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ABSTRACT 

In this study, the hydrodynamic performance of anguilliform swimming motion is 

computed using Morison’s equation. This method was shown to predict the servo motor 

torques well. The anguilliform swimming motion is sinusoidal with increasing amplitude from 

head to tail. A “wakeless” swimming motion proposed by Vorus and Taravella (2011) with zero 

net circulation is considered. 

 This method is compared to the existing slender body theory and is validated with 

reference to the experimental results of NEELBOT-1.1 (Potts, 2015). The results for the study 

indicates that self-propulsion speed of the motion is independent of the oscillating tail 

amplitude at a constant advance ratio. At a constant wave speed, the self-propulsion speed 

attains a local maximum at an advance ratio of 0.5. Where the nominal length is equal to half 

the wavelength.   

Keywords: Hydrodynamics, Anguilliform motion, Morison’s Equation 
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1. Introduction 

The extension of robots and other automated technology is seen in various fields – military, 

manufacturing, medicine, domestic uses, research and development, etc. This study is mainly focused 

on an anguilliform robot. Anguilliform swimmers (eels, lamprey, etc.) are flexible throughout and flexing 

approximately one-half wavelength. They are observed to travel with greater speeds in comparison to 

their muscle power. 

Underwater vehicles are of interest in different fields like military, environmental survey, 

scientific research of the world’s oceans. In naval warfare (ISR and SAR missions) these robots can be 

used in surveillance of coarse shallow water. Sometimes, surveillance and data collection are needed in 

dangerous situations where personnel cannot be put at risk. To reduce this risk, new methods and 

technologies are introduced involving Autonomous Underwater Vehicles (AUV’s) which are efficient, 

flexible, noiseless, radar resistant and stealthy to carry vigilance devices into hazardous areas. 

Secondly, the anguilliform robot can be used in ocean research for testing salinity, acidity, 

density and other environmental properties. These can also be used in discovering new underwater 

species by attaching cameras and data collection devices to the robot. This technology can be applied in 

monitoring in unmanned or inaccessible places like underground toxic sewage tanks, pipes, deep sea 

units, as well as human intestine and circulatory system in a microscopic level. 

Finally, the most crucial importance as per this study is the academic one. Researchers are trying 

to bring the theoretical and experimental aspects of the robot closer by studying its propulsive wake. 

Theoretically, the motion of the robot is being computed using the three-dimensional anguilliform 

motion proposed by Vorus and Taravella (2011). The hydrodynamic performance is predicted using 

Morison’s equation. Experimentally, the robot was tested in a towing tank and the forces along with the 

wake were measured using load cell and PIV testing (Potts, 2015). 
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Morison’s equation was developed to describe the wave forces acting on cylindrical structures in 

the offshore industry (Chakrabarti, 1985). It is a semi-empirical equation composed of two components, 

inertia force and drag force. Morison’s equation is applicable when drag force is significant. This method 

is predominant in case of symmetric oscillating objects with high Reynolds number, where force may be 

obtained in a closed form. The force coefficients are determined based on Keulegan-Carpenter 

parameter (KC). 

1.1. Literature Survey 

Fish propulsion has been studied for many years. Pettigrew (1873) observed the shape of 

propulsive wave of fish, Houssay (1912) attempted to measure thrust and drag of fish. The different 

types of propulsive movements in fish are classified by Breder (1926). Gray (1936) used hydrodynamic 

theory of drag for rigid bodies of revolution and compared this with the then best-known values for 

mammalian muscle power output. He suggested that dolphins swim many times faster than their muscle 

power allows them. He was also the first, to quantitatively demonstrate that the eel’s body undulations 

have the form of backward travelling wave. Taylor (1952) used hydrofoil theory to formulate a 

quantitative hydrodynamic model for fish propulsion. He also evaluated the speed at which the eel 

propels itself at the least energy output. 

Lighthill (1952) researched on hydromechanics with small animals (flagella, amoeba) at low 

Reynolds number where viscosity dominates. Ideal flow theory with vortex shedding is implemented on 

this motion accounting simple skin friction with corrections in Lighthill (1960). Animals such as lamprey 

with higher Reynolds number, where thin boundary layer flows prevail are studied in Lighthill (1971). 

In recent years, several efforts are made to decrease the span between the biological eels and 

the mechanical robots. Vorus (2005) developed a two-dimensional solution using ideal flow theory for 

the displacement waveform which develops zero circulation around the body length over time. He also 
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implied that, for a real fluid, similar bodies with a thin boundary layer and same deformation mode 

shape, self-propel without vortex shedding, rotational wake, and induced drag. The anguilliform 

swimming differs from the carangiform and tunniform swimming as it produces higher thrust from the 

global body motions.  

The theory of 3-D anguilliform motion in Vorus and Taravella (2011) is based on a 2-D 

anguilliform motion in Vorus (2005). They utilized slender body theory to develop an anguilliform 

motion that would develop thrust without producing an induced drag.  

 

Fig. 1 Displacement distribution by 3-D anguilliform swimming motion theory 

Later, Potts (2015) developed an anguilliform robot model which attempted to replicate the 3-D 

anguilliform displacement theory. He measured velocity vectors using Stereoscopic Particle Image 

Velocimetry (SPIV) equipment. He compared these experimental results (thrust and flow-field velocity) 

to the values computed using 3-D theory by Vorus and Taravella (2011). He proved that the quasi-steady 

method of predicting drag (i.e., ITTC friction line) was not adequate to predict the propulsion 

characteristics of an anguilliform swimming motion by comparing the theoretical results of ideal motion 
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to the experimentally produced off-design results. He also proved that the 3-D anguilliform swimming 

motion equation (1) well predicts the kinematics of the anguilliform swimming robot.  

Apneseth, Day and Clelland (2009) have built, developed and tested a three-segment model and 

compared its hydrodynamic performance to the predictions from a Morison based approach. Three 

main series of tests were carried out with the model in the towing tank. These tests are determined as 

single flapper (zero forward speed and the two segments act as rigidly joined), double flapper (zero 

forward speed and larger amplitudes in the aft segments) and final set included range of speeds to 

determine the self-propulsion point. They determined that the mean thrust at zero speed and self-

propulsion speed increase quadratically. This approach was proved to predict the self- propulsion speed 

with high accuracy.  

1.2. Current Study 

In the present study, the compatibility of Morison’s equation with the anguilliform swimming 

motion is investigated. The validity of this approach is checked by comparing the results to the values 

obtained by the slender body theory outlined in Vorus and Taravella (2011) and experimental work of 

Potts (2015). This work is focused on examining the adaptability of Morison’s equation to multi-

segmented eel-like structure. 

The hydrodynamic qualities of the robot are computed at constant flow velocity and advance 

ratio. The basic steps involved in the computational analysis are: 

1. Computing the nominal length 

2. Non-dimensionalizing with respect to nominal length and wave speed 

3. Computing the joint locations and the mid-points of the sections using cylindrical coordinate system 

4. Computing body velocities and accelerations from the predefined displacement (Vorus and 

Taravella, 2011)  
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5. Computing longitudinal and transverse hydrodynamic forces at midpoints of the segments using 

Morison’s equation  

6. Computing forces and torque at every servo joint 

7. Post-processing and analysis of the results for the forward speed 

In this study, the transverse flow field velocities and accelerations of the twenty-segmented 

model are computed using the motion prescribed in Vorus and Taravella (2011). Morison’s equation is 

implemented for computing thrust. These results are compared to off-design experimental results from 

Potts (2015) and his computations using force equations from slender body theory. 

The self-propulsion speed is predicted by varying the parameters that affect the longitudinal 

force. The parameters are the advance ratio (U), flow speed (UO) and the oscillating body amplitude (Γ).  
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2. Background 

2.1. Three-dimensional Ideal Anguilliform Swimming Motion 

The three-dimensional ideal anguilliform swimming motion has proven to be highly efficient 

theoretically in Vorus and Taravella (2011). The anguilliform swimming motion was described in Vorus 

and Taravella (2011) using the combination of ideal flow theory and slender body theory. In this 

derivation, the flow is found to be wakeless with zero vorticity, essentially removing the induced drag. 

Conditions of no shedding and continuously zero circulation over the body is considered. This theory 

uses doublets constrained to the x-axis to determine the physical shape of the eel in the flow. 

A brief description of the 3-D ideal anguilliform swimming motion given in Vorus and Taravella 

(2011) is discussed in the following. The analysis assumes high Reynolds number and a thin boundary 

layer, which allows for the use of ideal-flow theory. 

Vorus and Taravella (2011) developed an equation for an ideal anguilliform swimming motion, 

which is said to produce zero drag as 

 ℎ̅(�̅�, 𝑡̅) = Γ [sin(2𝜋 (
�̅�

𝑈
− 𝑡̅)) − sin(2𝜋(�̅� − 𝑡̅))] (1) 

Where, the displacement amplitude (𝛤) is a function of desired thrust and cross-sectional radius. The 

advance ratio (U) which can be defined as the ratio of the body velocity (𝑈𝑜) and the wave velocity (V), 

since the slip is assumed to be zero. �̅� and 𝑡̅ are the non-dimensionalized position along horizontal x-axis 

and time respectively. To elaborate, the normalized transverse displacement (h), longitudinal 

displacement position (x) and time (t) are shown below 

 
ℎ̅(�̅�, 𝑡̅) =

ℎ(𝑥, 𝑡)

𝐿
 

�̅� =
𝑥

𝐿
                   𝑡̅ =

𝑉𝑡

𝐿
 

(2) 
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 The sectional forces per unit length in the x and y directions are derived in Vorus and Taravella 

(2011) using Bernoulli equation to be 

 𝑓𝑦(𝑥, 𝑡) = −𝜌𝜋𝑟𝑜
2𝑘(𝑥, 𝑡) (3) 

 𝑓𝑥(𝑥, 𝑡) = 𝜌𝜋𝑟𝑜
2𝑘(𝑥, 𝑡)ℎ𝑥(𝑥, 𝑡) = −𝑓𝑦(𝑥, 𝑡)ℎ𝑥(𝑥, 𝑡) (4) 

Where 𝑘(𝑥, 𝑡) is defined as 

 𝑘(𝑥, 𝑡) = ℎ𝑡𝑡 + 2𝑈𝑜ℎ𝑥𝑡 + 𝑈𝑜
2ℎ𝑥𝑥 (5) 

𝑈𝑜 is the advanced flow speed. 

The arc length of the articulating displacement wave extends and contracts. To maintain a 

constant value, a theoretical length L is imposed in our calculations. In Potts (2015), it is computed as a 

time average of the longitudinal straight-line distance from head to a line both perpendicular to the 

horizontal axis and intersecting the tail of the articulating eel for the cycle of motion as shown in Fig. 2. 

The nominal length (L) is computed by the equation: 

 𝐿 =
1

𝑁
∑ 𝐿𝑛

𝑁

𝑛=0

 (6) 

 

Fig. 2 Annotations denoting the length parameters of the anguilliform shape for one-time step of the motion. 
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Where, N is the number of time steps, computed by 

 𝑁 =
𝑇

𝑑𝑡
 (7) 

T is the time period at which the eel operates and is given as 𝑇 =
1

𝑓
=

𝐿

𝑉
. 

2.2. Morison’s Equation 

Morison’s equation was developed by Morison, O’Brien, Johnson, and Schaaf (1950). It 

calculates the wave forces on offshore structures. It is a semi-empirical equation for inline forces on a 

body in an oscillatory flow. In this study, hydrodynamic forces taken at the midpoints of the segment 

(𝐹𝐻𝑥,𝑛 and 𝐹𝐻𝑦,𝑛) are calculated using Morison’s equation on inclined cylinders (Chakrabarti, 1987).  

Morison’s equation is composed of inertia and drag components linearly added together. It is 

applicable where drag forces are significant. It is an appropriate method for computing forces when the 

size of the submerged body D/L < 0.2 and the Reynolds number is high. The assumptions involved in this 

method are: 

1. Section does not affect the neighboring sections. 

2. The body does not pierce the free surface. 

 

Fig. 3 Definition sketch of Morison equation application on an inclined cylinder (Source: S.K. Chakrabarti, 
Hydrodynamics of Offshore Structures, Fig. 6.4) 
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An extension of Morison’s equation to an inclined cylinder is derived in S. K. Chakrabarti (1987). 

A description of this method is elaborated in the following using Fig. 3. The normal force to the cylinders 

is given as 

 �̅� = 𝐶𝑀𝐴𝐼�̇̅� + 𝐶𝐷𝐴𝐷|�̅�|�̅� (8) 

Where, �̅� and  �̇̅� are the normal velocity and the acceleration of the flow over an inclined cylinder. The 

velocity normal to the cylinder is written as 

 �̅� = 𝑪(𝑢𝒊̅ + 𝑣𝒋)̅ × 𝑪 (9) 

C is the unit vector along the cylinder axis: 𝑪 = 𝐶𝑥𝒊̅ + 𝐶𝑦𝒋̅ + 𝐶𝑧�̅� and u, v, w are the velocities in the 

direction of the three Cartesian axes. 

Morison’s equation is applied on every individual segment i in a time stepping manner. The 

forces are calculated for every segment using the flow velocity and acceleration at their mid-points of 

the N segments. In the spherical coordinate system,  

𝐶𝑥,𝑖 = sin 𝜁𝑖 cos 𝜉𝑖   𝐶𝑦,𝑖 = cos 𝜁𝑖  𝐶𝑧,𝑖 = sin 𝜁𝑖 sin 𝜉𝑖  

Where, 𝜁𝑖is the angle made by the segment with the y-axis and 𝜉𝑖  is the angle made by the projection of 

the segment with the x-axis. (𝜉𝑖  is zero in our case as a 2-D motion is considered). 

𝑤𝑖̅̅ ̅ and  𝑤𝑖̅̅ ̅̇ are the velocity and acceleration normal to the segment i and are written as 

 𝒘𝒊̅̅̅̅ = 𝑢𝑥,𝑖𝒊̅ + 𝑢𝑦,𝑖𝒋̅ + 𝑢𝑧,𝑖�̅� (10) 

 �̅�𝒊
̇ = �̇�𝑥,𝑖𝒊̅ + �̇�𝑦,𝑖𝒋̅ + �̇�𝑧,𝑖�̅� (11) 
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The velocity components of segment i along x, y and z are given as 

 𝑢𝑥,𝑖 = 𝑢 − 𝐶𝑥,𝑖(𝐶𝑥,𝑖𝑢 + 𝐶𝑦,𝑖𝑣𝑖) (12) 

 𝑢𝑦,𝑖 = 𝑣𝑖 − 𝐶𝑦,𝑖(𝐶𝑥,𝑖𝑢 + 𝐶𝑦,𝑖𝑣𝑖) (13) 

 𝑢𝑧,𝑖 = −𝐶𝑧,𝑖(𝐶𝑥,𝑖𝑢 + 𝐶𝑦,𝑖𝑣𝑖) (14) 

Where, 𝑢 is the horizontal velocity on the earth-coordinate system and is equal to the free stream 

velocity (𝑈𝑂) which is in the positive direction, i.e., from head to tail. v is the transverse velocity in the 

earth coordinate system and is given by ℎ𝑡(𝑥, 𝑡) from the 3-D anguilliform motion of Vorus and Taravella 

(2011). 

Thus, the forces per unit length calculated on each segment is given as, 

 𝑓𝑥,𝑖 = 𝐶𝑀𝐴𝐼�̇�𝑥,𝑖 + 𝐶𝐷𝐴𝐷|�̅�|𝑢𝑥,𝑖 (15) 

 𝑓𝑦,𝑖 = 𝐶𝑀𝐴𝐼�̇�𝑦,𝑖 + 𝐶𝐷𝐴𝐷|�̅�|𝑢𝑦,𝑖 (16) 

 𝑓𝑧,𝑖 = 𝐶𝑀𝐴𝐼�̇�𝑧,𝑖 + 𝐶𝐷𝐴𝐷|�̅�|𝑢𝑧,𝑖 (17) 

Where, �̇�𝑥,𝑖, �̇�𝑦,𝑖  and �̇�𝑧,𝑖 accelerations obtained by derivation of equations (12, 13, 14) with respect to 

time respectively. The constants AI and AD of equations 15 through 17 are given as 

𝐴𝐼 = 𝜋𝜌𝑟𝑜
2 

𝐴𝐷 = 𝜌𝑟𝑜 

Where rO is the cross-sectional radius and ρ is the mass density of the fluid. The added mass coefficient 

(CM) and the drag coefficient (CD) are based on the Keulegan Carpenter Number (KC).  

The first term is the component of the inertial force and the latter is the resolved Morison drag 

force. The hydrodynamic forces acting on the cylinder along the segment length (𝑙𝑛) acting on the 

midpoints is given as: 
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 𝐹𝐻𝑥,𝑖 = 𝑙𝑖𝑓𝑥,𝑖 (18) 

 𝐹𝐻𝑦,𝑖 = 𝑙𝑖𝑓𝑦,𝑖  (19) 

𝑖𝜖[1, 𝑁], where N is the number of segments. 

The instantaneous thrust is the sum of longitudinal forces of all the segments. The thrust force 

at time step t is calculated as 

 𝑇(𝑡) = ∑𝐹𝐻𝑥,𝑖(𝑥, 𝑡)

𝑁

𝑖=1

 (20) 

The mean thrust can be obtained by integrating this over a whole cycle of motion and dividing 

by the number of time steps. 
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3. Numerical Development of NEELBOT-1.1 

3.1. NEELBOT-1.1 

NEELBOT-1.1 shown in Fig. 4 is a 20-segmented robot with 19 servo-actuators. It has an overall 

length of 1.35m (The span is taken excluding the hemispheric domes. Hence, a length of 1.3m is used for 

analysis.) and each segment is measured to be 65mm. It has a latex waterproofing skin and the overall 

diameter is 55mm. 

 

Fig. 4 NEELBOT-1.1 with the latex rubber skin. (Source: Potts (2015), Figure 3.2.1.3) 
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Each segment is equipped with a Dongbu Herkulex DRS-0201 Servo-actuator. They are closed-

loop PID position controllers with programmable PID gains. The specifications of these servo motors are 

shown in Table 1. Two AAA batteries are placed in each segment to provide power to the actuators and 

wireless communications. This equipment is shown in Fig. 5. 

Table 1 Dongbu Herkulex DRS-0201 physical characteristics and specifications. 

Parameter Value 

Width 45 mm 

Depth 24 mm 

Height 31 mm 

Mass 60 g 

Gear ratio 1:266 

Voltage 7-12 VDC 

Current 670 mA @ 7.4 V 

Stall torque 2.4 N-m 

Max speed 408 deg/sec 

Table 2 lists parametric values of the robot used in this study for further analysis. The nominal 

length of the robot is obtained by converging it though iterations as shown in equation (6). In the 

following analysis, all of the terms are non-dimensionalized by nominal length (L) and the wave velocity 

(V).  
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Fig. 5 Rendering of NEELBOT-1.1 showing off its sleek curves. The green cylinders are the AAA batteries with 2 per 
segment, and the dark blue boxes are the servo-actuators. (Source: Potts (2015), Figure 3.11) 

Table 2 Parametric Values of the robot 

Parameter Value 

Advanced speed, Uo 0.25 m/s 

Advance ratio, U 0.7 

Disp. Wave speed, V = Uo/U 0.357 m/s 

Robot length, Lr 1.3 m 

Nominal length, L 1.01 m 

Radius 0.05 m 

Time period, T 2.829 s 

Amplitude, Γ 0.11767  
(non-dimensional) 

Number of segments 20 
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3.2. Kinematic Development 

Vorus and Taravella (2011) state that animals such as an eel have higher Reynolds number and a 

thin boundary layer. The model maintains a high Reynolds number around 32,000, so that the boundary 

layer remains attached. This implies 3-D anguilliform swimming theory developed by Vorus and 

Taravella (2011) based on ideal flow theory.  

The model is discretized such that the nodes replicate the segment joints of the robot. One 

motion cycle is divided into twelve equally spaced time steps. The computation of joint locations during 

a time step is an iterative process. Fig. 6 shows the behavior of motion throughout the path cycle which 

is obtained by equation (1). The solid line represents the form of the body at the initial time step (t=0).  

 

Fig. 6 Anguilliform motion plotted using 3-D displacement theory for 12 equally spaced time steps 

3.2.1.  Ideal Motion 

In an ideal design motion shown in Fig. 7, the body produces forward thrust and the circulation 

around the body is hypothesized to be zero. The motions do not shed any vortices, thus implies zero 

induced drag.  
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Fig. 7 Schematic showing dynamics of ideal design of the anguilliform robot motion (the lighter-colored outline 

contrasted with the darker-colored one denote the unsteady motion of the anguilliform shape). (Source: Potts 

(2015), Figure 5.3) 

The joint locations of the segments at different time steps are obtained by converging the angle 

made by each of the segment with the x-axis (𝜃𝑖). The x and y coordinates of the joints are determined 

using the cylindrical coordinate system with respect to the head of the eel. Fig. 8 shows the actual 

behavior of the body along with the joint locations at different time steps throughout the path cycle for 

an ideal motion. 

 𝑥𝑡,𝑖+1 = 𝑙𝑖 cos 𝜃𝑖 + 𝑥𝑡,𝑖 (21) 

 𝑦𝑡,𝑖+1 = 𝑙𝑖 cos 𝜃𝑖 + 𝑦𝑡,𝑖 (22) 

𝑖𝜖[1, 𝑁], where N is the number of segments and t is the time step.  

 

Fig. 8 Theoretically computed joint locations at different time steps for a motion cycle for an ideal motion. The 
points show the location of the servo joints. 
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3.2.2.  Non-ideal motion 

Potts (2015) found that the desired ideal motion was not replicated consistently by the robot 

during the SPIV testing. This was explained by the off-design cases shown in Fig. 9, which involves 

oscillating transverse lift force, a periodic forward thrust, induced drag, and shed circulation, or vortices, 

in the wake downstream from the motion.   

 

Fig. 9 Schematic showing dynamics of the non-ideal design of the anguilliform robot motion (the lighter-
colored outline contrasted with the darker-colored one denote the unsteady motion of the anguilliform 

shape). (Source: Potts (2015), Figure 5.2) 

A transfer function (𝑓)̅ was introduced by Potts (2015) in the 3-D displacement anguilliform 

swimming theory developed for ideal shape by Vorus and Taravella (2011). This sinusoidal transfer 

function is multiplied to equation (1) to get the non-ideal shape. It is a sinusoidal function of the 

horizontal location.  

 𝑓̅ = 1 + 𝐴 sin 2𝜋𝐹(�̅� + 𝜏) (23) 

Where, �̅� is the non-dimensionalized horizontal location, A is 0.35, F is 0.14 and τ is -0.25. 

 ℎ̅(�̅�, 𝑡̅) = 𝑓̅Γ [sin (2𝜋 (
�̅�

𝑈
− 𝑡̅)) − sin(2𝜋(�̅� − 𝑡̅))] (24) 

Fig. 10 shows the non-ideal motion of the robot as computed from equation (24). 
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Fig. 10 Theoretically computed joint locations at different time steps for a motion cycle for a non-ideal motion. The 
points show the location of the servo joints. 

However, after analyzing he stated that the velocities and accelerations can be well predicted 

using ideal flow theory. 

3.2.3.  Velocities and Accelerations 

The kinematic quantities of velocity and acceleration are calculated at mid-points of each 

segment using equations developed from equation (1) with respect to time (t). Fig. 11 and Fig. 12 give 

the dimensionalized transverse velocities and accelerations respectively for every segment over time (t). 

The longitudinal flow velocity is 𝑈𝑂 and longitudinal flow acceleration is zero. Below are the plots of 

velocities and acceleration with respect to the time steps for all the 20 segments of the robot for an 

ideal motion. 
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Fig. 11 Transverse velocities at the midpoints of the 20 segments plotted over time 

 

Fig. 12 Transverse accelerations at midpoints of the 20 segments plotted over time   

3.3. Dynamic Development 

In the following section, the dynamic development of the body is explained. Forces and 

moments (torques) are computed at every joint for all the time steps in a cycle of motion of the eel 

robot. These forces and moments are calculated by solving the equilibrium system of matrix equations. 

The hydrodynamic forces for these bodies are computed using Morison’s equation explained in 

section 2.2. Equation (18) and equation (19) give the longitudinal and transverse forces respectively. 
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These forces are calculated using the transverse velocities and accelerations obtained from the 3-D 

motion prescribed by Vorus and Taravella (2011). The behavior of total inertia and drag components for 

the various time steps along the path cycle, computed in the longitudinal direction is shown in Fig. 13. 

 

Fig. 13 Inertia and Drag components in the longitudinal direction computed using Morison’s Equation are plotted 
over time 

The behavior of longitudinal and transverse forces with respect to time for the 20 segments are 

shown in Fig. 14 and Fig. 15 respectively. The longitudinal force oscillates about zero along with the 

oscillation of the segment. The transverse force of each segment is directed towards the reference axis 

in the motion. The amplitude of the transverse force increases from head to tail.  

 

Fig. 14 Computed Longitudinal forces of the model over time using Morison’s Equation 
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Fig. 15 Computed Transverse forces of the model over time using Morison’s Equation 

3.3.1. Untethered Swimming Case (free swimming) 

The forces and moments can be obtained by solving the matrix equation (29) developed from 

the force equilibrium system of equations. Fig. 16 shows the free body diagram of a segment n. 

 

Fig. 16 Free- body diagram of a segment n. 

The boundary conditions for the untethered motion are that the forces and moments at the first 

node (tip of head) and the last node (tail end) are zero. 
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𝐹𝑥,1 = 0   𝐹𝑥,𝑁+1 = 0 

𝐹𝑦,1 = 0   𝐹𝑦,𝑁+1 = 0 

𝑀1 = 0    𝑀𝑁+1 = 0 

(25) 

Where N is the total number of segments. 

From the free-body diagram, the equilibrium system of equations obtained from summation of 

forces (longitudinal and transverse) and moments can be written as, 

 ∑𝐹𝑥 = −𝐹𝑥,𝑛 + 𝐹𝑥,𝑛+1 + 𝐹𝐻𝑥,𝑛 = 𝑚𝑛𝐴𝑥 (26) 

 ∑𝐹𝑥 = −𝐹𝑦,𝑛 + 𝐹𝑦,𝑛+1 + 𝐹𝐻𝑦,𝑛 = 𝑚𝑛(𝑎𝑛,𝑦 + 𝐴𝑦 + 𝛼𝐸𝑙𝑛(−
𝑁

2
+ 𝑛 − 0.5)) (27) 

 
∑𝑀𝑧 = −𝑀𝑛 + 𝑀𝑛+1 + (𝐹𝑦,𝑛+1 + 𝐹𝑦,𝑛)

𝑙𝑛
2

cos𝜃 − (𝐹𝑥,𝑛+1 + 𝐹𝑥,𝑛)
𝑙𝑛
2

sin𝜃

= 𝐼𝑛(𝛼𝑧,𝑛 + 𝛼𝐸) 

(28) 

𝑛𝜖[1, 𝑁] 

Solving equations (26), (27) and (28) and rearranging them in a matrix form, we get the 

equations of motion as 

 𝑨𝑓 = 𝑩 (29) 

Where, 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 

−1 0 0 1 0 0 ⋯ −𝑚𝑛 0 0

0 −1 0 0 1 0 ⋯ 0 −𝑚𝑛 −𝑚𝑛(−
𝑁

2
+ 𝑛 − 0.5)

−
𝑙𝑛
2

sin 𝜃
𝑙𝑛
2

cos 𝜃 −1 −
𝑙𝑛
2

sin 𝜃
𝑙𝑛
2

cos 𝜃 1 ⋯ 0 0 −𝐼𝑛

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
−1 0 0 1 0 0 ⋯ −𝑚𝑁 0 0

0 −1 0 0 1 0 ⋯ 0 −𝑚𝑁 −𝑚𝑁(
𝑁

2
− 0.5)

−
𝑙𝑁
2

sin 𝜃
𝑙𝑁
2

cos 𝜃 −1 −
𝑙𝑁
2

sin 𝜃
𝑙𝑁
2

cos 𝜃 1 ⋯ 0 0 −𝐼𝑁 ]
 
 
 
 
 
 
 
 
 
 
 

3𝑁×(3𝑁+6)
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𝑓 =

[
 
 
 
 
 
 
 
 
 
 

𝐹𝑥,𝑛

𝐹𝑦,𝑛

𝑀𝑛

𝐹𝑥,𝑛+1

𝐹𝑦,𝑛+1

𝑀𝑛+1

⋮
𝐴𝑥

𝐴𝑦

𝛼𝐸 ]
 
 
 
 
 
 
 
 
 
 

(3𝑁+6)×1

 

and 

𝐵 =

[
 
 
 
 
 
 
 

−𝐹𝐻𝑥,𝑛

𝑚𝑛𝑎𝑛,𝑦 − 𝐹𝐻𝑦,𝑛

𝐼𝑛𝛼𝑧,𝑛

⋮
−𝐹𝐻𝑥,𝑁

𝑚𝑁𝑎𝑁,𝑦 − 𝐹𝐻𝑦,𝑁

𝐼𝑁𝛼𝑧,𝑁 ]
 
 
 
 
 
 
 

3𝑁×1

 

Where, an,y and αz,n are the local accelerations of the segments at the mid-points obtained from 3D 

anguilliform swimming motion. 

After applying the boundary conditions (Refer equation 25 and 30 in the respective cases) the 

inertia matrix A simplifies into a square matrix. The new dimensions of the matrices are: 

𝐴: [3𝑁 × 3𝑁] 

𝑓: [3𝑁 × 1] 

𝐵: [3𝑁 × 1] 

Here, f is the matrix of unknowns which gives us the forces and moments at the joints. 
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There are 19 servo motors used in the model. The moment computed at each joint gives the 

maximum torque at each servo motor for a design speed of 0.25m/s in a tethered case. The servo 

torques for the tethered cases are plotted over time in Fig. 17. 

 

Fig. 17 Servo Torques of the model over time during free swimming 

Along with all the above, global horizontal (AX), transverse (AY) and angular (αE) accelerations are 

also computed. The global accelerations over time are shown in Fig. 18. 

 

Fig. 18 Global Accelerations over time obtained by solving the equilibrium equations. 
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3.3.2. Tethered Swimming Case (Fixed-End Swimming) 

This is a similar case to the untethered case, except that there are non-zero forces at forward 

point of the first segment. The forces and moments at the aft point of the last segment (tail end) remain 

zero. Due to the fixed condition, the global accelerations (𝐴𝑥,𝐴𝑦,𝛼𝐸) of the body are zero.  The internal 

acceleration (�̇�𝑥,1, �̇�𝑦,1) and velocity (𝑢𝑥,1, 𝑢𝑦,1) of the first segment, that is fixed are also taken as zero.  

 

𝐴𝑥 = 0   𝐹𝑥,𝑁+1 = 0 

𝐴𝑦 = 0   𝐹𝑦,𝑁+1 = 0 

𝛼𝐸 = 0   𝑀𝑁+1 = 0 

(30) 

Where, N is the total number of segments. This case predicts the maximum torque, which needs to be 

maintained by the servo actuators to obtain a specified motion. 

 

Fig. 19 Servo torques of the model over time when an end is fixed 
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Fig. 20 Flow Process of the numerical method based on Morison's equation. 
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4. Comparison and Analysis 

4.1. Analysis for Self-propulsion speed 

This method helps us to identify the desired advance speed that could be attained by the robot 

during the run. This speed is called the self-propulsion speed. At this speed, the performance of the 

body is effectively high, and the robot tries to possess the desired ideal motion. In this case, the total 

longitudinal force (Thrust + Drag) becomes zero.  This longitudinal force (𝐹𝑥) is the mean of the total 

forces in the horizontal direction at different time steps in a cycle of motion calculated using Morison’s 

equation (18).    

 𝐹𝑥 =
1

𝑁
∑ 𝐹𝐻𝑥,𝑖

𝑁−1

𝑖=0

 (31) 

Where N is the number of time steps. 

The characteristics of the forward speed are computed by varying different parameters 

(coefficient of drag (CD), displacement amplitude (Γ), wave speed (V=0.25/U)) are tested. 

4.1.1.  Coefficient of drag (CD)  

Forward speed decreases with drag coefficient. The slope of the thrust curves decreases, and 

the curves tend to flatten at low drag coefficients. Fig. 21 shows that, at an advance speed of 0.25 m/s, 

all the curves intersect as the Morison’s drag is zero. 

The self-propulsion speed significantly changes with the drag coefficient. Table 3 shows that the 

forward speed of the body varies approximately linearly with the drag coefficient. And the mean thrust 

at zero speed varies quadratically with CD. 
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Fig. 21 Mean Longitudinal for a cycle of motion over time for varying coefficient of drag CD at a flow speed of 
0.25m/s 

Table 3 Computed characteristics for all drag coefficients 

Drag Coefficient 0.5 0.9 1 1.1 1.5 

Self-swimming velocity (m/s)  0.05 0.115 0.125 0.13 0.15 

Mean Thrust at 0m/s 0.2 0.7 0.9 1 1.5 

 

The experimental data is recorded at four advance speeds mentioned in Table 4, maintaining 

the advance ratio, form and the motion constant. 

Table 4 Table of advance ratio and speed considered to compare and analyze to get the self-propulsion speed 

Ideal Speed, 𝐔𝑶 

[m/sec] 

Advance Ratio, U Advance speed, 𝐔𝒂 

[m/sec] 

Wave speed, V 

[m/sec] 

0.25 0.7 0. 0.357 

0.25 0.7 0.16 0.357 

0.25 0.7 0.25 0.357 

0.25 0.7 0.4 0.357 
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Potts (2015) experimentally measured the velocities and accelerations of NEELBOT-1.1 by PIV 

testing. In this process, apart from the robot wake and velocities, the total thrust and drag forces are 

observed using the load-cell measurements. Fig. 22 shows the installation and experimental setup of the 

equipment in the towing tank. 

 

Fig. 22 Rendering of PIV equipment installed on UNO Towing Tank carriage of NEELBOT-1.1 and its tether. (Source: 
Potts (2015), Figure 4.1) 

 In this study, the theoretically computed mean thrusts are compared to the experimental 

results measured from the load cell. To compute the forces using Morison’s equation, the coefficient of 

added mass of CM=1.4 and the coefficient of drag of CD=0.9 are selected to get the desired results. 
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Fig. 23 Longitudinal force Vs. Advance speed (Uo) for 4 cases (Computed ideal flow-Morison’s Equation, computed 

non-ideal flow-Morison’s Equation, computed ideal flow-slender body theory, Experimental) 

 Unfortunately, Fig. 23 shows that the mean force computations by slender body theory are 

higher than the measured results. Morison’s equation (with CM=1.4, CD=0.9) for non-ideal shape is able 

to predict the mean thrust values at low velocities. 

4.1.2.  Wave Speed (V) 

Morison’s equation does not exactly replicate the results of longitudinal force measured from 

NEELBOT-1.1 at higher speeds but, matches closely at lower speeds. Computations are run varying the 

advance ratios and the flow speed to analyze the behavior and performance of the model in various 

conditions by maintaining a constant motion and form. The ideal shape for the advance ratios of 0.4, 

0.5, 0.6, 0.7 and 0.8 at different time steps are shown below from Fig. 24 through Fig. 28. 



31 
 

 

Fig. 24 Spatial position of Eel in non-ideal motion for 12 evenly spaced time steps for an advanced ratio of 0.4 and 
advance speed of 0.25m/s. 

 

 

Fig. 25 Spatial position of Eel in non-ideal motion for 12 evenly spaced time steps for an advanced ratio of 0.5 and 
advance speed of 0.25m/s. 
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Fig. 26  Spatial position of Eel in non-ideal motion for 12 evenly spaced time steps for an advanced ratio of 0.6 and 
advance speed of 0.25m/s. 

 

 

Fig. 27 Spatial position of Eel in non-ideal motion for 12 evenly spaced time steps for an advanced ratio of 0.7 and 
advance speed of 0.25m/s. 
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Fig. 28  Spatial position of Eel in non-ideal motion for 12 evenly spaced time steps for an advanced ratio of 0.8 and 
advance speed of 0.25m/s. 

Below, Fig. 29 is a plot of the longitudinal forces over the flow speed. At U=0.5, the body reaches 

its local maximum forward speed. Physically, in this condition (U=0.5), the wave speed is twice the 

nominal flow speed, the nominal length (L) is equal to half the wave length as shown in Fig. 25.  

 

Fig. 29 Mean Longitudinal for a cycle of motion over time for varying advance ratio U at a flow speed of 0.25m/s 
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4.1.3.  Displacement amplitude (Γ)  

 Fig. 30 is a plot of the longitudinal force over advance speed (Ua) maintaining the advance ratio 

constant (U=0.7) and varying the displacement amplitude (Γ). Interestingly, all the curves for different 

displacement amplitude meet at the same point on the horizontal axis. This explains that the self-

propulsion speed of the robot is independent of the displacement amplitude, which is contrary to the 

results of the slender body theory of Vorus and Taravella (2011).  

 

Fig. 30 Mean Longitudinal for a cycle of motion over time for varying displacement amplitude 𝚪 at a flow speed of 

0.25m/s 

From the above two cases (one maintaining constant oscillating amplitude and the other 

maintaining constant wave speed), it can be inferred that every advance ratio is designated with a 

unique self-propulsion speed. It increases with the advance ratio up to a value of 0.5 and then 

decreases. This property is shown in Fig. 31.  



35 
 

 

Fig. 31 Summary of Self-propulsion speeds over time considering the parameters in Table 2. 

4.2. Comparison of torques at servo joints 

Torque predictions by each servo motor are required to adequately size the motors. Torques at 

each servo motor for a tethered condition at an advance speed of 0.25 m/s are calculated using 

Morison’s equation and slender body theory. Fig. 32 and Fig. 33 show the plots of servo torques for each 

servo joint over time.  The predictions show that the maximum servo torque occurs at the servo index 2. 

 

Fig. 32 Prediction of Servo torques over time at each servo joint using Morison Equation for computing forces.   
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Fig. 33 Prediction of Servo torques over time at each servo joint using slender body theory method for computing 
forces. 

The speed-torque curves of the servo motor 2 is shown in Fig. 34. According to the vendor 

specifications, the stall torque is 2.4 N-m and the maximum angular velocity is 408 deg/s. The gray line 

represents the limit specifications of Dongbu Herkulex DRS-0201. The blue line is the torque (1.383 N-m) 

predicted using Morison’s equation to overcome the drag at a velocity of 0.25 m/s for non-ideal motion.   

Fig. 35 illustrates that at higher wave speed this method predicts torques which lies outside the stall 

torque limits provided by the vendor. This shows that the required velocity cannot be achieved by the 

current servo motors.  

Whereas, the slender body theory predicts the maximum torque to be 0.794 N-m which is way 

less than the limitations provided. Experimental results of Potts (2015) show that NEELBOT-1.1 could not 

be run at the required speed and predicted the reason behind to be insufficient torques. Therefore, 

Morison’s equation is expected to well predict the torques.  
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Fig. 34 Rotational Speed-Torque curve for Dongbu Herkulex DRS-0201 computed using Morison’s equation and 

slender body theory at a nominal speed of 0.25m/s. 

 

Fig. 35 Rotational Speed-Torque curve for Dongbu Herkulex DRS-0201 computed using Morison’s equation and 
slender body theory at a nominal speed of 0.5m/s. 

The rotational speed-torque curves of the nineteen servo actuators at the self-swimming speed 

(Ua) of 0.105m/s are predicted using Morison’s equation and slender body theory for a tethered 

condition. The motion has highest efficiency at this speed. These plots are included in Appendix 1.  
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5. Conclusion 
It is a very challenging task to analyze the hydrodynamics of an anguilliform swimming motion. 

Unlike a ship, these bodies oscillate and are not uniform throughout their length. Computational 

analysis of the anguilliform motion becomes difficult when compared to experimental analysis. The 

discontinuities at the joints make it very challenging to obtain the hydrodynamic properties of these 

bodies.  

The theoretical ideal anguilliform swimming motion is classified as “wakeless” with zero 

circulation around the body by Vorus and Taravella (2011). This method is theorized to produce 

accelerations of the hydrodynamic added mass in the vicinity of the body for a reactive swimming 

technique.   

In this study, an effort was made to compute the hydrodynamic forces of the anguilliform 

swimming robot using Morison’s equation. The experimental results of the twenty-segmented 

NEELBOT-1.1 were replicated using the computational analysis. The entire process can be summarized in 

the following three steps: 3-D ideal anguilliform swimming motion is applied to predict the robotic 

motion; Morison’s equation is used to analyze the hydrodynamics of the eel body and combination of 

the above two theories in an ideal motion case is used to determine the velocity at which the robot can 

run at the expected forward velocity. 

The segments’ joint locations for the discretized body in this motion are computed iteratively for 

twelve equally spaced time steps of a path cycle using 3-D displacement equation from Vorus and 

Taravella (2011). For computational purposes, each segment of the body is considered as an individual 

inclined cylinder. The flow stream velocity and the transverse velocities and accelerations from the ideal 

flow theory are used to calculate the hydrodynamic forces using Morison’s Equation. The mean thrust 

for every cycle is relatively well predicted. 
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A comparison of torques of the servo motors is made between the computation with Morison’s 

equation and slender body theory in reference to the experimental results from Potts (2015). According 

to Morrison’s method, the torques required to overcome the drag at the self-propulsion velocity of 

0.105m/s for non-ideal motion in a tethered condition are greater than the predictions from slender 

body theory. Fig. 35 explains that higher nominal speeds cannot be attained by the current servo motors 

as the curve lies outside the vendor stall torque limits. At the self-swimming speed, the percentage 

difference between the torques computed using the two methods decreased. Though, Morison’s 

equation still had higher predictions due to the significant drag component involved in this method 

unlike the slender body theory. 

A series of comparisons are made by changing the coefficient of drag (CD), speeds (𝑈𝑂, V) and 

displacement amplitude (𝛤). Forward speed decreases with a decrease in the drag coefficient. The slope 

of the thrust curves decreases, and the curves tend to flatten at low drag coefficients. The mean thrust 

at zero speed decreases approximately quadratically and the self-propulsion speed varies linearly with 

the drag coefficient. An added mass coefficient of 1.4 and a drag coefficient of 0.9 are used in the 

analysis to replicate the experimental results. Morison’s equation is more flexible due to the variable 

factor of added-mass and drag coefficients. 

 The experimental thrust values for an advance ratio of 0.7 are compared to three cases: 

Morison’s equation in ideal design motion, Morison’s equation in non-ideal motion and slender body 

theory in ideal motion. The mean thrust forces are well predicted using Morison’s equation in ideal 

design motion at low velocities. 

At higher velocities, the thrust forces produced in the downstream direction dominate the drag 

forces in the upstream direction. Whereas, at lower velocities drag forces are stronger. At a downstream 
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velocity, the induced thrust and drag forces come to equilibrium. This velocity is termed as self-

propulsion velocity which is the vendor-desired velocity.  

The self-propulsion velocities lie in the range of 0.1-0.25 m/s. Morison’s equation predicts mean 

thrust with high accuracy at these low velocities. With an increase in the oscillating amplitude (𝛤), an 

increase in the transverse lift is determined.  This self-propulsion forward velocity is independent of the 

oscillating amplitude at a constant advance ratio. The self-propulsion speed is dependent on the 

advance ratio (U). It increases with the advance ratio up to a value of U=0.5 and then decreases as 

shown in Fig. 31.  At an advance ratio of 0.5, the nominal length is equal to half of the wavelength. 

In conclusion, mean thrust, torque, and the self-propulsion speed are well predicted using 

Morison’s equation.  The self-propulsion speed is independent of the oscillating amplitude and changes 

with the advance ratio. Unfortunately, this method failed at higher velocities for predicting forces.  
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Appendix 

1. Results comparing torques of servo motors 

The speed-torque plots of the nineteen servo motors employed in the robot to get the 

swimming speed of 0.105 m/s are shown in this section. These figures show the torques required by the 

servo actuators for maximum efficiency. 
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