 
function to develop a pulse response model for underwater wireless laser transmission. 
This model offers a closed expression for simulating underwater channel pulse responses 
by employing multiple Gamma functions, grounded in the analysis of seawater optical 
properties [42]. Further advancements include the proposal of a composite channel model 
that accounts for multiple bubble sizes, absorption, and scattering-induced fading. This 
model evaluates optical communication systems’ performance in composite channels, 
considering varying positions, sizes, and densities of bubbles, utilizing Mie theory, geo-
metrical optics, and the absorption-scattering model within the Monte Carlo framework. 
An increase in bubble quantity results in greater attenuation, reduced received power, and 
an elongated pulse response, with notable peaks in the volume scattering function or at 
critical scattering angles [43]. Additionally, the impact of different light sources, environ-
mental conditions, and target parameters on reflected light characteristics has been ana-
lyzed. This includes the polarization degree difference between reflected and backscat-
tered light, with a Monte Carlo numerical simulation method based on Mie scattering the-
ory, and the polarized bidirectional reflectance distribution function employed to con-
struct an underwater photon-scattering and reflection-tracking model. Under identical 
conditions, the polarization characteristic disparity between backscattered and reflected 
light is more pronounced with circular than with linear polarization. Moreover, the dif-
ference in reflective targets’ complex refractive indices alters the polarization of reflected 
photons, with these indices differentially affecting the two polarization types [44]. The 
Monte Carlo method plays an important role in multiple underwater light models. It 
could model the effect of the channel impulse response and describe the influence of bub-
bles on light and the scattering of underwater particles, as shown in Table 6. 

Table 6. Monte Carlo-based models. 

No. Monte Carlo Based Models Achievements Scalability 

1 
Combination of the Double 

Gamma Function and 
Gaussian models [41] 

Facilitating the generation of channel 
impulse response curves for various 

water types and transceiver 
configurations 

Suitable for variation of chlorophyll 
concentration with depth below 0.2 

mg/m3 and above 0.2 mg/m3. 
Turbulence is not considered. 
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2 
The Gamma function-based 
pulse response model [42] 

A closed expression for simulating 
underwater channel pulse responses by 
employing multiple Gamma functions 

Limitation on the turbidity of water. 
The particle phase function and volume 

scattering function are estimated. 

3 
A composite channel model 

[43] 

Evaluates optical communication 
systems’ performance in composite 

channels, considering varying 
positions, sizes, and densities of 

bubbles 

Large bubbles are assumed spherical. 
Scattering direction of the photons is 
assumed to be uniformly distributed. 

4 

A Monte Carlo numerical 
simulation method based on 
Mie scattering theory and the 

polarized bidirectional 
reflectance distribution 

function [44] 

Construct an underwater photon-
scattering and reflection-tracking 

model 

Mainly for the polarization degree of 
reflected and backscattered light from 

underwater targets. The changes 
during the propagation of light through 

the water are not considered. 

Research reveals how the complex refractive indices of underwater suspended parti-
cles affect the polarization characteristics of polarized photons’ forward and backward 
scattering, aiming to understand the influence of these particles on polarized light trans-
mission. Utilizing Mie scattering theory, a scattering model for underwater photon trans-
mission was established. This model incorporates Mueller matrices and the meridian 
plane Monte Carlo method to simulate a photon radiative transfer process in scattering 
media, offering insights into the interaction between polarized light and underwater par-
ticulates [45]. A semi-analytical Monte Carlo polarized radiative transfer model was de-
veloped to examine multiple scattering effects on seawater depolarization. This model re-
vealed that the depolarization ratio of lidar return signals escalates with an increased pen-
etration depth, the receiver field of view, single scattering albedo, and the seawater beam 
attenuation coefficient, highlighting the significant role of multiple scattering in depolar-
izing light in seawater [46]. The impact of outer-scale turbulence on Gaussian beams’ op-
tical properties and signal temporal dispersion was analyzed using the Monte Carlo ray-
tracing statistical method. Findings indicated that, under weak turbulence conditions, 
outer-scale turbulence significantly affects beam spreading and centroid drift of colli-
mated Gaussian beams, though it has less impact on intensity fluctuations and only a mi-
nor effect on temporal broadening, with signal temporal dispersion showing a quadratic 
relationship with transmission distance under turbulence [47]. A transmission model for 
underwater photons, combining Mie scattering theory and Monte Carlo numerical simu-
lation, was established to investigate how particle size influences optical transmission. In-
creases in particle size led to higher optical coefficients, reduced normalized energy re-
ception, decreased light intensity, and longer channel time delays for the same transmis-
sion distance. Furthermore, particle size induced depolarization in laser transmission, 
more profoundly affecting linearly polarized light than circularly polarized light [48]. In-
tegrating the Sahu–Shanmugam and Fournier–Forand volume scattering functions with 
the Monte Carlo method, an underwater laser transmission channel model was created. 
This model assesses beam spreading at the receiver end, exploring the impacts of the re-
ceiver field-of-view angle and surface diameter on beam power density, alongside the dis-
tribution characteristics of beam power density at varying receiving distances [49]. The 
Monte Carlo method can further describe the scattering and polarization phenomena 
combined with other theories. The influence of turbulence or particle size on optical trans-
mission can be accurately described, as shown in Table 7. However, Monte Carlo-based 
methods mostly obtain the distribution or simulation results, and there is no fixed model 
or closed solution. Therefore, further promotion of this method in the characterization of 
optical information still needs further theoretical breakthroughs. 
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Table 7. Underwater particle scattering models. 

No. 
Interpretative Models of 

Underwater Particle Scattering Achievements Scalability 

1 Mie scattering theory-based 
scattering model [45] 

Simulates the photon radiative transfer 
process in scattering media, offering 
insights into the interaction between 

polarized light and underwater 
particulates 

The particle radius and quantity is 
constant. Not taking into account the 

effects of turbulence. 

2 
Polarized radiative transfer 

model [46] 
Examines multiple scattering effects on 

seawater depolarization 

Mueller matrix of seawater is an 
estimate. The scattering phase 

function is assumed to be constant. 

3 The Monte Carlo ray-tracing 
statistical method [47] 

Analyzes the impact of outer-scale 
turbulence on Gaussian beams’ optical 

properties and signal temporal 
dispersion 

The combined effect of the outer and 
inner scales of turbulence is not 

explained. 

4 
Transmission model combining 

Mie scattering theory and Monte 
Carlo numerical simulation [48] 

Investigates how particle size 
influences optical transmission 

A single particle size distribution is 
considered. Particles underwater are 

assumed to be single spherical. 

5 

Integrating the Sahu–
Shanmugam and Fournier–
Forand volume scattering 

functions with the Monte Carlo 
method [49] 

Assesses beam spreading at the 
receiver end, exploring the impacts of 

receiver field-of-view angle and 
surface diameter on beam power 

density 

Scattering parameter and attenuation 
parameter are constant. 

Requirements for water turbidity. 

In certain light signal and environmental scenarios, modeling specific parts of the 
transmission process or evolutionary phenomena through distinct distributions is another 
key approach. The authors of [50] introduced a model for perfect optical vortex (POV) 
beams utilizing the Rytov approximation and mutual coherence function to assess the ef-
fect of wave parameters on the orbital angular momentum (OAM) detection probability 
spectrum. Simulations of POV-based underwater optical wireless communication 
(UWOC) systems, employing a blend of Gamma–Gamma and normal distributions, re-
vealed that transmission quality primarily depends on the beam radius, with minimal in-
fluence from wavelength, temperature contrast (TC), and radius-thickness ratio. The au-
thors of [51] explored the transmission probabilities of signal vortex modes in oceanic tur-
bulence using Rytov theory, showing that Mathieu–Gaussian beams with narrow initial 
widths, long wavelengths, and minor ellipticity parameters exhibited higher transmission 
probabilities compared to modes with the opposite characteristics. The impact of weak 
turbulence on signal vortex modes becomes negligible with an appropriate semi-cone an-
gle. The authors of [52] presented analytical formulas for the average intensity of double-
half inverse Gaussian hollow beams (DHIGHB) in oceanic turbulence, demonstrating 
multi-ring or single-ring configurations during propagation based on the initial beam 
width and turbulence strength. The authors of [53] used a tensor approach to derive the 
cross-spectral density function of the twisted anisotropic Gaussian Schell-model (TAGSM) 
beams in turbulent oceans, analyzing the beam spectral density, twist strength, and width. 
Results indicated that oceanic turbulence does not alter the beam spot rotation direction 
but leads to a Gaussian profile over long distances, with beams having larger initial twist 
factors, showing greater resistance to turbulence. The authors of [54] developed a spatio-
temporal stochastic channel model for tracking underwater single-photon states, as-
sessing impact factors on the received photon intensity and channel impulse response 
across different water types and conditions, highlighting the significance of photon infor-
mation analysis at the receiver. These studies underscore the complex influence of under-
water conditions on light transmission, emphasizing the need for advanced modeling to 
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enhance underwater optical communications and sensing technologies amidst environ-
mental challenges, as shown in Table 8. 

Table 8. Transmission process or evolutionary phenomena models. 

No. The Transmission Process or Evolutionary Phenomena 
Model Model Achievements 

1 Perfect optical vortex beams model utilizing the Rytov 
approximation and mutual coherence function [50] 

Assess the effect of wave parameters on the orbital 
angular momentum (OAM) detection probability 

spectrum. 

2 
The transmission probabilities of signal vortex modes 

using Rytov theory [51] 

Mathieu–Gaussian beams with narrow initial widths, 
long wavelengths, and minor ellipticity parameters 

exhibit higher transmission probabilities compared to 
modes with the opposite characteristics. 

3 Analytical formulas for the average intensity of double-
half inverse Gaussian hollow beams [52] 

Demonstrating multi-ring or single-ring 
configurations during propagation based on the 

initial beam width and turbulence strength. 

4 
A tensor approach to derive the cross-spectral density 

function of the twisted anisotropic Gaussian Schell-model 
[53] 

Analyzing the beam spectral density, twist strength, 
and width. 

5 
Spatiotemporal stochastic channel model for tracking 

underwater single-photon states [54] 

Assessing impact factors on the received photon 
intensity and channel impulse response across 

different water types and conditions, highlighting the 
significance of photon information analysis at the 

receiver. 

Stochastic methods have proven effective in developing models for underwater opti-
cal transmission, yet establishing deterministic laws for transmission processes is crucial 
for the broader adoption of underwater optics technologies. The authors of [55] utilized 
the generalized Huygens–Fresnel diffraction principle to derive analytical expressions for 
the scattering intensity of vortex beams interacting with rough surfaces in oceanic turbu-
lence. These expressions revealed that the complex coherence of the scattered field at the 
receiver diminished with increases in the vortex beam topological charge, waist radius, 
and wavelength, as well as with heightened oceanic turbulence intensity. The authors of 
[56] introduced a numerical model employing the Stokes vector and Mueller matrix, in-
corporating atmospheric polarization distribution, refraction at the air–water interface, 
and single Rayleigh scattering by water molecules. The authors of [57] detailed a mathe-
matical model for laser radiation propagation, addressing the radiative transfer equation 
for a narrow beam through a simplified approximation of the seawater layer scattering 
indicatrix, assuming predominant forward scattering in seawater. Under the premise of 
pronounced forward scattering, the authors of [58] extracted three independent equations 
for basic modes from the exact vector radiative transfer equation, calculating the temporal 
profile of the polarization degree for linearly and circularly polarized pulses using actual 
scattering matrix data. The polarization degree exhibited a self-similar dependency on a 
mix of the transport scattering coefficient, temporal delay, and the distance between the 
source and receiver. The authors of [59] outlined formulas for computing the irradiance 
field in a turbid medium with a narrow scattering phase function and uniform optical 
properties, created by an infinitely narrow light beam. Many studies have obtained deter-
ministic laws and fixed models of light propagation of the air–water interface, turbulence, 
and other environments. In the latest research, the in-depth application of such methods 
in optical information expression is still limited, as shown in Table 9. We suggest that 
methods such as the Stokes vector and Mueller matrix can be used in the key steps of 
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optical information expression to eliminate the influence of light scattering on information 
expression. 

Table 9. Deterministic laws for transmission processes. 

No. Deterministic Laws for Transmission Processes Achievements 

1 The generalized Huygens–Fresnel diffraction principle [55] 
Analytical expressions for the scattering intensity of 

vortex beams interacting with rough surfaces in 
oceanic turbulence. 

2 Numerical model employing the Stokes vector and Mueller 
matrix [56] 

Incorporating atmospheric polarization 
distribution, refraction at the air–water interface, 

and single Rayleigh scattering by water molecules. 

3 A mathematical model for laser radiation propagation [57] 

Addressing the radiative transfer equation for a 
narrow beam through a simplified approximation 

of the seawater layer scattering indicatrix, assuming 
predominant forward scattering in seawater. 

4 Three independent equations for basic modes from the 
exact vector radiative transfer equation [58] 

Calculating the polarization degree temporal 
profile for linearly and circularly polarized pulses 

using actual scattering matrix data. 

5 
Formulas for computing the irradiance field in a turbid 
medium with a narrow scattering phase function and 

uniform optical properties [59] 

Considers the temporal spreading of a pulsed light 
beam in the sea while maintaining high accuracy in 

depicting its spatial structure. 

The underwater optical transmission process undergoes changes that significantly 
affect imaging, ranging, and related tasks, necessitating the development of various mod-
els. The authors of [60] introduced a comprehensive underwater imaging process model 
by integrating the bidirectional reflectance distribution function with the Monte Carlo 
method. This model simulates the real channel by incorporating particles with absorption 
and scattering functions into the medium, applying Mie scattering theory for enhanced 
realism. The authors of [61] developed an underwater target polarization reconstruction 
model based on radiative transfer theory and Mueller matrix analysis. It enriches the clas-
sic Schechner model with target polarization characteristics, employing the covariance 
method for automatic target polarization information estimation. This model facilitates 
polarization imaging in complex underwater scenarios featuring bubbles and suspended 
particles, delivering reconstruction outcomes across diverse environments and target ma-
terials. The authors of [62] presented a concise derivation and expression for the refractive 
fundamental matrix using a refraction camera model, addressing non-linear light distor-
tion due to medium density changes. This foundation supports a two-view reconstruction 
approach for underwater imaging. The authors of [63] proposed an underwater laser 
ranging model that utilizes optical vortices, transforming target-reflected Gaussian beams 
into optical vortices with spiral-phase plates for clearer separation of the target-reflected 
signal from scattering clutter. The authors of [64] derived an explicit expression for the 
background transmission of forward-scattered light in underwater optical image restora-
tion, calculating transmittance parameters via second-order statistics of scattered light. 
This wavelength-dependent color restoration method evaluates the transmittance map for 
each RGB channel, as shown in Table 10. 

Table 10. Task-specific models. 

No. Task-Specific Models Achievements 

1 
Underwater imaging process model by integrating the 
bidirectional reflectance distribution function with the 

Monte Carlo method [60] 

Simulates the real channel by incorporating 
particles with absorption and scattering functions 
into the medium, applying Mie scattering theory 

for enhanced realism. 
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2 
An underwater target polarization reconstruction model 

based on radiative transfer theory and Mueller matrix 
analysis [61] 

Facilitates polarization imaging in complex 
underwater scenarios featuring bubbles and 

suspended particles, delivering reconstruction 
outcomes across diverse environments and target 

materials. 

3 Concise derivation and expression for the refractive 
fundamental matrix using a refraction camera model [62] 

Addressing non-linear light distortion due to 
medium density changes. 

4 An underwater laser ranging model that utilizes optical 
vortices [63] 

Transforming target-reflected Gaussian beams into 
optical vortices with spiral-phase plates for clearer 

separation of the target-reflected signal from 
scattering clutter. 

5 
An explicit expression for the background transmission of 

forward-scattered light in underwater optical image 
restoration [64] 

Evaluates the transmittance map for each RGB 
channel. 

For the complexity of underwater environments and optical properties in aquatic me-
dia, statistical theoretical descriptions of underwater optical transmission have become 
pivotal. Computational methods, such as Monte Carlo simulations and random distribu-
tion characterizations, have advanced significantly. However, accurately modeling the 
transmission process, including specific phenomena and occurrences, remains essential. 
Despite substantial research and application of underwater optical transmission models 
in various tasks, challenges persist in deeply integrating phenomenon-specific and ran-
dom descriptions, representing underwater optical physical laws in transmission models, 
and leveraging the expanding wealth of prior information due to advancements in sensor 
and computer technology. Further research is required to concisely mathematically char-
acterize underwater optical physical laws and integrate them with transmission models, 
exploring the impact of extensive prior information on these models. 

4. Underwater Optical Information Representations 
Based on the foundational research into underwater optical physical laws and trans-

mission models, the application of underwater optical information has seen notable ad-
vancements. These developments are analyzed from three perspectives: the enhancement 
of underwater optical image quality, the 3D reconstruction of monocular optical images, 
and advancements in underwater optical communication. 

4.1. Underwater Optical Image Quality Improvement 
Underwater light transmission is subject to various scattering processes, leading to 

non-uniform attenuation of optical information. This phenomenon impacts underwater 
imaging in several ways, as follows: 

(1) Uneven image brightness: The introduction of artificial light sources results in the 
brightest image areas being near the center, with brightness diminishing as the distance 
from the light source increases. This gradient effect leads to captured underwater images 
displaying uneven brightness levels. 

(2) Low image contrast and blurriness: The absorption of light in water is influenced 
by pigments, suspended matter, and dissolved organic materials, whereas scattering is 
predominantly caused by suspended particles and bubbles. These factors collectively lead 
to underwater images characterized by low contrast, a blurriness effect, and diminished 
detail clarity. 

(3) Color bias in underwater images: As light travels through water, it undergoes fre-
quency-dependent absorption, with red light being the most strongly absorbed and blue 
and green light the least. This differential absorption results in underwater environments 
predominantly reflecting blue–green hues, imparting a characteristic color bias to under-
water images. 
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To mitigate the challenges associated with underwater optical imaging, researchers 
have developed a variety of methods leveraging optical characteristics. The authors of [65] 
introduced an underwater image enhancement technique based on relative radiometric 
correction principles, specifically designed for underwater active optical imaging detec-
tion. The enhancement process is divided into two stages: brightness compensation and 
color restoration. Brightness compensation adjusts channel-wise compensation based on 
underwater point light source imaging characteristics and radiation attenuation mecha-
nisms. The color restoration stage involves adaptive compensation and color balancing of 
the red channel image, followed by comprehensive color restoration using the Retinex 
model. The authors of [66] proposed a color correction method for underwater images 
that significantly enhances color fidelity by addressing the pronounced color bias preva-
lent in underwater imaging. The authors of [67] offered a method to correct color biases 
by categorizing color shifts into five classes based on RGB channel averages. The method 
then utilizes optical attenuation characteristics to calculate the color loss rate across dif-
ferent underwater scenes. The authors of [68] detailed a method for recovering underwa-
ter polarized images, employing Gaussian curvature filtering for preprocessing, partition-
ing images based on polarization information, and then utilizing a joint image evaluation 
method for complex polarized characteristic target recovery. The authors of [69] intro-
duced an underwater image restoration method that estimates background light and cal-
culates scene depth and transmission maps to restore the image by inverting the under-
water image formation model. The authors of [70] addressed light scattering and absorp-
tion at different wavelengths using the color-line model, filtering image patches exhibiting 
color-line characteristics for local transmittance estimation. The authors of [71] presented 
an active polarization imaging method for underwater objects, incorporating an illumina-
tion homogenization technique in the frequency domain to extract and standardize natu-
ral incident light. The authors of [72] proposed a method for estimating polarization pa-
rameters using spatial and frequency domain operations, combining image information 
pre- and post-frequency domain filtering. For image quality monitoring in ROV display 
modules, the authors of [73] introduced NIPQ, which considers human visual system be-
havior and the specific imaging characteristics of underwater images across different wa-
ter types, unlike previous models. 

Deep learning techniques, employing vast datasets and complex linear/non-linear 
structures, have become prominent for modeling the relationship between pristine and 
distorted images. The push for model interpretability has spurred research employing 
deep learning to explore underwater optical physical properties and transmission models. 
The authors of [74] introduced the underwater image enhancement convolutional neural 
network (UWCNN) model, utilizing underwater scene priors. By merging the physical 
underwater imaging model with the optical characteristics of underwater scenes, a com-
prehensive underwater image degradation dataset was synthesized, spanning various wa-
ter types and degradation levels. A tailored lightweight CNN model for each scene type 
was developed, trained with respective data, and subsequently applied to enhance under-
water videos. Inspired by the physical underwater imaging model, the authors of [75] de-
signed a decoder network guided by medium transmission (the proportion of scene radi-
ance reaching the camera) to boost the response to quality-degraded regions. The net-
work, leveraging multiple color space embeddings and blending physical and learning-
based methods, significantly enhances underwater image visual quality. The authors of 
[76] delineated the statistical relationship between underwater and restored images based 
on the scattering model, introducing a novel, efficient underwater image restoration (UIR) 
model. This model addresses the UIR challenge by segmenting it into global restoration 
and local compensation, developing dedicated modules for each. Considering underwater 
imaging characteristics, the authors of [77] proposed a two-phase CNN for underwater 
image enhancement based on structural decomposition. It initially splits the original im-
age into high- and low-frequency components, followed by a dual-phase enhancement 
network comprising a preliminary enhancement and refinement network. The authors of 
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[78] presented a multi-feature underwater image enhancement method via an embedded 
fusion mechanism (MFEF). They found that the quality of reconstruction results was af-
fected by the quality of the input image to some extent, and used pre-processing to obtain 
high-quality images, which can improve the final reconstruction effect. The authors of [79] 
proposed an attention-based color consistency underwater image enhancement network, 
which consists of three components: illumination detail network, balance stretch module, 
and prediction learning module. 

We utilized two non-physical model-based underwater image enhancement meth-
ods, Gamma correction (GC) and histogram equalization (HE), two physical model-based 
methods, underwater dark channel prior (UDCP) and image blurriness and light absorp-
tion (IBLA), and a representative deep learning method, Shallow-UWnet, to quantitatively 
compare the effectiveness of these underwater enhancement methods. The evaluation was 
conducted using four widely used metrics: peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), underwater image quality measure (UIQM), and underwater color im-
age quality evaluation (UCIQE). As shown in Table 11, traditional methods may achieve 
better results than deep learning methods on certain metrics, and more complex methods 
do not necessarily produce better enhancement outcomes. 

Table 11. Image enhancement methods’ results. 

No. Methods SSIM PSNR UIQM UCIQE 
1 GC 0.764 16.229 2.82 0.37 
2 HE 0.631 13.738 2.982 0.501 
3 UDCP 0.574 14.519 1.857 0.514 
4 IBLA 0.72 18.95 2.197 0.482 
5 Shallow-UWnet 0.813 22.661 2.926 0.377 

We comprehensively researched traditional methods, including white balance, 
Gamma correction, sharpening, etc., and obtained the fusion of images by assigning spe-
cific weights, as demonstrated in Figures 4–6. This research particularly focused on restor-
ing underwater images with blue–green hues, whereas traditional approaches effectively 
mitigate color disparities and adjust for red and blue light. However, our findings indi-
cated that these algorithms often excel only in certain conditions, lack widespread applica-
bility, and may result in over-enhancement and subsequent image distortion. 

 
(a) Degraded underwater images 

 
(b) Underwater image after white balance 

Figure 4. Comparison of underwater images before and after white balance. 
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(a) Degraded underwater image, green tint 

 

(b) Fused underwater images 

Figure 5. Green-tone underwater image before and after the fusion process. 

 

(a) Degraded underwater image, blue tint 

 

(b) Fused underwater images 

Figure 6. Blue-tone underwater image before and after the fusion process. 

The significance of underwater optical image processing has markedly increased, as 
underwater infrastructure advances and the demand for economic growth intensifies. En-
hancement models for optical images, grounded in the principles of underwater optical 
transmission and built upon transmission models, warrant further comprehensive exam-
ination. Notably, methods adept at accommodating the dynamic underwater environ-
ment represent a critical area for forthcoming research, highlighting the need for adapta-
ble and robust solutions tailored to the complexities of underwater optics. 

4.2. 3D Reconstruction Technology of Underwater Monocular Optical Images 
The complexity and requirements of underwater tasks are escalating, spotlighting 

the importance of 3D reconstruction technology based on optical images. This area has 
seen notable advancements, particularly with the rapid evolution of deep learning tech-
nology, which has significantly enhanced the capability to perform 3D reconstructions in 
intricate underwater environments. The use of monocular underwater optical images, 
which depend on single-lens devices, presents more substantial challenges for 3D recon-
struction compared to binocular optical images or structured light approaches. This diffi-
culty arises not only from the inherent interference affecting underwater optical infor-
mation but also from the limited data that monocular devices can gather, resulting in 
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inadequate datasets. Moreover, monocular images intrinsically lack the detailed target or 
environmental structure information crucial for 3D reconstruction, challenging the effec-
tive application of underwater optical physical laws and transmission models. 

Nanjing University of Information Science and Technology and China Air Separation 
Engineering Co., Ltd. have conducted a comprehensive review on underwater 3D recon-
struction techniques, encompassing optical image methods, optical–acoustic image fusion 
methods, and acoustic image methods [80]. This review identified image degradation and 
camera calibration as pivotal scientific challenges in underwater imaging, suggesting fu-
ture directions for enhancing reconstruction accuracy, integrating multimodal fusion, 
achieving real-time reconstruction, and improving evaluation metrics. The authors of [81] 
explored the 3D reconstruction of underwater ship hull surfaces using a monocular cam-
era. The method models moderately curved hull surfaces as sequential flat panels, aligns 
local images within a 2D framework, and adjusts for perspective projection information, 
employing a simultaneous localization and mapping framework for precise camera tra-
jectory estimation and 3D reconstruction outcomes. The authors of [82] introduced a tech-
nique for full-field 3D contour and deformation measurement underwater using single-
camera stereo digital image correlation (DIC) technology. This method leverages single-
side bidirectional telecentric lens imaging and dual-prism-assisted pseudo-stereo vision 
to create virtual images, enabling accurate 3D contour and deformation field measure-
ments through DIC and linear equations. The authors of [83] tackled depth estimation and 
color correction for monocular underwater images from a multi-task perspective. An un-
supervised adaptation network was proposed for joint learning, allowing for end-to-end 
adversarial learning-based training to estimate scene depth and correct color simultane-
ously. The authors of [84] proposed an underwater generative adversarial network (UW-
GAN) for estimating depth from single underwater images, featuring a coarse-level gen-
eration network (UWC-Net) and a fine-level network (UWF-Net) for detailed depth map 
estimation. The authors of [85] presented a method for simultaneous reconstruction of 
surface normal and depth for dynamic underwater objects, utilizing near-infrared light 
absorption and surface scattering/reflection characteristics, alongside a practical calibra-
tion technique for imaging parameter determination. The authors of [86] introduced ste-
reoscopic CNN with a multi-scale CNN transfer learning technique to mitigate the effects 
of bubbles or water motion on underwater objects. The authors of [87] proposed a method 
combining multidimensional integral imaging with time coding and deep learning for op-
tical signal detection in turbid water bodies and obstructed environments.  

Deep learning methods have marked some achievements in the domain of 3D recon-
struction from monocular underwater optical images, addressing complex tasks with sig-
nificant outcomes. However, these methods encounter substantial hurdles, including in-
accuracies and indistinct edges in depth map estimation and point cloud reconstruction. 
The application of deep learning methods in this field is still limited. We verified the mo-
nocular underwater optical image 3D reconstruction results through three selected deep 
learning models, DenseNet [88] (3D reconstruction one), fully convolutional residual net-
work [89] (3D reconstruction two), and AlexNet [90] (3D reconstruction three), as depicted 
in Figure 7. A common challenge is the limited capability to accurately capture features 
ranging from local contour details to overarching image characteristics. Depth prediction, 
particularly for distant scenes, often yields suboptimal results, with a notable inability to 
derive corresponding depth values at edges. As depicted in Figure 8, depth estimation one 
utilizes the UW-GAN, and depth estimation two utilizes a Cascaded Epipolar-based 
Transformer [91].  
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Figure 7. 3D reconstruction results. 

 
Figure 8. Depth estimation results. 

The application of deep learning in enhancing the fidelity of 3D reconstruction from 
monocular underwater optical images necessitates substantial advancement. Currently, 
there is a pronounced disparity between depth prediction results, point cloud reconstruc-
tion, and the real-world underwater environment, especially concerning edge delineation, 
varying distances, and the reconstruction of small-scale entities. Future research could 
benefit from adopting a multidimensional approach, integrating data from various 
sources to develop a deep learning model adept at discerning the intricate patterns of un-
derwater environments. Another promising research avenue involves combining the 
physical principles governing monocular underwater optics with deep learning to en-
hance the interpretability and applicability of 3D reconstruction technologies in underwa-
ter exploration. 
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4.3. Underwater Wireless Optical Communication Research 
Underwater wireless optical communication technology was developed to overcome 

the deficiencies of acoustic communication underwater, such as long propagation delays, 
significant signal attenuation, severe multipath effects, and limited communication band-
widths. It features minimal environmental impact on the bandwidth, high available car-
rier frequencies, and low transmission delays. Underwater optical communication typi-
cally uses blue–green light beams within the 450–570 nm range, which have good direc-
tionality, high transmission rates, and strong real-time performance when passing 
through seawater. 

Recent advancements in underwater wireless optical communication (UWOC) tech-
nology have leveraged deep learning techniques to address complex channel conditions 
and enhance communication performance. These studies demonstrate the potential of in-
tegrating deep learning with optical communication systems to navigate the challenges of 
underwater environments. The authors of [92] introduced a deep-learning-based scheme 
combining channel estimation (CE) and signal detection (SD) with a novel deep neural 
network (DNN). This approach utilizes offline training to extract channel characteristics 
and a DNN channel classifier for online water body identification and classification. It 
optimizes estimation composite weights to enhance CE/SD performance under dynamic 
UWOC channels. The authors of [93] employed a double Gamma function to approximate 
the impulse response of underwater optical links, facilitating simultaneous optimization 
of the encoder and decoder by learning channel characteristics. The authors of [94] high-
lighted that the precision of non-sequential ray tracing is contingent upon the optical 
properties of water and the accuracy of the scattering phase function (SPF) modeling in 
simulations. The authors of [95] proposed a system employing a hybrid decode–amplify–
forward strategy across UWOC channels. It accounts for absorption, scattering, and mis-
alignment effects using the beam spread function (BSF) and considers oceanic turbulence 
to accurately model channel characteristics. The authors of [96] discussed using a time-
reversal waveform design in UWOC systems to mitigate inter-symbol interference, char-
acterizing UWOC channels by exponential bias with random scattering effects. The au-
thors of [97] introduced an adaptive optical (AO) technique using random amplitude 
masks for turbulence effect reduction in UWOC systems employing orbital angular mo-
mentum (OAM). It combines phase retrieval algorithms with a mixed exponential gener-
alized Gamma distribution to analyze performance indicators for single and multiple in-
puts. The authors of [98] utilized diffractive deep neural networks (DDNN) to compensate 
for distortions caused by oceanic turbulence. The DDNN was trained to map the intensity 
distribution of vortex beam distortions to their corresponding phase screens. 

Considering the advancements of wireless optical communication technology for un-
derwater applications, particularly within the fluctuating marine environments, and con-
sidering the potential of deep neural networks, there is a pressing need for further inves-
tigation into the environmental adaptability of underwater optical communication sys-
tems. Additionally, enhancing the interpretability of deep learning algorithms related to 
these systems represents a critical direction for future research, aiming to optimize the 
performance and reliability in diverse underwater conditions. 

5. Conclusions 
Underwater optics has witnessed remarkable advancements in understanding trans-

mission laws, developing predictive models, and leveraging these insights across a spec-
trum of underwater applications. This progress spans from exploring the fundamental 
physical properties influencing light propagation in aquatic settings to the creation of 
complex models and algorithms aimed at improving underwater imaging, 3D reconstruc-
tion, and optical communication. The propagation of light underwater is dictated by in-
tricate interactions with water constituents, such as dissolved substances, particulates, 
and biological matter. A thorough grasp of these physical laws is pivotal for accurately 
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modeling light behavior in aquatic environments, laying the groundwork for corrective 
strategies in imaging and communication systems. Researchers have crafted various mod-
els to emulate underwater light propagation, tackling the medium intrinsic optical chal-
lenges. These models are indispensable for the conceptualization and refinement of un-
derwater optical systems, including both imaging apparatuses and communication path-
ways. 

Underwater imagery often exhibits diminished visibility, color distortion, and blur-
riness. To mitigate these impediments, advanced image processing methods have been 
formulated, drawing upon both physical models and deep learning algorithms. The un-
predictable nature of underwater settings presents formidable obstacles for optical image 
3D reconstruction. Here, deep learning models emerge as powerful tools for deducing 
depth information from singular images, a task historically hampered by the lack of dis-
tinct visual markers and water’s distorting influence on light. Optical communication 
emerges as a high-bandwidth alternative to the traditional acoustic methods used under-
water, offering prospects for expedited data transfer with reduced latency. Strategies for 
enhancing signal integrity encompass modulation techniques involving light intensity, 
phase, and polarization, alongside adaptive approaches to navigate the diverse optical 
properties across water types. 

The ongoing investigation into underwater optical phenomena, combined with 
breakthroughs in computational modeling and machine learning, promises to signifi-
cantly augment the capabilities of underwater imaging, 3D reconstruction, and commu-
nication technologies. As the scientific community deepens its comprehension of light’s 
complex behaviors in aquatic environments, the development of increasingly precise 
models and efficacious algorithms will undoubtedly pave new pathways for the explora-
tion and exploitation of underwater realms. 
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