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Abstract: The paper addresses the problems of range-based marine vehicle positioning and
target localization. Vehicle positioning aims to estimate the positions of one or more vehicles
from a sequence of range measurements to fixed or moving acoustic beacons with known
locations. In this context, the vehicles must execute sufficiently exciting maneuvers so as
to maximize the range-based information available for multiple vehicle positioning. Using
an estimation theoretical setting, the vehicle trajectories are computed by maximizing the
determinant of a suitably defined Fisher information matrix (FIM), subject to inter-vehicle
collision avoidance and vehicle maneuvering constraints. A numerical solution is proposed for
the general case. Analytical solutions are obtained in the case of one vehicle and one beacon,
when the latter undergoes trajectories that are straight lines, pieces of arcs, or a combination
thereof. The theoretical analysis is complemented with practical experiments that focus on the
dual problem of underwater target localization. The objective is to estimate the position of
a moving underwater target by using range measurements between the target and a vehicle,
called a tracker, undergoing a trajectory that can be measured on-line. The experimental set-up
includes a surface and an autonomous underwater vehicle of the Medusa1-class playing the
roles of tracker and target, respectively. In the methodology adopted for system implementation
the tracker runs three key algorithms simultaneously, over a sliding time window: i) tracker
motion planning, ii) tracker motion control, and iii) target motion estimation based on range
data acquired on-line.
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optimization, Fisher information matrix.

1. INTRODUCTION

Autonomous underwater vehicles (AUVs) have steadily
become an important tool to carry out a large number
of scientific and commercial missions at sea. Among the
systems required for reliable AUV operation, vehicle posi-
tioning plays a critical role. Recently, with the advent of
miniaturized sensors and the availability of small embed-
ded processors, there has been tremendous interest in the
development of positioning systems that are cost-effective
and easy to install and operate. The latter include range-
based positioning systems, which have emerged as viable
alternatives to conventional acoustic methods such as long
baseline (LBL) and ultra short baseline (USBL) systems
in a large number of operational scenarios.

� The work of N. Crasta and M. Ribeiro was supported by the
European Commission through the CADDY Project (FP7-ICT-
2013) under Grant 611373.
��The work of D. Moreno-Salinas and J. Aranda was supported by
“Ministerio de Economia y Competitividad” under project DPI2013-
46665-C2-2-R.
� � �The work of B. Bayat was supported by Envirobot, a project of
the Swiss NanoTera program.
1 Medusa is an AUV developed and operated by the Institute for
Systems and Robotics of IST.

In its simplest form, a range-based positioning system aims
to estimate the position of an underwater vehicle from
a sequence of range measurements to an acoustic beacon
with a known location. The reader is referred to (Webster
et al., 2013), (Crasta, 2015) and (Bayat, 2016) for fast
paced expositions of challenging theoretical and practical
issues that arise in this context. The work in (Webster
et al., 2013) deals with the design and experimental test-
ing of a decentralized filter for single-beacon cooperative
acoustic navigation. In (Crasta, 2015), the authors study
the observability properties of the kinematic model of
an autonomous underwater vehicle moving in 3D, under
the influence of ocean currents, using range and depth
measurements. The analysis is done under the assumption
that the AUV undergoes trimming trajectories. The work
in (Bayat, 2016) discusses important observability results
and introduces a multi-model adaptive observer method-
ology to solve the problem of range-based autonomous
underwater vehicle localization in the presence of unknown
ocean currents. This is done for the more general case
where the AUV measures its distance to a set of stationary
beacons whose number is not known a-priori.

In the set-up considered in this paper, the types of tra-
jectories that a vehicle executes impact directly on the
level of accuracy with which its position can be estimated.
In summary, the vehicle must execute sufficiently exciting
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maneuvers so as to maximize the range-based information
available for vehicle positioning. In this respect, the prob-
lem has interesting connections with the by now classical
dual problem of optimal, fixed sensor placement for target
localization. See for example (Moreno-Salinas et al., 2016),
where an analytical result on optimal sensor placement for
target localization is given, together with the geometrical
interpretation of the solutions obtained. By adopting an
estimation theoretical setting, appropriate vehicle trajec-
tories can be computed by maximizing the determinant
of a suitably defined Fisher information matrix (FIM),
searching over a number of appropriately chosen, motion-
related variables that parameterize the trajectories. The
reader is referred to (Margarida et al., 2015) and the
references therein for an introduction to this technique
that uses the FIM as a performance index. The empirical
observability Grammian has also been used in the litera-
ture as an alternative performance index, but as shown in
(Powel et al., 2015) the two are related.

It is against this background of ideas that in the present
paper we address the general problem of multiple vehicle
range-based positioning, where the objective is to estimate
the position of one or more vehicles from a sequence of
range measurements to single or multiple acoustic bea-
cons with fixed or time-varying known positions. Optimal
vehicle trajectories are computed by maximizing the de-
terminant of a suitably defined Fisher information matrix
(FIM), subject to inter-vehicle collision avoidance and
vehicle maneuvering constraints. A numerical solution is
proposed for the general case. Analytical solutions are
obtained in the case of one vehicle and one beacon, when
the latter undergoes trajectories that are straight lines,
pieces of arcs, or a combination thereof. The theoretical
analysis is complemented with practical experiments that
focus on the dual problem of underwater target local-
ization. The objective is to estimate the position of a
moving underwater target by using range measurements
between the target and a vehicle, called a tracker, un-
dergoing a trajectory that can be measured on-line. The
experimental set-up includes a surface and an autonomous
underwater vehicle of theMedusa-class that play the roles
of tracker and target, respectively. In the methodology
adopted for system implementation the tracker runs three
key algorithms simultaneously, over a sliding time window:
i) tracker motion planning, ii) tracker motion control, and
iii) target motion estimation based on range data acquired
on-line.

The paper is organized as follows. Section 2 introduces
some basic notation. The problem formulation is given in
Section 3. Section 4 deals with the computation of the
FIM for the problem at hand, while Section 5 describes
the analytical construction of optimal vehicle trajectories
for one vehicle and one beacon case. Section 6 describes
the experimental set-up adopted for target localization
and validates the efficacy of the method proposed. Finally,
Section 7 contains the main conclusions.

2. PRELIMINARIES

Given n ∈ N, we define In := {1, . . . , n}. Given p ≥ 1,
q ≥ 1, and m ≥ 2, throughout the paper we use i ∈ Ip,
α ∈ Iq, and k ∈ {0} ∪ Im−1 to denote the ith vehicle,
the αth beacon, and the kth sample, respectively. We
denote the Euclidean norm in Rn by ‖ · ‖ and the unit
sphere in Rn by Sn, that is, Sn := {x ∈ Rn : ‖x‖ =
1}. We define two orthogonal unit vectors g : [0, 2π) →
S1 and g⊥ : [0, 2π) → S1 by g(θ) = [cos θ sin θ]T and
g⊥(θ) = [− sin θ cos θ]T, θ ∈ [0, 2π), respectively. Further,
we denote the identity matrix of size n by In and by

0m×n we mean the zero matrix of size m × n. Given
w ∈ Rn, diag(w) ∈ Rn×n denotes the diagonal matrix
whose diagonal elements are the components of the vector
w. In a similar fashion, given n, s ∈ N and Aj ∈ Rn×n,
j ∈ Is, we can define diag(A1, . . . , As), and we denote the
direct sum of A1, . . . , As by

⊕
j∈Is Aj := diag(A1, . . . , As).

Finally, given a smooth function f : Rn → R, the gradient
of f is denoted by∇f. Unless indicated otherwise, gradient
vector in the paper will be a column vector.

3. PROBLEM FORMULATION

Consider p ∈ N vehicles and q ∈ N beacons. In the absence
of ocean currents, the kinematics model (Margarida et al.,
2015) for the ith vehicle, i ∈ Ip, (see Fig. 1), is given by

ṗ[i] =

[
cos(χ[i]) − sin(χ[i])
sin(χ[i]) cos(χ[i])

] [
v[i]

0

]
, (1)

χ̇[i] = r[i], (2)

where t ∈ [0, tf ], p
[i] ∈ R2 is the instantaneous inertial

position vector of the ith vehicle, χ[i] : [0, tf ] → [0, 2π) is
the (relative) course angle of the ith vehicle that gives
the orientation of the flow-frame with respect to an in-
ertial frame, v[i] : [0, tf ] → [0,∞) is the speed of the ith

vehicle with respect to the water, i.e. v[i] ≡ ‖v[i]‖, and
r[i] : [0, tf ] → R its (relative) course-rate. In what follows,
with an obvious abuse of the notation, we will refer to
relative course angle and relative course rate simply as
course angle and course rate, respectively. In state-space
formulation x[i] := (p[i], χ[i]) ∈ M := R2 × [0, 2π) is the
state vector and u[i] := (v[i], r[i]) ∈ U := [0,∞)× R is the
input.

In order to avoid collisions, the vehicles must satisfy

‖p[i](t)− p[j](t)‖ ≥ R, i, j ∈ Ip, i < j,

‖p[i](t)− b[α](t)‖ ≥ R, i ∈ Ip, α ∈ Iq,
for all t ∈ [0, tf ], where R > 0 is a safety radius. Each
vehicle is equipped with sensors that measure distances to
a set of fixed/moving beacons B := {b[1], . . .b[q]} ⊂ R2,
the inertial positions of which are described by known
functions of time, see Fig. 1. For each i ∈ Ip and α ∈ Iq,
let d[αi] denote the relative position vector of the ith AUV

YN

XN

p[i]

b[1]

b[3]

b[2]

YB

XB

v[i]

v
[i]
1

v
[i]
2

ψ[i]

χ[i]

Fig. 1. Illustration of an AUV with three beacons, where
ψ[i] is the heading angle and χ[i] is the course angle.
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with respect to the αth beacon b[α], that is, d[αi] := p[i] −
b[α] and let dαi := ‖d[αi]‖ denote the corresponding
distance. The instantaneous measurements of distances
collected at time t ∈ [0, tf ], denoted Y (t), are corrupted
by additive white Gaussian noise as follows:

Y (t) = D(t) + η(t),

where D ∈ Rq×p (the matrix of true instantaneous dis-
tances) and η ∈ Rq×p are given by

D :=



d11 · · · d1p
...

. . .
...

dq1 · · · dqp


 , η :=



η11 · · · η1p
...

. . .
...

ηq1 · · · ηqp


 ,

and ηαi ∼ N (0, σ2
αi), α ∈ Iq, i ∈ Ip.

The solution to (1)-(2) at time t ∈ [0, tf ] for the initial

condition x
[i]
0 = (p

[i]
0 , χ

[i]
0 ) ∈ M and the input u[i] =

(v[i], r[i]) can be written as

x[i](t) = x
[i]
0 +

(∫ t

0
v[i](τ)g(χ[i](τ))dτ,

∫ t

0
r[i](τ)dτ

)
.

Let tf > 0 and m ∈ N, m ≥ 2. Consider a strictly

monotonically increasing time sequence {tk}m−1
k=0 ⊆ [0, tf ]

of length m with t0 := 0 and tm−1 := tf . To simplify the

notation, we let p
[i]
k := p[i](tk), χ

[i]
k := χ[i](tk), g

[i]
k :=

g(χ[i](tk)), Yk := Y (tk), Dk := D(tk), and ηk := η(tk).
Then, for each k ∈ {0} ∪ Im−2, (1)-(2) can be written as

x
[i]
k+1 = x

[i]
k +

(∫ tk+1

tk
v[i](τ)g(χ[i](τ))dτ,

∫ tk+1

tk
r[i](τ)dτ

)
. (3)

We assume that the vehicle’s speed and course-rate are
piece-wise constant functions, and speed as well as course-
rate are bounded (above and below), that is, for all k ∈
{0} ∪ Im−2 and t ∈ [tk, tk+1),

(v[i](t), r[i](t)) ≡ (v̄
[i]
k , r̄

[i]
k ) ∈ [0, v̄ub]× [−r̄ub, r̄ub].

Define λ̄
[i]
k := v̄

[i]
k /r̄

[i]
k , whenever r̄

[i]
k �= 0. With these as-

sumptions, for each k ∈ {0}∪Im−2, the second component
of (3) can be reduced to

χ[i](t) = χ
[i]
k + (t− tk)r̄

[i]
k , t ∈ [tk, tk+1)

and using the last equation in the first component of (3)
we get

p[i](t) = p
[i]
k

+ λ̄
[i]
k

[(
g
[i]
k

)⊥
−
(
g(χ[i](t))

)⊥]
.

In particular, for each k ∈ {0} ∪ Im−2,

p
[i]
k+1

= p
[i]
k

+ λ̄
[i]
k

[(
g
[i]
k

)⊥
−
(
g
[i]
k+1

)⊥
]
,

or equivalently, for k ∈ {0} ∪ Im−2,

p
[i]
k+1 = p

[i]
0 +

∑k
j=0 λ̄

[i]
j

[(
g
[i]
k

)⊥
−
(
g
[i]
k+1

)⊥
]
. (4)

With this set-up, we now formulate the following question:
“Given the time-history of the beacon positions defined
over a fixed time interval, what is the sequence of actions
for each of the AUVs (in terms of vehicle speed and
course rate) that will collectively maximize the information
available to compute their initial positions”?

In what follows we answer this question by adopting the
classical set-up of estimation theory that hinges on the
computation of a suitably defined FIM matrix.

4. FISHER INFORMATION MATRIX

In this section we derive the FIM for the model described
before, consisting of the vehicle kinematics and measure-
ment equations. The objective is to estimate the initial
positions of the AUVs. As is well known, the inverse of the
FIM is instrumental in computing a lower bound on the
covariance of the estimates of a deterministic parameter
that can be achieved with any unbiased estimator. This
result yields the celebrated Cramér-Rao Lower Bound
(Van Trees, 1968), which we seek to reduce by maximizing
the determinant of the FIM.

For a given number of samples m, with input sequence
U := (u0, . . . , um−1), and an unknown parameter θ ∈ Rn,
we denote the corresponding FIM by FIMU(θ) ∈ Rn×n.
The FIM with respect to the unknown parameter of
interest θ is given by

FIMU(θ) := E
{
[∇θ (logLθ(y))] [∇θ (logLθ(y))]

T
}
,

where y ∈ Rm is the measurement vector, Lθ(y) is the
likelihood function of the measurement with respect to
the parameter θ, and E is the expectation operator. To
maximize the FIM, we define a scalar function

J(U) := ln det(FIMU(θ)),

which is equivalent to minimizing ln det((FIMU(θ))−1), that
is, −J(U). With this background, we next derive the FIM
for the problem under consideration.

For the sake of simplicity, in the sequel we use the following
compact notation:

P̂ [i]
α :=

[
(dαi,0)

−1d
[αi]
0 · · · (dαi,m−1)

−1d
[αi]
m−1

]
∈ R2×m,

v[i] := (v̄
[i]
0 , . . . , v̄

[i]
m−2) ∈ [0, v̄ub]

m−1,

r[i] := (r̄
[i]
0 , . . . , r̄

[i]
m−2) ∈ [−r̄ub, r̄ub]

m−1,

Ui :=
(
v[i], r[i]

)
.

4.1 FIM for a single vehicle

First we derive the FIM for a single vehicle with q beacons.
Consider the ith AUV motion described by (4) with the
output equation given by

y
[i]
k = d

[i]
k + η

[i]
k ,

where d
[i]
k and η

[i]
k are the ith columns of Dk and ηk,

respectively. In this particular case, we have θi = p
[i]
0 and

we let FIM
[i]
Ui

(θi) ∈ R2×2 denote the FIM for this set-up.
Following a standard procedure, we have

FIM
[i]
Ui

(θi) =
∑
α∈Iq

∑
k∈{0}∪Im−1

σ−2
αi

(
∇θi

dαi,k

) (
∇θi

dαi,k

)T
, (5)

where

∇θi
diα,k = (diα,k)

−1
d
[iα]
k ∈ R2. (6)

Substituting (6) into (5), and simplifying further yields

FIM
[i]
Ui

(θi) =
∑
α∈Iq

σ−2
αi P̂ [i]

α (P̂ [i]
α )T.

Notice that trace(P̂ [i]
α (P̂ [i]

α )T) = m. Consequently,

trace(FIM
[i]
Ui

(θi)) = m
∑
α∈Iq

σ−2
αi .
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4.2 FIM for multiple vehicles

We next derive the FIM for more than one vehicle. In
this particular case, we have U := (U1, . . . ,Up), θ :=
(θ1, . . . ,θp) and we let FIMU(θ) ∈ R2p×2p denote the
FIM for this set-up. The FIM for the complete system is
given by

FIMU(θ) =
∑
i∈Ip

∑
α∈Iq

∑
k∈{0}∪Im−2

σ−2
αi (∇θdαi,k) (∇θdαi,k)

T
,

where

∇θdαi,k =
1

dαi,k

[
02(i−1)×1

∇θi
dαi,k

02(p−i)×1

]
∈ R2p.

Simplifying further yields

FIMU(θ) =
⊕

i∈Ip FIM
[i]
Ui

(θi).

Note that the overall FIM depends on v[1], . . . ,v[p] and
r[1], . . . , r[p]. We now compute the maximum value of the
FIM determinant.

4.3 Optimal FIM determinant

In this section we examine the optimum value of the cost
functional described by

J(U) = ln det(FIMU(θ)) =
∑

i∈Ip ln det(FIM
[i]
Ui

(θi)).

In the above equation, the second equality follows by
noting that

det


⊕

i∈Ip

FIM
[i]
Ui

(θi)


 =

∏
i∈Ip

det(FIM
[i]
Ui

(θi)).

Thus, it suffices to maximize the FIM associated with
each of the vehicles in order to maximize the overall FIM.
The following result is obtained.

Proposition 1. Consider i ∈ Ip and assume that σαi := σ
for all α ∈ Iq. Let

∑
α∈Iq

P̂ [i]
α (P̂ [i]

α )T =

(
qm

2

)
I2.

Then, det(FIM
[i]
Ui

(θi)) is maximum and given by(
2−1σ−2qm

)2
; consequently, the optimal value of

det(FIMU(θ)) is given by
(
2−1σ−2qm

)2p
.

Proof. The proof is based on the results in (Moreno-
Salinas et al., 2013).

So far we have derived the optimal value for the cost
functional adopted, but we have provided no insight into
the optimal trajectories of the vehicles. In general, it is
not possible to characterize these trajectories analytically
(this is possible, however for the case of a single vehicle and
a single beacon). For this reason, we resort to numerical
optimization methods to compute the optimal vehicle tra-
jectories that maximize the determinant of FIM, subject
to collision and vehicle maneuvering constraints. In the
following subsection all optimizations are performed using
the simulated annealing technique. ∗

∗ Global Optimization Toolbox: Simulated Annealing, http://es.
mathworks.com/help/gads/index.html, The MathWorks, Inc., 1994-
2016.

4.4 Numerical example

We consider p = 3, q = 1, and b[1](t) ≡ 0. Recall
from Proposition 1 that the optimal FIM for each vehicle
is given by 400I2 and overall optimal FIM determinant
is given by 4.0960 × 1015. The simulation parameters

are p
[1]
0 = [−15 0 ]

T
[m], p

[2]
0 = [ 15 0 ]

T
[m], p

[3]
0 =

[ 10 15 ]
T
[m], v[1] = v[2] = v[3] = 2 [m/s], R = 5 [m],

T = 6 [s], σ = 0.1 [m], and m = 8. Fig. 2 shows the optimal
trajectories for each of the vehicles, while Fig. 3 shows
the corresponding optimal course-rates. The FIM obtained

from the simulations is FIM
[i]
Ui

(θi) = 400I2, i ∈ I3.
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Fig. 2. Optimal trajectories of three vehicles for a fixed
beacon at the origin.
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Fig. 3. Optimal course rates for the three vehicles.

In the following section, we focus on the single-beacon
positioning problem.

5. OPTIMAL TRAJECTORIES: SINGLE-BEACON
CASE

In this section we consider p = q = 1, and for this partic-
ular case we provide a constructive analytical solution. In
the sequel all the optimal variables are denoted with the
superscript “ ∗ “.

i) Let p0 ∈ R2 and b0 ∈ R2 denote the initial position
of the vehicle and beacon, respectively.

ii) Let m ≥ 3 be the number of samples; we assume
uniform sampling, that is, tk = kT, k ∈ {0} ∪ Im−1.
Define βk := β0 − m−1λkπ, ∗∗ k ∈ Im−1, λ ∈ {1, 2},
where β0 is the angle between the vector p0 −b0 and

∗∗In rest of the paper we assume λ = 1.
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the horizontal axis YN . Assume piecewise constant
vehicle speed and course rate, that is, for k ∈ {0} ∪
Im−2,

(v(t), r(t)) ≡ (v̄k, r̄k), t ∈ [tk, tk+1).

iii) Fix k ∈ Im−2. Finding the optimal position p∗
k

consists of the following steps:
a) Recall that dk = pk − bk and dk = ‖dk‖. Let

pk = bk + dkg(βk), k ≥ 1, where dk ∈ R is an
unknown constant that needs to be determined
and let p∗

0 = p0.
b) Solve the following equation for dk:

‖pk − p∗
k−1‖2 = (ak)

2, k ≥ 1, (7)

where ak := v̄k−1(tk − tk−1) = T v̄k−1. Here for
the time being we assume v̄k−1 to be the nominal
speed of the vehicle (which is within the bounds).
Equation (7) is equivalent to

d2k + 2dk(bk − p∗
k−1)

Tg(βk) + ‖bk − p∗
k−1‖

2 − (ak)
2=0,

which is quadratic in the unknown variable dk.
To ensure real solutions we need to satisfy (ak)

2 −(
‖bk − p∗

k−1‖ sin θk
)2

≥ 0, where θk ∈ [0, π] is the

angle between vectors (bk −p∗
k−1) and g(βk). The

real roots are given by

dk = −‖bk − p∗
k−1‖ cos θk ±

√
(ak)2 −

(
‖bk − p∗

k−1
‖ sin θk

)2
.

c) Following Moreno-Salinas et al. (2016), among the
two real solutions for dk, we select the one with
the larger magnitude, say d∗k.

d) The optimal position is given by

p∗
k = bk + d∗kg(βk).

e) This construction leads to the optimal solution
because

FIM
[i]
Ui(θi) = σ−2

∑
k∈{0}∪Im−1

(
d∗
k

d∗k

)(
d∗
k

d∗k

)T

,

= σ−2
∑

k∈{0}∪Im−1

g(βk)g(βk)
T

=
(
mσ−2/2

)
I2,

where the last equality follows from the orthogo-
nality of the sine and cosine functions.

f) Now that the optimal positions are computed,
the piecewise constant v̄∗k and r̄∗k are determined
so that those positions are reached in a smooth
manner and at the appropriate instants of time.

In the sequel, we use the above algorithm to show what
types of optimal solutions are obtained for straight-line
and circular motions of the beacon.

5.1 Straight-line motion

In this case, we consider a beacon moving along the unit
vector w ∈ S2 with a constant forward speed of vb starting
from b0 ∈ R2 at time t0 = 0, that is, b(t) = b0 + vbwt,
t ∈ [0, tf ]. Let p0 ∈ R2 be the initial position of the vehicle
at time t0 = 0; we assume piecewise constant speed of the
vehicle vk > vb, k ∈ {0} ∪ Im−2.

Fig. 4 shows a numerical solution to this scenario with

the beacon moving along the x1-axis, i.e., w = [ 1 0 ]
T
,

at a constant forward speed of vb = 0.3 [m/s] starting
from b0 = 0. The sampling time T = 6 [s] and the
number of samples m = 6. The vehicle initial position

is p0 = [ 0 −10 ]
T

[m]. Fig. 5 shows the time evolution of
optimal vehicle speed and course angle for the vehicle.
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Fig. 4. Optimal trajectory of the vehicle for a beacon
moving along a straight-line.
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Fig. 5. Evolution of optimal vehicle speed (top) and course

angle (below).

5.2 Circular motion

In this case, we consider a beacon moving along a circum-
ference with constant angular speed ωb > 0 (clockwise)
starting from vbg(φ) ∈ R2, φ ∈ [0, 2π), vb > 0, at time
t0 = 0. In other words, b(t) = vbg(ωbt+ φ), t ∈ [0, tf ].

Fig. 6 shows a numerical solution for the case where
ωb = 0.0131 [rad/s], vb = 0.3 [m/s], and b0 = 0. The
sampling time T = 6 [s] and the number of samples m = 6.

The vehicle’s initial position is p0 = [−10 0 ]
T
[m]. Fig. 7

shows the time evolution of optimal vehicle speed and
course angle.
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Fig. 6. Optimal trajectory of the vehicle for the beacon
moving along an arc of a circumference.

6. TARGET LOCALIZATION: EXPERIMENTAL
RESULTS

In Section 5, we considered the problem of computing opti-
mal trajectories of a vehicle for self-positioning using range
measurements to a known beacon. We now consider the
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Fig. 7. Evolution of optimal vehicle speed (top) and course
angle (below).

Fig. 8. The Medusa-class of marine robotic vehicles.

dual problem of finding optimal trajectories of a vehicle,
whose position is known, to localize a target underwater
by using range measurements to the target. In the first
problem, the vehicle position is unknown and the beacon
is known, while in the latter problem the vehicle position
is known and that of the target is unknown. However,
in both cases the vehicle should optimize its trajectory,
either for self-positioning or target localization. From a
theoretical standpoint, the computation of optimal vehicle
trajectories for target localization is done by adopting
a methodology similar to that used in the case of self-
positioning. The details are omitted.

In what follows we discuss briefly the implementation of
the strategy adopted for target localization and present
the results of sea trials using two autonomous marine
vehicles of the Medusa class (Fig. 8). Each vehicle has
two side thrusters that can be independently controlled to
impart forward and rotational motion. In addition, they
are equipped with an attitude and heading reference sys-
tem (AHRS) that provides measurement of body orienta-
tion and body-fixed angular velocity for control purposes.
Each vehicle carries an acoustic Blueprint Seatrac data
modem and ranging unit ∗∗ that is used for communica-
tions and range measurements.Throughout the tests, one
of the Medusa vehicles was used as an underwater target,
while the other was used as a surface vehicle (i.e. tracker,
equipped with GPS) interrogating the target. In the mis-
sions executed, the target performed a lawnmowing start-
ing from an unknown initial position. The target operated
at a constant depth of 1 [m] and a constant body-speed of
0.2 [m/s], and performed dead reckoning navigation using
a DVL and the AHRS. In the preliminary experiments
performed, the tracker had access to the range to the target
and to the velocity vector of the latter (communicated via
the acoustic communications channel) every 1.5 [s]. This
was done for simplicity of implementation of the algorithm
adopted for target localization. In fact, from a theoretical

∗∗http://blueprintsubsea.com/seatrac/index.php

Initialization

Predict x̂(k|k − 1)

Solve the finite-horizon
optimal control to

find the optimal input

Drive the tracker to the
optimal location and
acquire the new range

Estimate x̂(k|k)
and P (k|k)

k = k + 1

P
l
a
n
n
e
r

C
o
n
t
r
o
l

E
st

im
a
t
o
r

Fig. 9. Integrated motion planning, control, and estimation
for range-based target localization: flow chart of the
algorithm. Here x is the state of the target, x̂ its
estimate, and P is the estimation error covariance
matrix.

standpoint, one can lift the requirement that the speed
of the target be known to the tracker. This issue will be
addressed in future experiments.

Fig. 9 shows the overall block diagram of the algorithm
adopted for tracking purposes. The algorithm runs over
a sliding time window where tracker motion planning and
control, as well as target estimation run sequentially. First,
using prior knowledge about the motion of the target,
the planner computes optimal values for the piecewise
constant tracker speed and course-rate for the next six
samples of time, yielding a trajectory (consisting of way
point) to be tracked. In the next step the target maneuvers
under closed loop control to reach the next way point and
acquires a new range measurement. A range-based target
localization filter (EKF estimator) is run in parallel on-
board the tracker to update the information about the
target motion. The process is then repeated.

Fig. 10 shows the plot of the optimal trajectory of the
surface vehicle and the estimated trajectory of the target.
For comparison purposes, the target trajectory was esti-
mated using two independent sources of information: i)
the output of the EKF target localization filter, and ii) the
relative position of the target with respect to the tracker
as measured by a USBL unit installed on board the latter
vehicle. Fig. 11 shows the time-history of the optimal and
measured tracker speed. Note that at the beginning of the
mission, the measured speed (see Fig. 11) was saturated
at the nominal speed 1 [m/s] of the Medusa. This was
due to fact that motion planning was done by assuming a
maximum possible speed of 1.5 [m/s], but the particular
tracker used in the field tests could not reach speeds
higher than 1.0 [m/s]. Fig. 12 shows the time-history of
the course angle, while the Fig. 13 represents the actual
measurements. Fig. 14 shows the variance of the position
estimates.

Finally, recall from the Proposition 1 that the optimal FIM
for the problem at hand is given by (mσ−2/2)I2, that is,
the off diagonal elements of the FIM are zero, while the
diagonal elements are equal and given by mσ−2/2. Con-
sequently, the optimal determinant of FIM is m2σ−4/4.
Figs. 15 and 16 show the plot of the evolution of the
normalized FIM and normalized determinant versus num-
ber of samples, which is consistent with our theoretical
findings.
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Fig. 10. Optimal tracker and estimated target trajectories.

Fig. 11. Tracker speed.

Fig. 12. Optimal course angle for the tracker.
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Fig. 13. Range measurements.
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Fig. 14. Variance of tracker position estimates.
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Fig. 16. Determinant of normalized FIM.

7. CONCLUSIONS

The paper derived theoretical results that allow for the
computation of optimal marine vehicle trajectories for
range-based vehicle positioning and target localization.
Building on classical estimation theory, the methodology
adopted amounts to maximizing the determinant of an
appropriately defined FIM. Experimental results were ob-
tained for the target localization problem, using a surface
and an underwater vehicle of the Medusa class of ma-
rine robots. The results obtained show the efficacy of the
method developed for target localization.
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