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Abstract: Single-beacon, range-based AUV localization systems work on the principle that
a vehicle may find its position by maneuvering appropriately and acquiring measurements of
its successive distances (ranges) to a stationary beacon deployed at a known location. This
motivates the study of optimal trajectories to improve the accuracy of the vehicle’s position
estimate while respecting mission related criteria. In this work, the performance index used
to compare different trajectories is the determinant of a properly defined Fisher Information
Matrix (FIM). Assuming that heading measurements are available, the problem is studied in
2D, and a class of analytical and numerical solutions are derived. An approach to deal with the
case where the initial position of the vehicle is known to lie in a region of uncertainty is also
presented. Considering that depth measurements can be obtained, a 3D navigation algorithm
consisting of an optimal trajectory planner and a minimum-energy estimator is proposed and
its performance assessed via simulation of a practical scientific scenario.

Keywords: Underwater Range-Based Navigation; Single-Beacon Localization; Trajectory
Optimization; Fisher Information Matrix

1. INTRODUCTION

A central problem in the field of marine robotics is that
of estimating the position of a vehicle in a given inertial
reference frame. As applications of marine vehicles become
increasingly more diverse, underwater navigation systems
are not only required to be reliable and accurate but
also affordable and easy to install and operate. For these
reasons, single-beacon navigation is steadily emerging as a
reduced-cost alternative to conventional acoustic naviga-
tion methods such as those at the core of LBL (Long Base-
line) and SBL (Short Baseline) systems. However, single-
beacon navigation using range measurements introduces
some difficulties as well, due to the fact that a single range
measurement is clearly not enough to define the vehicle
position with respect to a beacon installed at a fixed,
known position. Thus, the vehicle must move around and
acquire range measurements at different positions, while
estimating the displacements in between measurements,
in order to compute its own position - which implies
that the navigation system is dependent on the type of
motion imparted to the vehicle. Motivated by these con-
siderations, this paper is focused on the optimization of
trajectories to increase the expected accuracy of single-
beacon navigation.

The literature on single-beacon navigation is extensive and
defies a simple summary. For early work in the area and a
detailed example of the implementation of single-beacon
navigation algorithms the reader is referred to Larsen
(2000). In what concerns the study of optimal trajectories
for single-beacon navigation, the majority of the work
reported addresses the study of the observability of the
system undergoing specific trajectories, in a deterministic
framework; see for instance Gadre and Stilwell (2005)

and Crasta et al. (2013). However, these studies do not
take into account neither the noise affecting the range
measurements nor the uncertainty associated with the
estimate of the initial position of the vehicle.

The work presented in this paper follows a different ap-
proach, similar to that exposed in Mart́ınez and Bullo
(2006), and Moreno-Salinas et al. (2011). We use the
determinant of a properly defined FIM as a measure of the
best accuracy with which the position of the vehicle can
be computed along generic trajectories (using any non-
biased estimator), assuming that the measurements are
affected by additive Gaussian noise. Besides the quality of
the position estimates, other mission related criteria are
taken explicitly into account in the trajectory optimization
procedure. Namely, energy consumption and how far the
actual trajectory of the vehicle deviates from a nominal,
desired trajectory. Additionally, we propose a method to
deal explicitly with the uncertainty associated with the
initial position of the vehicle. The procedures used to
compute the trajectories are embodied into an optimal
trajectory planner that, in combination with a minimum
energy estimator, yields an algorithm for simultaneous
trajectory generation and single-beacon navigation. The
efficacy of the algorithm developed is assessed with results
of simulations of a realistic scientific scenario involving
homing in of an underwater vehicle on a deep sea labo-
ratory.

The paper is organized as follows. In Section 2 optimal
2D trajectories are derived, taking into consideration the
criteria described above. In Section 3 a 3D single-beacon
navigation algorithm is described.
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2. 2D SINGLE-BEACON NAVIGATION

2.1 System model

Consider a vehicle moving in 2D while measuring its
distance d(t) with respect to a stationary beacon. The
motion of the vehicle is controlled through its forward
speed v(t) > 0 and yaw rate r(t). The location of the
beacon is known with respect to some inertial reference
frame {I}, with North-East-Down orientation (NED).
The vehicle has access to the heading angle ψ(t), which
provides the orientation of the body-frame with respect
to the inertial frame {I}. Let the vehicle and the beacon

positions in {I} be denoted by p(t) = [ pn(t) pe(t) ]
T

and

b0 = [ bn0 be0 ]
T

, respectively. Without loss of generality,
we will assume the beacon to be located at the origin

of the reference frame {I}, that is, b0 = [ 0 0 ]
T

. Thus,
the distance between the vehicle and the beacon is given
by d(t) = ‖p(t)‖. The kinematic model of the system

with state x(t) = [ pn(t) pe(t) ψ(t) ]
T

, input u(t) =

[ v(t) r(t) ]
T

, and output y(t) = [ d(t) ψ(t) ]
T

over the
time-interval [0, tf ] is given by

ẋ(t) =

[
v(t) cos(ψ(t))
v(t) sin(ψ(t))

r(t)

]
, (1)

y(t) = [‖p(t)‖ ψ(t)]
T
. (2)

2.2 Determinant of the FIM

Let zi with i = 0, ...,m−1 denote a set of m measurements
of d(t) corrupted by additive noise, obtained at different
time instants ti. Moreover, let di with i = 0, ...,m − 1
denote the actual distances at the time instants of the
measurements. The measurement model is given by

zi = di + wi , i = 0, ...,m− 1,

wi ∼ N (0, σ2) , i = 0, ...,m− 1.

Assume that the model introduced in Section 2.1 and the
measurement model above describe the system perfectly.
Additionally, assume that the initial position of the vehicle
p0 is unknown, but that from the set of measurements
z = (z0, . . . , zm−1) we can obtain an unbiased estimate
p̂0. Under these assumptions, the determinant of the FIM
associated with the above problem varies inversely with
the volume of the uncertainty ellipsoid of the estimation
error. See for example Jauffret (2007) where it is shown
that the underlying system is locally observable if the
FIM is nonsingular, meaning that trajectories that result
from the maximization of the FIM determinant (with
|FIM | > 0) render the system observable. Classical results
in estimation theory (see Van Trees (2001)) dictate that
the FIM with respect to the unknown initial position of
the vehicle p0 is given by

FIMp0
, E

{
[Jp0

(lnLp0
(z)) ] [Jp0

(lnLp0
(z))]

T
}

where Jp0
(lnLp0

(z)) denotes the Jacobian of the log-
likelihood function of the range measurements with respect
to p0 and E is the expectation operator. As a consequence,
and considering the model introduced in Section 2.1, the
determinant of the FIM is given by

|FIMp0 | =
1

σ4

[
m−1∑
i=0

(
pni
di

)2 m−1∑
i=0

(
pei
di

)2

−

(
m−1∑
i=0

pni
di

pei
di

)2]
(3)

where pi = [ pni pei ]
T

denotes the vehicle’s position at ti.

2.3 Problem setup

The setup for the trajectory optimization considers the
model of the system introduced in Section 2.1 under the
assumptions below.

Assumption 1. The vehicle speed is constant and the yaw
rate is piecewise constant, that is,

v(t) ≡ v̄,
r(t) ≡ rk, t ∈ [tk, tk+1), k = 0, ...,m− 1

with |rk| ≤ rb, where rb is a bound on the vehicle yaw
rate.

Assumption 2. The time instants at which the inputs may
change are given by tk = k T , for k = 0, ...,m − 1, with
T the cycle interval. In view of the above, the vehicle
position at any t can be written as a function of p0, ψ0, v̄,
r = (r0, . . . , rm−1 ) and T , and is given by

p(t) = p0 + v̄

k−1∑
j=0

1

rj

[
sin(ψ((j + 1)T ))− sin(ψ(j T ))
− cos(ψ((j + 1)T )) + cos(ψ(j T ))

]
+

v̄

rk

[
sin(ψ(t))− sin(ψ(k T ))
− cos(ψ(t)) + cos(ψ(k T ))

]
, (4a)

ψ(t) = ψ0 + T
k−1∑
j=0

rj + (t− k T ) rk, (4b)

k = floor(t/T ), (4c)

where the function floor(x) returns the largest integer not
greater than x. If any rk is zero the expression for p(t) has
a singularity, which is removable.

Assumption 3. The time instants at which the range mea-
surements are obtained are given by ti = i∆t, for i =
0, ...,m− 1, with ∆t the sampling interval.

Assumption 4. The cycle interval of the yaw rate function,
T , is a multiple of ∆t. We introduce a new tuning param-
eter c, such that T = c∆t. The vehicle positions and the
actual ranges, at the time instants ti, are given by (4)
for t = i∆t and T = c∆t. Hence, the FIM determinant is
completely defined as a function of the problem parameters
and variables, which are summarized in Table 1. Note that

Table 1. Setup parameters and optimization
variables.

setup parameters p0, ψ0, ∆t, m, σ, c, v̄, rb

problem variables r0, . . . , rN−1 with N = c−1(m− 1)

the speed v̄ is a parameter because small AUVs usually
keep the speed approximately constant during missions; a
typical value is 1.5 [m/s]. The bound on the yaw rate is
set to π/9 [rad/s], a typical value for the Medusa 1 class
of AUVs.

2.4 Maximizing the FIM determinant

The problem of maximizing the FIM determinant includ-
ing the vehicle dynamics explicitly is too complex for an
analytical solution to be obtained for a general scenario.
Therefore, we start by looking for a solution in two steps:
(i) compute, analytically, the optimal locations for the
measurement points neglecting the vehicle dynamics and
(ii) find trajectories that cover all the optimal measure-
ment points and check if these are compatible with the ve-
hicle dynamics. As an alternative non-analytic approach,
1 Medusa is an AUV for scientific research developed and operated
by the Institute for Systems and Robotics of IST.



we then use numerical methods to compute trajectories
that maximize the FIM determinant by including explic-
itly the vehicle dynamics.

To find the optimal measurement points we maximize
the FIM determinant, given by (3), with respect to the
measurement points pi, 0 ≤ i ≤ m − 1. The problem is
solved step-by-step in Moreno-Salinas (2013). The opti-
mality conditions yield

m−1∑
i=0

(
pni
di

)(
pei
di

)
= 0,

m−1∑
i=0

(
pni
di

)2

=

m−1∑
i=0

(
pei
di

)2

=
m

2
.

Thus, the maximum of the FIM determinant is given by

|FIMp0 |∗ =
( m

2σ2

)2

which sets an upper bound on the determinant of the FIM
that can be achieved with m range measurements in 2D.

In order to characterize the trajectories that pass through
the optimal measurement points, first note that the terms
pni /di and pei/di represent the cosine and sine, respectively,
of the angle between the axis pointing north and the
position vector of the vehicle, αi. Then, invoking the
orthogonality conditions for sines and cosines, from Fourier
analysis, we notice that one family of solutions for the
optimal measurement points is given by

m−1∑
i=0

sin2(αi) =

m−1∑
i=0

sin2

(
2πp

m
i

)
, (5a)

m−1∑
i=0

cos2(αi) =

m−1∑
i=0

cos2

(
2πp

m
i

)
, (5b)

m−1∑
i=0

cos(αi) sin(αi) = 0, (5c)

where p ∈ N. Figure 1 represents the general form of one

Fig. 1. General form of an optimal solution in 2D.

family of solutions for the problem at hand. From (5a)-
(5c) it is clear that the optimality conditions are fulfilled
if the optimal measurement points are radially distributed
around the beacon; the optimality of the solution does
not depend on the distance of the points to the beacon,
neither on their time sequence. Additionally, the solution
remains optimal (i) if any of these points is replaced by
its reflection with respect to the beacon or (ii) if all points
suffer an equal rotation centered in the beacon. These two

facts show that there are an infinite number of optimal
solutions. For a constant turning rate and maintaining
a fixed distance to the beacon, an optimal trajectory is
obviously a circumference centered at the beacon.

In order to find other solutions/trajectories that respect
the constraints on the maneuverability of the vehicle, the
dynamics of the latter are now included explicitly in the
trajectory optimization. Because of the increased com-
plexity of the optimization problem, numerical algorithms
available from the Global Optimization Toolbox of MAT-
LAB are used. Under the assumptions stated at the begin-
ning of this Section, the problem of finding the trajectories
that maximize the FIM determinant is equivalent to that
of finding the set of m values for the optimization variables
that maximize the FIM determinant, that is, compute

max
r0,...,rm−1

|FIMp0 |

subject to

|rk| ≤ rb, for k = 0, ..., N − 1 (6)

where |FIMp0
|, given by (3), is defined as a function of

the optimization variables and setup parameters by (4).

Table 2. Results of the numerical optimization
of the FIM determinant.

Scenario ψ0 [rad] rb [rad/s] σ4|FIM |

1 π/2 π/9 64.00

2 0 π/9 38.00

3 0 2π/9 59.30

Table 2 shows the results obtained with the numerical
procedure for different scenarios, with p0 = (10, 0) [m],
∆t = 1[s], m = 16, c = 1, v̄ = 1.5 [m/s] and the remaining
setup parameters defined in Table 2. The maximum dimen-
sionless FIM determinant considering 16 range measure-
ments is σ4|FIM |∗ = 64. Analyzing Table 2 we see that,
for scenario 1, the limits imposed by the vehicle dynamics
did not preclude the optimization procedure from finding
a trajectory with maximum performance. On the other
hand, for scenarios 2 and 3, the constraints imposed on
the vehicle maneuverability degrade the navigation system
performance (in comparison to the optimal situation).
Thus, we conclude that the effect of the limitations of
the vehicle maneuverability on the achievable performance
depends on the setup parameters, that is, the initial con-
ditions, p0 and ψ0, and the parameters m, c, and ∆t.

2.5 Minimizing energy consumption

We will now derive trajectories that attempt to simul-
taneously maximize the FIM determinant and minimize
the energy consumption along the trajectory. Stated rig-
orously, we exploit the so-called Pareto optimal boundary
that is often used to examine trade-offs among multiple
competing objectives (see Stadler (1988)). The energy
criterion is based on very general principles that are in
accordance with the kinematic model. Consider that the
energy consumption while the vehicle moves is mainly used
to overcome the longitudinal drag force FD and the
drag torque τD. Because v and r are constant or piece-
wise constant for the trajectories considered, it follows
from simple hydrodynamic principles that PF ∝ |v|3 and
Pτ ∝ |r|3 (PF and Pτ denote the power of drag force
and torque, respectively). Neglecting the additional energy
spent in changing the yaw rate, the basic model for power
consumption is given by P (t) = β |v̄|3 + γ |r(t)|3 with
β, γ > 0. Because in the current study the linear speed



is not an optimization variable, the energy criterion for
the optimization procedure is given by

E =

tf∫
0

|r(t)|3dt

which, under the assumptions considered for this setup,
can be written as

E = c∆t

N−1∑
j=0

|rj |3 − (Nc−m) ∆t |rN−1|3.

Combining the energy criterion with the FIM determinant
criterion in a single optimization yields a multicriteria
optimization problem. In mathematical terms the problem
is formulated as

max
r0,...,rN−1

( |FIMp0
| , −E )

subject to (6). To solve this optimization problem we
resorted to the Multicriteria Optimization Toolbox from
MATLAB.
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Fig. 2. Numerical results obtained by maximizing the FIM
determinant and reducing the energy consumption,
simultaneously.

Figure 2 shows the results of the optimization for p0 =
(5, 0) [m], ψ0 = π/2 [rad], ∆t = 1 [s], m = 16, c = 1, v̄ =
1.5 [m/s] and rb = π/9 [rad/s]. The plot on the left shows
the Pareto optimal solutions and a Pareto curve obtained
by connecting the solution points (blue line). The plot
on the right shows the trajectories associated to each of
the Pareto solutions, using the same color. Note that blue
represents trajectories with less energy consumption while
red represents trajectories with higher energy consumption
by the vehicle. The trade-off between the two objectives of
the optimization is very clear: (i) minimizing the energy
consumption leads directly to the reduction of the absolute
values of the yaw rate, which decreases the vehicle’s ability
to circumnavigate the beacon, thus reflecting in lower
values of the FIM determinant; (ii) notice, however, that
the FIM determinant reaches its maximum value while
the energy function continues increasing its value, which
means that there is a point where increasing the absolute
value of the yaw rate does not improve the performance of
the navigation system.

2.6 Minimizing the deviation from a nominal trajectory

In a real situation, we expect the underwater vehicle to
perform a useful mission while it attempts to estimate
its position. Motivated by these requirements, we now
address the case where the vehicle is requested to follow a
nominal trajectory (defined in accordance with operational
requirements), but at the same time is given some freedom
to maneuver about this trajectory doing ‘persistently
exciting’ motions to improve the accuracy of the position
estimates. We denote the nominal trajectory by pn(t) :

[ 0, tf ] → R2 and the actual trajectory by p(t) : [ 0, tf ] →
R2, both defined in {I}. The deviation from the nominal
trajectory pn(t) is defined as the integral of the squared
position error along the trajectory, that is,

δ =

tf∫
0

‖pn(t)− p(t)‖2 dt.

The optimization problem can now be formulated as

max
r0,...,rN−1,v̄

µ1 |FIMp0
| − µ2 δ

subject to (6) and 0 ≤ v̄ ≤ v̄ub, with µ1 and µ2 as
weighting factors. To force the terminal state to approach
the desired terminal state we added an appropriate penalty
term in the error between the two. Furthermore, we
included the forward speed as an optimization variable.
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Fig. 3. Numerical results obtained by maximizing the
FIM determinant and reducing the deviation from
a nominal trajectory for µ1 = 10, µ2 = 1 (left) and
µ1 = 20, µ2 = 1 (right).

Figure 3 shows two trajectories resulting from the numeri-
cal optimization, for different weighting factors µ1 and µ2.
The setup parameters are p0 = (10, 10) [m], ψ0 = π [rad],
∆t = 1 [s], m = 16, c = 1, rb = π/9 [rad/s], and v̄ub =
2 [m/s]; the nominal trajectory is defined by a constant
speed v̄nom = 1.5[m/s], rnom = 0, and ψnom = ψ0. Obtain-
ing the range measurements along the nominal trajectory,
with a sampling interval ∆t, yields σ4|FIM |nom = 50.05,
which is already close to the maximum achievable value
σ4|FIM |∗ = 64 (for m = 16). Nevertheless, the slight
oscillation that we see in the left plot is enough to im-
prove the performance to σ4|FIM |

∣∣
(µ1,µ2)=(10,1)

= 52.44.

Furthermore, the trajectory in the right plot allows for
the performance to reach σ4|FIM |

∣∣
(µ1,µ2)=(20,1)

= 63.09,

although it deviates considerably from the nominal trajec-
tory. In practice, the trade-off between the two objective
functions depends on the requirements of specific missions.

3. SINGLE-BEACON NAVIGATION UNDER
UNCERTAINTY IN THE INITIAL POSITION

In this Section we introduce a single-beacon 3D naviga-
tion algorithm with range, depth, and heading measure-
ments, consisting of an optimal trajectory planner and a
minimum-energy estimator. In the design of the trajectory
planner we apply the methods derived in the previous
Section, with the required modifications to account for
3D navigation. The model of the system in 3D includes
a flight-path-angle input (to control the vehicle vertical
position) and the vehicle depth as an output. Additionally,
an approach to deal with the problem of having some
uncertainty associated with the vehicle initial position is
presented. The navigation algorithm is tested in simulation
for a practical scenario.



3.1 Uncertainty in the initial position of the vehicle

Assuming that the vehicle horizontal position lies inside
an uncertainty region 2 , we approached the problem of ob-
taining an optimal trajectory for navigation by maximizing
the worst performance in terms of the FIM determinant
inside the region of uncertainty. An alternative would
have been to maximize the expected value of the FIM
determinant along the uncertainty region. The uncertainty
region U is modeled as a circle with center c0 = [ cn0 ce0 ]T

and radius r0. The problem can be formulated as
max

r
min
p0∈U

|FIM(p0, r)|

subject to (6), with the |FIM | defined as a function of
r and p0 by (3) and (4). Due to the complexity of this
problem, we (i) resorted to numerical methods to obtain a
solution, and (ii) discretized the uncertainty region U into
a set of points inside and on the boundary of the circle. The
performance of the trajectories provided by this procedure
depends on the location and dimension of the uncertainty
region, and on the setup parameters. Nevertheless, when
compared with randomly generated trajectories, the first
consistently outscored the latter significantly.

3.2 An algorithm for single-beacon navigation

The navigation algorithm that we propose includes a tra-
jectory planner and a position estimator working in a loop.
Its structure is as follows: given a certain initial estimate
of the state of the system and the corresponding initial co-
variance matrix, (i) the trajectory planner provides the ve-
hicle’s speed, yaw rate, and flight-path angle commands for
an optimal trajectory; (ii) the position estimator observes
the outputs of the system (range, depth, and heading)
and provides an estimate of the vehicle position and the
associated uncertainty and (iii) based on this information
the trajectory planner recomputes the optimal trajectory,
restarting the loop. For simplicity of exposition, it is as-
sumed that the commands for speed, yaw rate, and flight-
path angle are tracked accurately by the vehicle.

Minimum-energy state estimator In what follows we
resort to the use of a minimum-energy estimator to com-
pute the position of the vehicle. The reader is referred to
Aguiar and Hespanha (2006) for the details, which we omit
here. The dynamics of the minimum-energy estimator with

estimate vector x̂ = [ p̂n p̂e p̂d d̂2 ]T, are given by

• for ti ≤ t < ti+1, i = 0, ..., l

Q̇(t) = −Q(t)A(t)−AT(t)Q(t)−Q(t) ΓQ(t)

+ CT
c (t)R−1

c Cc(t)

˙̂x(t) = f(x̂(t),u(t))

+Q−1(t)CT
c (t)R−1

c

(
yc(t)− hc(x̂(t),u(t))

)
• at t = ti+1, i = 0, ..., l − 1

Q(ti+1) = Q(t−i+1) + CT
d (t−i+1)R−1

d Cd(t
−
i+1)

x̂(ti+1) = x̂(t−i+1) +Q−1(ti+1)CT
d (t−i+1)R−1

d(
yd(ti+1)− hd(x̂(t−i+1),u(t−i+1))

)
with

f(x̂(t),u(t)) =

v(t) cos(γ(t)) cos(ψ(t))
v(t) cos(γ(t)) sin(ψ(t))

v(t) sin(γ(t))
r(t)


2 The vertical position is known through the depth measurements.

hc(x̂(t),u(t)) =

[
pd(t)
ψ(t)

]
hd(x̂(t),u(t)) = (pn(t))2 + (pe(t))2 + (pd(t))2

A(t) =

0 0 0 −v(t) cos(γ(t)) sin(ψ(t))
0 0 0 v(t) cos(γ(t)) cos(ψ(t))
0 0 0 0
0 0 0 0


Cc(t) =

[
0 0 1 0
0 0 0 1

]
Cd(t) =

[
2pn(t) 2pe(t) 2pd(t) 0

]
and Q(0) := Q0 � 0 and x̂(0) := x̂0 the initial information
matrix and state estimate, respectively; Γ, Rc and Rd are
parameters of the filter.

Trajectory planner The trajectory planner is divided in
two phases:

i) For a predefined time interval the vehicle moves with
the single purpose of improving the position estimate.
To this effect we employ the maximization procedure
introduced in Section 3.1.

ii) Given a nominal trajectory that the vehicle should
follow, the trajectory planner provides a trajectory
that stays close to the nominal trajectory, but ensures
enough ‘excitation’ for the estimation procedure. To
meet this objective, we employ the optimization pro-
cedure introduced in Section 2.6, with proper mod-
ifications to consider the system in 3D, with depth
measurements available.

Using the position estimate and its covariance provided by
the observer, the uncertainty region is defined as a circle in
the horizontal plane with center p̂ and radius computed
from the Q matrix. When the radius of the uncertainty
region duplicates or reduces to half, a new trajectory is
re-planned.

3.3 A practical scenario: simulation results

One of the goals in underwater scientific research is to
operate, in the near future, several underwater labs to
monitor biodiversity, collect data in general, and carry out
experiments in situ. An example of these labs is the already
existing NOOA Aquarius Reef Base, Shepard et al. (1996),
in Florida U.S.A. For deep-waters, one practical difficulty
is the access to these labs to service them or to retrieve
data from data-storing devices in an affordable manner.
For data transferring purposes there is clear advantage in
the use of simple AUVs capable of homing in on a beacon
installed in the laboratory, docking onto a docking station,
and retrieving the required data. This is the scenario where
we propose to test the navigation algorithm, in simulation.
It consists of an underwater lab located, 1000 meters below
the sea surface equipped with an acoustic beacon. An AUV
is launched at the see surface with an initial estimate of
the state x̂0 and covariance Q−1

0 (with respect to the NED
frame with origin at the lab). The AUV homes in on the
lab and docks there to collect the available data. To this
effect, it uses the navigation algorithm developed in the
paper, by measuring its range to the lab. To complete the
phase 1 of the algorithm, the vehicle is given 5 minutes to
improve the position estimate. For phase 2, the nominal
(desired) trajectory consists of three straight lines: (i) one
vertical part, that covers half of the vertical distance to
the lab; (ii) one part with constant flight-path angle and
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heading angle; and (iii) one horizontal part with the same
constant heading as the previous part, that covers the
remaining horizontal distance to the lab. Figure 4 shows
the trajectories obtained in simulation with Gaussian noise
of variance 10 [m2] corrupting the range measurements.
The filter parameters are Γ = 0, Rc = diag([0.01 1]) and
Rd = 0.01. The estimates for north and east coordinates
are initialized 100 [m] apart from the true coordinates.
When the position estimate indicates that the vehicle
reached the lab, the true position is 20 [cm] apart. If more
precision is required for docking, short-range auxiliary
systems can be used, such as cameras.

4. CONCLUSIONS AND FUTURE WORK

The main focus of the paper was on the computation of
optimal underwater vehicle trajectories to maximize the
information available for single beacon localization. In con-
trast with previous techniques published in the literature,
we addressed explicitly the case where there are compet-
ing criteria that involve maximizing the information for
localization purposes while at the same time reducing the
energy spent in vehicle maneuvering as well as its deviation
from a desired, nominal trajectory. Algorithms were devel-
oped that allow for the study of the Pareto optimal fronts
for the resulting multicriteria optimization problem. Con-
sidering that depth measurements can be obtained, a 3D
navigation algorithm consisting of an optimal trajectory
planner and a minimum-energy estimator was proposed
and its efficacy evaluated with the results of simulations
of a practical scenario. The results obtained hold promise
for practical implementation. Future immediate work will
aim at implementing these algorithms and trying them out
at sea using an AUV equipped with a ranging device.
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