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ABSTRACT Autonomous underwater vehicles (AUVs) have become attractive and essential for underwater
search and exploration because of the advantages they offer over manned underwater vehicles. Hence the
need to improve AUV technologies. One crucial area of AUV technology involves efficiently solving the path
planning problem. Several approaches have been identified from the literature for AUV global and local path
planning. The use of machine learning (ML) techniques in overcoming some of the challenges associated
with AUV path planning problems such as safety and obstacle avoidance, energy consumption, and optimal
time and distance travelled remains an active research area. While there is literature on global and local path
planning that explores different techniques, there is still a lack of paper that provides an overview of the
application of ML for local path planning. Hence the main objective of this paper is to present an overview
of the state-of-the-art application of ML techniques on local path planning for AUVs. The ML algorithms
are discussed under supervised, unsupervised, and reinforcement learning. The challenges faced in real-life
deployment, simulated scenarios, computational issues, and application of ML algorithms are discussed,
with future research directions presented.

INDEX TERMS Machine learning, local path planning, autonomous underwater vehicle (AUV), real-time
path planning, underwater.

I. INTRODUCTION
Autonomous underwater vehicles (AUVs) have become
attractive for underwater search and exploration due to the
many advantages they offer over manned underwater vehi-
cles. The areas of application of AUV include mapping of the
seafloor in oil and gas exploration, data collection and mon-
itoring in oceanography and coastal management, tracking
of pipeline and underwater cables, and security and acoustic
surveillance. Due to the importance of AUV technologies,
researchers constantly seek to improve their effectiveness [1].
One crucial area involves efficiently solving the path plan-
ning problem which is important for many applications

The associate editor coordinating the review of this manuscript and

approving it for publication was Yougan Chen .

including data collection, ocean predictions, and monitoring.
The foundation of an AUV’s navigation system and essential
to its underwater operation is path planning. The importance
of path planning for the safe and effective navigation of AUVs
cannot be overstated [2].

According to [3], the path planning problem denotes
calculating an optimal or near-optimal route for a single
AUV or multiple AUVs to a targeted destination from
a start point based on stated optimization objectives and
ocean environment details and constraints. While solving the
path planning problem, the characteristics of the robot(s)
must be respected and collision with obstacles avoided [4].
Depending on the demands of the application, path plan-
ning optimization objectives may include path length, time
consumption, energy consumption, or safety. Path design for
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AUVs has traditionally been linked to safety circumstances;
nevertheless, other performance aspects are also significant.
Global and local path planning are two general categories
of path planning. Global path planning is the process of
finding a solution to path planning issues in predetermined
environments [5], [6], [7], [8]. Where the destination target is
not fixed and the environment is dynamic or unpredictable,
global path planning is unsuitable. Local path planning also
known as real-time path planning or online path planning
is hence suited for unknown environments. The local path
planning algorithm as implied generates the desired path for
AUV in real-time or near real-time.

Several approaches have been identified from the literature
for AUV local path planning. They include rapidly-exploring
random trees (RRT) [9], [10], fuzzy logic algorithms
[11], [12], and machine learning (ML) techniques such as
supervised and reinforcement learning [13]. Fig. 1 illustrates
some of the local path planning approaches.

FIGURE 1. Local path planning approaches.

As a result of the success of ML techniques in the field
of computer vision and image processing, the use of ML
techniques is attracting research interest for AUV obstacle
avoidance and path planning. Hence, the focus of this paper is
to provide an overview of the applications of ML techniques
for AUV path planning. In particular, we survey existing
works on ML techniques for local path planning. The ML
techniques are discussed under three main categories: super-
vised, unsupervised, and reinforcement learning.

Related works have provided a survey on the applica-
tion of ML to path planning [3], [13], [14], [15]. In [3],
an overview of the issues with path planning, re-planning, and

optimization techniques for AUV missions was presented.
The study did not cover ML techniques. Cheng et al. [13]
provided an overview of different algorithms for global path
planning and local path planning. A review of ML path plan-
ning methods for AUV was presented in [14]. However, the
major focus was on the application of the underwater internet
of things (UIOT). While some of these works have provided
some level of discussion on the ML techniques such as the
Neural network, and reinforcement learning [13], [14], there
is still a lack of paper that provides an in-depth discussion
of ML techniques for local path planning. To address this
gap, this paper provides an overview of the ML techniques
related to local path planning, a review of up-to-date literature
on ML technique application to local path planning, explores
some unresolved issues in this field and offers an analysis and
comparison of various local path planning methods.

The remainder of this paper is arranged as follows:
Section II describes the AUV modelling, ocean environment
and performance metrics and Section III discusses the types
ofML techniques. Section IV reviews theML approach in the
local path planning algorithm for AUVs. Section V discusses
some of the challenges and findings and Section VI concludes
the paper.

II. MODELING OF AUV
In this section, the data capture for environmental mod-
elling and mathematical equations that describes the motion
constraints of the AUVs and the performance metrics is
described. The mathematical model for the ocean current is
discussed and the performancemetrics for local path planning
are presented.

A. ENVIRONMENTAL MODELING
Path planning is generally categorized into global path plan-
ning and local path planning. Global path planning refers to
the solution to path planning problems in known environ-
ments while local path planning involves path planning in an
unknown underwater environment. Fig. 2 depicts the AUV
underwater environment which includes the global grid map,
goal or destination, local grid map, and obstacles in the envi-
ronment. The O represents the current location of the AUV
and the radius denotes the scanning radius of the sonar. The
radius of the scanner of a typical AUV varies depending on
the type (long range, medium, small). For instance, Autosub
Long Range AUV by National Oceanography Centre has a
range of 6000 km [16], [17].

The global grid map is usually known or unknown before
a mission while the local grid map is obtained using pictures
collected from the AUV’s sonar, as illustrated in Fig. 2.
The images from the sonar are collected as raw data and
used to build the map of the local environment. The path
planning algorithm determines the AUV’s next navigation
location based on local environment information. For exam-
ple, image processing is applied to the sonar image in the
local path to detect an obstacle and a bio-inspired neurody-
namic model is applied to generate a collision-free path [18].
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FIGURE 2. Illustration of the AUV environment.

TABLE 1. The AUV 6DOF parameters [2].

Generally, the navigation of the AUV is done using sensors
such as the digital compass, depth sensors, and wireless
communication devices among others.

B. AUV MOTION CONSTRAINTS MODELING
AUV modelling takes into consideration the AUV’s motion
as well as the forces acting on the AUV. Path planning
algorithms are meant to take into consideration the AUV’s
mobility restrictions to produce a viable path. The kinematic
and dynamic models may be used to model these motion
limitations quantitatively. The mathematical model of the
motion of the AUV also is described using two coordi-
nate systems: earth-fixed frame (EFF) and body-fixed frame
(BFF) as shown in Fig. 3 [19].
Six degrees of freedom are used to move an AUV in 3D

space: surge, roll, sway, pitch, heave, and yaw. Each dimen-
sion of the AUV has a velocity component for rotation and
translation. The parameters of an AUV have six degrees of
freedom (6DOF), as shown in Table 1 (6DOF). Both the EFF
coordinate system and the BFF coordinate system are used to
explain the AUV’s mobility in the underwater environment.

The kinematic model is used to model the geometric
aspects of the AUV motion and can be expressed as:

η̇ = J (η)v (1)

FIGURE 3. EFF and BFF coordinate system [2].

where η = (x, y, z, φ, θ, ψ)T are the AUV’s location and
vector of direction regarding the earth’s coordinate system; In
the BFF coordinate system, v = (u, v,w, p, q, r)T represents
the linear and angular velocities, while J(η) signifies the
Jacobian transformation matrix.

A Jacobian transformation matrix expressed in terms of
the Euler angles maps the velocity expressed in the body-
fixed frame to the earth-fixed frame where the number of
degrees of freedom is equal to the number of rows and the
number of generalized coordinates to the number of columns
respectively [20], [21], [22].

J (η) =

[
J1 (η) 03×3
03×3 J2 (η)

]
(2)

J1 (η) =

 cψcθ sψcθ −sθ
cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ
cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ


(3)

J2 (η) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (4)

The dynamic model explains how the force on the AUV
and its motion are related. Furthermore, it links the force
and moment to the object’s location and speed. The 6DOF
dynamic model for AUVs takes the following general form:

M ν̇ + C (ν) ν + D (ν) ν + g (η)+ A = τ (5)

where g (η) indicates the gravitational forces and moments
(hydrostatic), M represents the inertia matrix, C (ν) repre-
sents the Coriolis-centripetal matrix, D (ν) represents the
hydrodynamic damping and lift matrix, A = [a1, a2, a3]T

represents uncertainty and disturbance parameter matrix and
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τ = (X ,Y ,Z ,K ,M ,N )T represents the vector of external
forces and moments [23].

Additionally, the AUV’s body structure will have an impact
on dynamics because as it moves, the AUVwill exert drag and
lift forces on the water it is moving through [24].

C. OCEAN CURRENTS
The model of ocean currents also is important to sim-
ulate a realistic experience. There have been several
approaches to modelling ocean currents. In most literature
[21], [25], [26], [27], [28], [29], ocean current is assumed to
be constant, irrational and bounded The body-fixed relative
velocity of the AUV is therefore given as

Va = V − Vc = [ur , vr , r, 0, 0, 0]T (6)

whereVa is the resultant ground velocity of the AUV resolved
in a 2D horizon, V is the speed of the AUV unhindered and
Vc is the velocity of the ocean current as illustrated in Fig. 4.

FIGURE 4. The resultant velocity of AUV under the influence of the ocean
current in 2D space.

Expanding (6) in terms of northeast velocity Va is
written as:

Vay = |V | sinψr + |Vc| sinψc (7)

Vax = |V | cosψr + |Vc| cosψc (8)

where Vay and Vax are the north and east velocity components
of the AUV, respectively. The desired direction of the vehicle
is therefore as follows:

Vay
Vax

= tanψa =
|yi − yi−1|

|xi − xi−1|
(9)

Va andψa are obtained by solving equations (7)-(9) as simul-
taneous equations.

In [30], a different approach is used to simulate ocean
currents. Ocean currents are added into the simulation as ran-
dom velocities by a first-order Gauss-Markov process with
Gaussian white noise based on [31] and [32].

Hence, the AUV kinematic equations for horizontal plane
motion (3DOF) with the effect of ocean current can be
expressed in terms of the relative surge and sway velocities
as follows:

ẋ = ur cosψ − vr sinψ + Vcx (10)

ẏ = ur sinψ − vr cosψ + Vcy (11)

ψ̇ = r (12)

where ψ , r are the yaw angle, and yaw rate respectively, ur
and vr , surge and sway speed components respectively of
the velocity of the AUV, and VcxVcy are the east and north
components of the ocean current velocity [25], [31].

D. PERFORMANCE METRICS
The path planning problem is solved based on at least one
objective i.e. it may be time, distance, energy, or safety
depending on the application requirements. Fig. 5 shows a
typical path planning path for an AUV from source to desti-
nation while avoiding obstacles and following waypoints.

1) SAFETY
Safe conditions involve taking a path devoid of obstacles
or dangerous areas i.e., obstacle avoidance. In general, path
planning for AUVs has been associated with obstacle avoid-
ance or safety of the path. A typical vehicle may not have
information about the locations of an obstacle. However,
as the AUV transverses, through the area, the AUV must
have the ability to sense or change its location with time.
Other AUVs can also be seen as obstacles in the case of
multiple AUVs. The AUV is required to be able to calculate
and change its route in real-time. How this is done fulfils the
safety objective function [3]. The issues of obstacle avoid-
ance have been well-researched using non-ML methods. For
instance, [33] tackles path planning using artificial poten-
tial field (APF) algorithms. Others include Dijkstra’s algo-
rithm [34], [35], A∗ algorithm [36], and the D∗ algorithm [37]
have also been employed for the path planning algorithm.
Common challenges of these methods include susceptibil-
ity to local minima and a lack of compatibility with high-
dimensional applications.

2) ENERGY CONSUMPTION
Since AUVs have relatively small battery life, the objec-
tive is to keep energy consumption minimal while travelling
in the ocean environment with ocean currents [38], [39].
The amount of energy an AUV uses is determined by its
hydrodynamic design, speed, onboard cargo, and trajectory.
The energy consumption is not limited to the movement of
the AUV but also the energy consumed by communication
units to aid the movement of the AUV. Several approaches
have been reported in the literature to optimize energy con-
sumption. This includes simplifying computational complex-
ities, avoiding obstacles and hazardous areas that can cause
unwanted errors, finding a shorter path to destinations, adapt-
ing to the speed of the current field [40] or taking advantage
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FIGURE 5. A typical path planning a path for AUV.

of the ocean current [41]. To optimize energy consump-
tion, trajectory optimization algorithms have been explored
in [42], [43], and [44].

3) TIME TRAVELLED AND PLANNING DISTANCE
The path planning problem is also usually optimized to
reduce the time travelled, planning time, or distance to the
destination. Increasing the speed of AUV at the expense of
energy consumption, avoiding obstacles, and finding short
paths of travel are some ideas for minimizing time travelled.
In the current fields, level set methods [45] are developed
for path planning, where the time-optimal path of the AUV
is obtained by resolving a particle tracking equation. In low-
dimensional areas, these deterministic techniques have shown
to be extremely effective, but in high-dimensional environ-
ments, they have shown to be much less effective [3].

4) AGE OF INFORMATION
Contrary to the independent AUV, cooperative AUV systems
are considered more efficient and accurate in some under-
water exploring tasks [46]. To efficiently manage the path-
planning in cooperative AUVs system and also overcome the
limitations of acoustic waves used in underwater commu-
nication the internet-of-underwater-things (IoUT) have been
explored in [46] and [47]. In AUV-assisted IoUT, the age of
information (AoI) plays a critical role [48], [49], [50]. The
AoI is the amount of time elapsed between the last received
data and newly updated data. To achieve optimal trajectory
planning the minimum AoI [46], average AoI [49] and peak
AoI [48] are considered useful metrics for path planning.

III. MACHINE LEARNING TECHNIQUES
While there has been a lot of study on handling the path plan-
ning problem, in both single and multiple AUV applications,
very few of the solutions incorporate ML approaches hence
the focus of this paper. The study of computer algorithms

FIGURE 6. A typical path planning for AUV using supervised learning.

that can automatically learn from experience and get better
over time without being explicitly programmed is known as
ML [51]. ML algorithms are most useful in an extensive vari-
ety of applications where developing conventional algorithms
for task performance is difficult to achieve. They have aided
and continued to assist in several paradigms in almost all
fields of human endeavours. The three major kinds of ML
algorithms: supervised learning, unsupervised learning, and
reinforcement learning are discussed as follows.

A. SUPERVISED LEARNING
Supervised learning involves creating a function that learns
to correctly connect an input to a particular output based on a
well-labelled set of input-output data pairs [4]. There are two
types of supervised learning issues: regression problems and
classification challenges. Fig. 6 depicts a typical application
of supervised learning to path planning algorithms.

Training examples and labels can be provided from
onboard sensors (self-supervised learning). The robot can be
trained to evaluate the cost of deciding on a path. Based on
its evaluation and learning a decision is made about its path
planning. The algorithm in the regression attempts to offer a
continuous-valued output, whereas the classification method
intends to provide a label or discrete-valued output.

Supervised learning techniques provide several advantages
such as less computational complexity compared to unsu-
pervised and reinforcement learning. However, it requires
human intervention for labelling data and training data. Some
examples of supervised learning are linear regression, ran-
dom forest, support vector machines, logistic regression, arti-
ficial neural network, convolutional neural network, recurrent
neural network, K-nearest neighbour, and Naïve Bayes.

In solving the path planning problem, artificial neural net-
works (ANN) and spiked neural networks (SNN) are the most
common supervised learning techniques. They are discussed
as follows:

1) ARTIFICIAL NEURAL NETWORK
An artificial neural network is a computational network
model inspired by the structure of an animal brain of biolog-
ical neurons. It is possible to view the network as a graph of
nodes linked by edges. The edges relay activation information
from one node to another, just like how electrical signals are
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FIGURE 7. (a) Biological neuron.

FIGURE 8. (b) Artificial neuron [53].

passed through biological neurons [52]. Fig. 7 and Fig 8.
show illustrations of a biological neuron and an artificial
neuron respectively.

Due to its great intelligence, the artificial neural network
algorithm receives increasing attention. However, the major-
ity of artificial neural network path planning algorithms have
drawbacks, including extended learning times, weak gener-
alisation abilities, sluggish processing speeds, and learning
delays, making it challenging to ensure real-time path plan-
ning performance [54]. Despite their flaws, artificial neu-
ral network methods are nevertheless often utilised in AUV
path planning because of their strong learning and adaptive
capabilities, robustness, and parallelism [2] Spiked Neural
Network (SNN).

In recent years, interest in the SNN has started to grow
to get beyond the limits of conventional artificial neural
network techniques [55]. The SNN is a model inspired by the
biological neural network developed by using electric circuit
elements to solve the differential equations of a uniform patch
of a membrane in a biological neuron. A regular ANN and
SNN vary in that an SNN makes an effort to more accurately
resemble a biological neural network utilising a series of
spikes.

A sequence of spikes is inputted into the SNN, and a series
of spikes are produced as the output [56]. The differential
equation that describes the neuron’s membrane potential pre-
dicts when a spikewill occur [57]. In principle, when a neuron
reaches a specific potential, it spikes, resetting the neuron’s
potential.

FIGURE 9. A Membrane potential (solid line) of a Hodgkin–Huxley neuron
under a sustained current per area (dashed line) of 18 µA/cm2 [58].

The Hodgkin-Huxley model, Izhikevich model, and leaky
integrate-and-fire (LIF) model are some of the extensively
used SNN-based neuron models [58]. For example, the
Hodgkin–Huxley model of the neuron shown in Fig. 9 is
described by a nonlinear ordinary differential equation below:

Cm
du
dt

= −gNa (u − VNa)m3h − gk (u − Vk) n4

−gL (u − VL)+ I (13)

where u is the potential of the membrane; Cm is the mem-
brane’s effective capacitance; time is t , and the conductance
of the sodium, potassium, and leak channels, are gNa, gk ,
and gL , respectively. The reversal potentials of the sodium,
potassium, and leak channels, respectively, are VNa, Vk , and
VL ; I denote the stimulation current; whilem, n, and h are the
coefficients in equation (13).

The Hodgkin-Huxley models are the most widely
employed for local path planning even though LIF mod-
els are thought to be less computationally intensive than
the Hodgkin-Huxley models [58]. Fig. 10 depicts a 2D
architecture of the Hodgkin-Huxley-based bio-inspired neu-
rodynamic model for local path planning. The 2D model
represents the local environment around the AUV i. r0 is the
sensing radius of the AUV, while wij is the connection weight
between i and one of the neighbouring neurons j.

B. UNSUPERVISED LEARNING
In unsupervised learning, the machine agent is trained with-
out supervision i.e. training involves the use of the informa-
tion without classification or labels and no form of external
assistance. Hence, in unsupervised learning, the agent carries
out the task of grouping the uncategorized data based on
similar features, patterns, and differences [59]. Unsupervised
learning is appropriate for user grouping and may be used for
dimension reduction, pattern search, and clustering. K-means
clustering, principal component analysis, and hierarchical
clustering are examples of unsupervised learning techniques.
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FIGURE 10. 2D Architecture of bio-inspired neurodynamic model for local
path planning.

While unsupervised learning offers many advantages such
as the ability to determine the inherent structure of unlabeled
data, it is computationally harder than other machine learning
methods since it lacks supervision and requires large data set
to obtain meaningful results. It is also comparatively less reli-
able and accurate as it is difficult to get precise information to
make dependable decisions. It is usually combined with other
methods including human intervention for more meaningful
output. Hence, it has not been used for local path planning
for a single AUV. Nevertheless, unsupervised learning tech-
niques such as self-organizing maps are deployed to han-
dle task assignment allocation in Multi-AUV path planning
scenarios [60], [61], [62].

C. REINFORCEMENT LEARNING
Reinforcement learning is an ML paradigm where the
machine learns through trial and error and as such data
classification is not needed [26]. In reinforcement learning,
the computer is unaware of the actions to perform and must
instead learn which acts are most rewarding via trial and error.
The reward or lack of reward (punishment) gotten from its
actions are indicative of how close the agent is to fulfil its
objective [63]. The concept of reinforcement learning is a
Markov Decision Process as shown in Fig. 11.

FIGURE 11. Reinforcement learning process.

There are different approaches to reinforcement learn-
ing techniques, the more common approaches used in path

planning are Monte Carlos [64], Q-learning [65], Deep Q
Network [66], Twin Delayed Deep Deterministic policy
gradient algorithm [67], [68], Deep Deterministic Policy
Gradient [69], [70], Soft Actor-Critic [71], Asynchronous
Advantage Actor-Critic algorithm [72], [73], Trust Region
Policy Optimization [74] and Proximal Policy Optimiza-
tion (PPO) [72]. Each RL technique offers a performance
improvement to the path planning methods.

The path planning strategies perform better due to each RL
methodology. Particularly in unknown and unstable marine
environments, RL algorithms work effectively in the motion
planning process of the AUVs due to their adaptation to
complex systems and the model-free characteristic [75].

IV. MACHINE LEARNING AIDED LOCAL PATH PLANNING
In this section, a review of the ML techniques in local path
planning algorithms for AUVs is presented under two cate-
gories: supervised learning and reinforcement learning.

A. SUPERVISED LEARNING
Reference [76] proposes the use of a dynamic neural network
for AUV path planning. Some advantages of their approach
are 3D application and its optimization for time and safety.
Additionally, it takes into account dynamic changing cur-
rents, However, the approach includes several assumptions
of the AUV in simulation and has high computational com-
plexity. Reference [77] uses Bio-Inspired Neural Networks
for AUV path planning. The authors implement the method
using real-life scenarios is implemented in real-life and con-
sider both underwater and surface vehicles. However, real-life
implementation is expensive and their approach lacks empha-
sis on path length, time and energy optimization as well
as not being compared to other algorithms. Reference [18]
uses BINN and sonar for image processing to plan paths for
AUVs. It does not require proper knowledge and learning
procedures, which is useful in situations where the envi-
ronment is not well-known. However, this method is also
computationally expensive and the need for image processing
techniques since there is always an incomplete description
of the local environment. Also, there is no comparison with
other algorithms. Reference [78] uses potential field BINN
for AUV path planning. It focuses on the optimization of
energy and path length, which is crucial for long-duration
missions. It has better performance when compared to the
particle swarm optimization (PSO) algorithm. However, the
authors do not consider ocean currents and are limited to 2D
simulation. Reference [79] uses BINN and velocity synthesis
for AUV path planning. One of the advantages of this method
is its multi-AUV ocean current integration, which is useful
in situations where multiple AUVs need to navigate together.
Additionally, it achieves path time and length optimization
and an improved BINN technique. However, the authors limit
the focus to 2D simulation with many factors being simpli-
fied and do not consider dynamic targets in ocean currents.
[80] uses dynamic BINN for AUV path planning. It is an
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TABLE 2. Summary of supervised learning approaches in local path planning for AUVs.
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TABLE 3. Summary of reinforcement learning approaches in local path planning for AUVs.
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TABLE 3. (Continued.) Summary of reinforcement learning approaches in local path planning for AUVs.

improvement of BINN through virtual targets, which allows
it to handle larger environments and changing targets,
It achieves energy optimization but it still suffers low effi-
ciency and does not consider ocean currents. It is also not
evaluated against other methods. [54] uses Glasius BINN for
AUVpath planning. Their focus is on coverage path planning,
its 2D underwater environment, it achieves improved BINN,
lower computational complexity, shorter planning time and
distance and no prior learning procedure required. However,
it also does not consider ocean currents and is limited to 2D
environments.

The summary of the various methods for path planning for
AUVs with the set of optimization objectives and advantages
and disadvantages are presented in Table 2.

B. REINFORCEMENT LEARNING
Reference [81] uses Q-Learning and path-smoothing algo-
rithms for path planning. It considers the dynamic and
kinematic model characteristics of the AUV and the dis-
turbance effect of the ocean environment in its approach
and has better performance when compared to ∗, RRT∗ and
Dynamic programming based on Zermelo’s problem. How-
ever, the method only focuses on path distance and time and
not obstacle avoidance and it is limited to 2D simulation.
Reference [82] uses Q-learning and neural networks for path
planning. It achieves obstacle avoidance in unknown and
hostile environments, while also considering the kinematics
of the AUV. Additionally, it reaches the destination with real-
time learning and path optimization. It, however, does not
consider the effects of ocean currents, the planning time and
distance, there is no comparison with other methods. The
Actor Multi Critic Reinforcement Learning method is used
in [83] for path planning. This method achieves obstacle
avoidance and energy optimization. It improves the learning
efficiency of the traditional reinforcement learning method
and is suitable for complex tasks and diverse applications. Its
drawbacks are long training time, high computational com-
plexity and inability to avoid obstacles at excessive speed.
The authors also do not consider ocean currents and do

not emphasize path time and path distance. Reference [84]
uses a combination of reinforcement learning and artificial
potential field for path planning. It overcomes the problem of
under-driven AUVs travelling safely in underwater canyons.
Additionally, it improves the reinforcement learning method
(DDPG) and considers the kinematics and dynamics of the
AUV. However, the method only applies to the specific case
of underwater canyons, does not consider ocean current, path
time and length of AUV, and is computationally expensive.
Reference [85] uses deep reinforcement learning for path
planning. It achieves obstacle avoidance while considering
the kinematic dynamics of the AUV. Additionally, it improves
RL techniques (Deep reinforcement) but does not consider
the path distance of AUV or the training time of the path.
Reference [86] uses dynamic programming for path plan-
ning. It models the AUV system with wind, waves, and
ocean current environment while considering the kinetics
and kinematics of the AUV. It also uses the least square
policy method to appropriate the value function. However,
obstacles are static, and the path time and path length of
AUV is not optimized. There is also no comparison with other
methods. Reference [75] The Asynchronous Multithreading
Reinforcement Learning method is used for path planning for
both single and multi AUVs. The focus of the approach is
on global and local path-planning processes, which improves
the overall path-planning. It is shown to outperform RRT and
Artificial Potential field methods in some cases as it reduces
the computational load. Table 3 summarizes the variousmeth-
ods for path planning for AUVs using different reinforcement
learning techniques. Eachmethod has its own set of optimiza-
tion objectives, advantages, and disadvantages.

V. DISCUSSION (CHALLENGES AND FUTURE WORKS)
In this section, challenges of the application of ML tech-
niques in local path planning from the literature review
are presented with recommendations and suggestions. The
discussions are categorized as real-life deployment, simu-
lated scenarios, computational issues, multi-AUVs, and ML
algorithms.
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A. REAL-LIFE DEPLOYMENT
A general observation from the review of the literature shows
that most of the local path planning systems have only been
tested through simulations. A study by [18] demonstrated the
implementation of using local path planning to avoid obsta-
cles in a lake. Although the results look promising several
challenges need to be addressed in the real-life deployment
of AUV local path planning. They include 1). hardware opti-
mization for real applications is also a research issue from
image processing to image and sensor technology, to energy
consumption, management, and efficiency. Hence, further
research and studies are needed for real-life deployment using
ML techniques.

B. SIMULATED SCENARIOS
To simulate more realistic underwater scenarios, AUV path
planning research must take into account ocean conditions.
The conditions of the ocean are made up of strong currents,
rugged terrain with uneven shapes, and barriers whose posi-
tions can be dynamic and unpredictable. With many papers
published on [87]. Many publications on AUV path planning
have been published, but very few have provided compelling
field trial findings of AUVs operating in dynamic, crowded,
and unpredictable ocean settings in AUV route planning [5].
From the current research, it is difficult to say whether the
technologies produced thus far are dependable enough to
tackle complicated maritime settings or are merely capable
of performing specific objectives. The issue here is to create
computationally efficient and rigorous frameworks that incor-
porate both environmental limits and vehicle control while
also providing the vehicle with an optimal path [88]. Also,
such developed frameworks should incorporate the testing
and comparisons of multiple algorithms including ML-based
algorithms. With the frameworks developed, there is the need
to introduceML techniques in ways that are optimal based on
the objectives of the application. More effort has to be done to
develop benchmarks for comparing algorithms and providing
design specifications for path planning systems.

C. COMPUTATIONAL ISSUES
AUV path planning across a vast geographical area is
an optimization challenge. The computing needs for tack-
ling such high-dimensional problems rise sharply is the
change in dimension and increase in the solution space. The
initial learning phase of machine learning naturally adds
to the computation complexities. Some applications find
innovative ways to skip or reduce the learning phase in
both reinforcement learning and bioinspired neural networks
[6], [54], [75], [89]. Another idea to speed up the planning
process and reduce memory requirements is to project the
3D world to 2D in the path planning algorithm [39], [90].
Unfortunately, this 2D area cannot include all of the 3D
information about the ocean environment.

D. MULTI-AUVs
While there has been more study in recent years on multi-
AUV route planning using non-ML methods, additional ML

approaches in multi-AUVs need to be studied. More efforts
should bemade to establish a rigorous path planning guidance
system for multiple marine vehicle synchronisation in ocean
conditions [91], [88]. This system should be able to build
paths for many vehicles while consuming the least amount
of time across all participating vehicles and guaranteeing that
the vehicles arrive at their meeting spot at the same. This
system must also be light in terms of operating time and able
to integrate many aspects impacting a specific mission, such
as vehicle dynamics and environmental conditions. The par-
ticular properties of ocean current conditions, along with the
varying capabilities of different vehicles, make cooperative
path planning of several AUVs more difficult.

1) ML ALGORITHMS
The lack of initial training in the agent is an issue in ML path
planning algorithms. While other algorithms follow a par-
ticular sequence. Real-time ML methods must learn almost
always in real-time, this leads to initial poor performance or
delays in path planning. There have been attempts to seek to
speed the learning process by combining learning methods
and using improved ML algorithms methods [55], [89], [92].
This area can also be improved with the advancement of ML
in other areas on application like unmanned Aerial Vehicles
(UAVs) [93]. Also, combined ML algorithms with non-ML
algorithm for improved performance in terms of time of
travel, safety, and energy efficiency is also an area of open
research.

VI. CONCLUSION
This paper presents an overview of the state-of-the-art appli-
cation of ML techniques on local path planning for AUVs.
The ML algorithms are discussed, and the challenges are
identified with future research directions presented. Overall,
the main ML algorithms used in path planning include neural
networks and reinforcement learning. While there has been a
good amount of research into ML approaches in path plan-
ning, there are still several milestones to be achieved includ-
ing energy efficiency, simulation scenarios, and effective ML
approaches in cooperative path planning.

REFERENCES
[1] C. Okereke, N. H. A. Wahab, M. M. Mohamad, and S. H. Zaleha,

‘‘Autonomous underwater vehicle in Internet of Underwater Things? A
Survey,’’ J. Phys., Conf. Ser., vol. 2129, Feb. 2021, Art. no. 012080.

[2] Y. Guo, H. Liu, X. Fan, and W. Lyu, ‘‘Research progress of path plan-
ning methods for autonomous underwater vehicle,’’Math. Problems Eng.,
vol. 2021, pp. 1–25, Feb. 2021, doi: 10.1155/2021/8847863.

[3] Z. Zeng, L. Lian, K. Sammut, F. He, Y. Tang, and A. Lammas, ‘‘A sur-
vey on path planning for persistent autonomy of autonomous under-
water vehicles,’’ Ocean Eng., vol. 110, pp. 303–313, Dec. 2015, doi:
10.1016/j.oceaneng.2015.10.007.

[4] M. W. Otte, ‘‘A survey of machine learning approaches to robotic path-
planning,’’ Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 2008, doi:
10.1109/ICALIP.2016.7846622.

[5] X. Pan, X. Wu, and X. Hou, ‘‘Research on global path planning for
autonomous underwater vehicle considering ocean current,’’ in Proc.
2nd IEEE Adv. Inf. Manage., Commun., Electron. Autom. Control Conf.
(IMCEC), May 2018, pp. 790–793, doi: 10.1109/IMCEC.2018.8469716.

24904 VOLUME 11, 2023

http://dx.doi.org/10.1155/2021/8847863
http://dx.doi.org/10.1016/j.oceaneng.2015.10.007
http://dx.doi.org/10.1109/ICALIP.2016.7846622
http://dx.doi.org/10.1109/IMCEC.2018.8469716


C. E. Okereke et al.: Overview of Machine Learning Techniques in Local Path Planning for AUVs

[6] M. Panda, B. Das, B. Subudhi, and B. B. Pati, ‘‘A comprehensive
review of path planning algorithms for autonomous underwater vehicles,’’
Int. J. Autom. Comput., vol. 17, no. 3, pp. 321–352, Jun. 2020, doi:
10.1007/s11633-019-1204-9.

[7] E. Galceran, ‘‘Coverage path planning for autonomous underwater vehi-
cles,’’ M.S. thesis, Univ. Girona, Girona, Spain, 2014. [Online]. Available:
http://hdl.handle.net/10803/133832

[8] D. Li, P. Wang, and L. Du, ‘‘Path planning technologies for autonomous
underwater vehicles—A review,’’ IEEE Access, vol. 7, pp. 9745–9768,
2019, doi: 10.1109/ACCESS.2018.2888617.

[9] J. D. Hernández, E. Vidal, G. Vallicrosa, E. Galceran, and M. Carreras,
‘‘Online path planning for autonomous underwater vehicles in unknown
environments,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2015,
pp. 1152–1157, doi: 10.1109/ICRA.2015.7139336.

[10] L. G. D. O. Veras, F. L. L. Medeiros, and L. N. F. Guimaraes,
‘‘Systematic literature review of sampling process in rapidly-exploring
random trees,’’ IEEE Access, vol. 7, pp. 50933–50953, 2019, doi:
10.1109/ACCESS.2019.2908100.

[11] S.-M. Lee, K.-Y. Kwon, and J. Joh, ‘‘A fuzzy logic for autonomous navi-
gation of marine vehicles satisfying COLREG guidelines,’’ Int. J. Control,
Autom., Syst., vol. 2, no. 2, pp. 171–181, 2004.

[12] B. Zhu, L. Liu, L. Zhang, M. Liu, Y. Duanmu, Y. Chen, P. Dang, and J. Li,
‘‘A variable-order fuzzy logic controller design method for an unmanned
underwater vehicle based on NSGA-II,’’ Fractal Fractional, vol. 6, no. 10,
p. 577, Oct. 2022, doi: 10.3390/fractalfract6100577.

[13] C. Cheng, Q. Sha, B. He, and G. Li, ‘‘Path planning and obstacle avoidance
for AUV: A review,’’ Ocean Eng., vol. 235, Sep. 2021, Art. no. 109355,
doi: 10.1016/j.oceaneng.2021.109355.

[14] C. Okereke, N. Haliza, A.Wahab, andM.Murtadha, ‘‘A review of machine
learning path planning algorithms for autonomous underwater vehicles
(AUV) in Internet of Underwater Things (IoUT),’’ in Proc. 12th Int. Conf.
Internet (ICONI), Dec. 2020, pp. 1–6.

[15] P. F. J. Lermusiaux, D. N. Subramani, J. Lin, C. S. Kulkarni, A. Gupta,
A. Dutt, T. Lolla, P. J. Haley, W. H. Ali, C. Mirabito, and S. Jana, ‘‘A future
for intelligent autonomous ocean observing systems,’’ J. Mar. Res., vol. 75,
no. 6, pp. 765–813, 2017.

[16] D. T. Roper, A. B. Phillips, C. A. Harris, G. Salavasidis, M. Pebody,
R. Templeton, S. V. S. Amma, M. Smart, and S. McPhail,
‘‘Autosub long range 1500: An ultra-endurance AUV with 6000 km
range,’’ in Proc. OCEANS Aberdeen, Jun. 2017, pp. 1–5, doi:
10.1109/OCEANSE.2017.8084928.

[17] M. E. Furlong, D. Paxton, P. Stevenson, M. Pebody, S. D. McPhail,
and J. Perrett, ‘‘Autosub long range: A long range deep diving AUV for
ocean monitoring,’’ in Proc. IEEE/OES Auto. Underwater Vehicles (AUV),
Sep. 2012, pp. 1–7, doi: 10.1109/AUV.2012.6380737.

[18] M. Yan, F. Gao, X. Qin, and D. Zhu, ‘‘Sonar-based local path planning for
an AUV in large-scale underwater environments,’’ Indian J. Geo-Mar. Sci.,
vol. 46, no. 12, pp. 2527–2535, 2017.

[19] F. Kong, Y. Guo, and W. Lyu, ‘‘Dynamics modeling and motion con-
trol of an new unmanned underwater vehicle,’’ IEEE Access, vol. 8,
pp. 30119–30126, 2020, doi: 10.1109/ACCESS.2020.2972336.

[20] M. Dinç and C. Hajiyev, ‘‘Autonomous underwater vehicle dynamics,’’ in
Autonomous Vehicles: Intelligent Transport Systems and Smart Technolo-
gies. Romania: Nova Science Publishers, 2014, p. 81111.

[21] J. Kadiyam, A. Parashar, S. Mohan, and D. Deshmukh, ‘‘Actuator
fault-tolerant control study of an underwater robot with four rotat-
able thrusters,’’ Ocean Eng., vol. 197, Feb. 2020, Art. no. 106929, doi:
10.1016/j.oceaneng.2020.106929.

[22] J. Silva, B. Terra, R. Martins, and J. Sousa. (2007). Modeling and
Simulation of the LAUV Autonomous Underwater Vehicle. Accessed:
Dec. 20, 2022. [Online]. Available: https://www.semanticscholar.org/
paper/Modeling-and-Simulation-of-the-LAUV-Autonomous-Silva-
Terra/5b1c6a0062846208a69211f974ba4cd04d4a7375

[23] Y. Su, J. Zhao, J. Cao, and G. Zhang, ‘‘Dynamics modeling and simula-
tion of autonomous underwater vehicles with appendages,’’ J. Mar. Sci.
Appl., vol. 12, no. 1, pp. 45–51, Mar. 2013, doi: 10.1007/s11804-013-
1169-6.

[24] A. Sahoo, S. K. Dwivedy, and P. S. Robi, ‘‘Advancements in the field
of autonomous underwater vehicle,’’ Ocean Eng., vol. 181, pp. 145–160,
Jun. 2019, doi: 10.1016/j.oceaneng.2019.04.011.

[25] N. T. Hung, F. Rego, N. Crasta, and A. M. Pascoal, ‘‘Input-constrained
path following for autonomous marine vehicles with a global region of
attraction,’’ IFAC-PapersOnLine, vol. 51, no. 29, pp. 348–353, 2018, doi:
10.1016/j.ifacol.2018.09.499.

[26] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, ‘‘A Voronoi-
diagram-based dynamic path-planning system for underactuated marine
vessels,’’ Control Eng. Pract., vol. 61, pp. 41–54, Apr. 2017, doi:
10.1016/j.conengprac.2017.01.007.

[27] Z. Zeng, K. Sammut, L. Lian, F. He, A. Lammas, and Y. Tang, ‘‘A compar-
ison of optimization techniques for AUV path planning in environments
with ocean currents,’’ Robot. Auto. Syst., vol. 82, pp. 61–72, Aug. 2016,
doi: 10.1016/j.robot.2016.03.011.

[28] A. Barua, J. Kalwa, Y. Shardt, and T. Glotzbach, ‘‘Path planning for an
identification mission of an autonomous underwater vehicle in a lemnis-
cate form,’’ IFAC-PapersOnLine, vol. 51, no. 29, pp. 323–328, 2018, doi:
10.1016/j.ifacol.2018.09.503.

[29] H. S. Lim, S. Fan, C. K. H. Chin, S. Chai, N. Bose, and E. Kim,
‘‘Constrained path planning of autonomous underwater vehicle using
selectively-hybridized particle swarm optimization algorithms,’’
IFAC-PapersOnLine, vol. 52, no. 21, pp. 315–322, 2019, doi:
10.1016/j.ifacol.2019.12.326.

[30] X. Liu, M. Zhang, and S. Wang, ‘‘Adaptive region tracking control with
prescribed transient performance for autonomous underwater vehicle with
thruster fault,’’ Ocean Eng., vol. 196, Jan. 2020, Art. no. 106804, doi:
10.1016/j.oceaneng.2019.106804.

[31] T. Fossen,Handbook of Marine Craft Hydrodynamics andMotion Control,
1st ed. Hoboken, NJ, USA: Wiley, 2011, doi: 10.1002/9781119994138.

[32] M. Zhang, X. Liu, and F. Wang, ‘‘Backstepping based adaptive
region tracking fault tolerant control for autonomous underwater vehi-
cles,’’ J. Navigat., vol. 70, no. 1, pp. 184–204, Jul. 2017, doi:
10.1017/S0373463316000370.

[33] C. W. Warren, ‘‘A technique for autonomous underwater vehicle route
planning,’’ in Proc. Symp. Auto. Underwater Vehicle Technol., 1990,
pp. 201–205, doi: 10.1109/AUV.1990.110457.

[34] E. W. Dijkstra, ‘‘A note on two problems in connexion with
graphs,’’ Numerische Mathematik, vol. 1, p. 269271, Jul. 1959, doi:
10.1145/3544585.3544600.

[35] G. Qing, Z. Zheng, and X. Yue, ‘‘Path-planning of automated guided
vehicle based on improved Dijkstra algorithm,’’ in Proc. 29th Chin.
Control Decis. Conf. (CCDC), May 2017, pp. 7138–7143, doi:
10.1109/CCDC.2017.7978471.

[36] K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K. Friesen,
and G. N.William, ‘‘AUV path planning: An A∗ approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping,
time-dependent exclusion zones,’’ in Proc. Symp. Auto. Underwater Vehi-
cle Technol., 1992, pp. 79–84, doi: 10.1109/AUV.1992.225191.

[37] D. Ferguson and A. Stentz, ‘‘Using interpolation to improve path planning:
The field D∗ algorithm,’’ J. Field Robot., vol. 23, no. 2, pp. 79–101,
Mar. 2006, doi: 10.1002/ROB.20109.

[38] B. Garau, M. Bonet, A. Alvarez, S. Ruiz, and A. Pascual, ‘‘Path planning
for autonomous underwater vehicles in realistic oceanic current fields:
Application to gliders in theWesternMediterranean sea,’’ J. Maritime Res.,
vol. 6, no. 2, pp. 5–22, 2009.

[39] A. Alvarez, A. Caiti, and R. Onken, ‘‘Evolutionary path planning
for autonomous underwater vehicles in a variable ocean,’’ IEEE
J. Ocean. Eng., vol. 29, no. 2, pp. 418–429, Apr. 2004, doi:
10.1109/JOE.2004.827837.

[40] T.-B. Koay and M. Chitre, ‘‘Energy-efficient path planning for fully
propelled AUVs in congested coastal waters,’’ in Proc. MTS/IEEE
OCEANS Bergen, Jun. 2013, pp. 1–9, doi: 10.1109/OCEANS-
BERGEN.2013.6608168.

[41] J. Witt and M. Dunbabin, ‘‘Go with the flow: Optimal AUV path plan-
ning in coastal environments,’’ in Proc. Australas. Conf. Robot. Automat.,
Australia, Jan. 2009.

[42] K. G. Omeke, M. S. Mollel, L. Zhang, Q. H. Abbasi, and M. A. Imran,
‘‘Energy optimisation through path selection for underwater wire-
less sensor networks,’’ in Proc. Int. Conf. U.K.-China Emerg. Tech-
nol. (UCET), Aug. 2020, pp. 1–4, doi: 10.1109/UCET51115.2020.
9205429.

[43] Z. Fang, J. Wang, J. Du, X. Hou, Y. Ren, and Z. Han, ‘‘Stochastic
optimization-aided energy-efficient information collection in
Internet of Underwater Things networks,’’ IEEE Internet Things J.,
vol. 9, no. 3, pp. 1775–1789, Feb. 2022, doi: 10.1109/JIOT.2021.
3088279.

[44] H. Nam, ‘‘Data-gathering protocol-based AUV path-planning for
long-duration cooperation in underwater acoustic sensor networks,’’
IEEE Sensors J., vol. 18, no. 21, pp. 8902–8912. Nov. 2018, doi:
10.1109/JSEN.2018.2866837.

VOLUME 11, 2023 24905

http://dx.doi.org/10.1007/s11633-019-1204-9
http://dx.doi.org/10.1109/ACCESS.2018.2888617
http://dx.doi.org/10.1109/ICRA.2015.7139336
http://dx.doi.org/10.1109/ACCESS.2019.2908100
http://dx.doi.org/10.3390/fractalfract6100577
http://dx.doi.org/10.1016/j.oceaneng.2021.109355
http://dx.doi.org/10.1109/OCEANSE.2017.8084928
http://dx.doi.org/10.1109/AUV.2012.6380737
http://dx.doi.org/10.1109/ACCESS.2020.2972336
http://dx.doi.org/10.1016/j.oceaneng.2020.106929
http://dx.doi.org/10.1007/s11804-013-1169-6
http://dx.doi.org/10.1007/s11804-013-1169-6
http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1016/j.ifacol.2018.09.499
http://dx.doi.org/10.1016/j.conengprac.2017.01.007
http://dx.doi.org/10.1016/j.robot.2016.03.011
http://dx.doi.org/10.1016/j.ifacol.2018.09.503
http://dx.doi.org/10.1016/j.ifacol.2019.12.326
http://dx.doi.org/10.1016/j.oceaneng.2019.106804
http://dx.doi.org/10.1002/9781119994138
http://dx.doi.org/10.1017/S0373463316000370
http://dx.doi.org/10.1109/AUV.1990.110457
http://dx.doi.org/10.1145/3544585.3544600
http://dx.doi.org/10.1109/CCDC.2017.7978471
http://dx.doi.org/10.1109/AUV.1992.225191
http://dx.doi.org/10.1002/ROB.20109
http://dx.doi.org/10.1109/JOE.2004.827837
http://dx.doi.org/10.1109/OCEANS-BERGEN.2013.6608168
http://dx.doi.org/10.1109/OCEANS-BERGEN.2013.6608168
http://dx.doi.org/10.1109/UCET51115.2020.9205429
http://dx.doi.org/10.1109/UCET51115.2020.9205429
http://dx.doi.org/10.1109/JIOT.2021.3088279
http://dx.doi.org/10.1109/JIOT.2021.3088279
http://dx.doi.org/10.1109/JSEN.2018.2866837


C. E. Okereke et al.: Overview of Machine Learning Techniques in Local Path Planning for AUVs

[45] T. Lolla, M. P. Ueckermann, K. Yigit, P. J. Haley, and P. F. J. Lermusiaux,
‘‘Path planning in time dependent flow fields using level set methods,’’
in Proc. IEEE Int. Conf. Robot. Autom., May 2012, pp. 166–173, doi:
10.1109/ICRA.2012.6225364.

[46] C. Lin, G. Han, J. Du, Y. Bi, L. Shu, and K. Fan, ‘‘A path planning scheme
for AUV flock-based Internet-of-Underwater-Things systems to enable
transparent and smart ocean,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9760–9772, Oct. 2020, doi: 10.1109/jiot.2020.2988285.

[47] M. Al-Bzoor, E. Al-Assem, L. Alawneh, and Y. Jararweh, ‘‘Autonomous
underwater vehicles support for enhanced performance in the Internet of
Underwater Things,’’ Trans. Emerg. Telecommun. Technol., vol. 32, no. 3,
pp. 1–19, Mar. 2021, doi: 10.1002/ett.4225.

[48] Z. Fang, J. Wang, C. Jiang, X. Wang, and Y. Ren, ‘‘Average peak age of
information in underwater information collection with sleep-scheduling,’’
IEEE Trans. Veh. Technol., vol. 71, no. 9, pp. 10132–10136, Sep. 2022,
doi: 10.1109/TVT.2022.3176819.

[49] A. Al-Habob, O. Dobre, and V. Poor, ‘‘Age-optimal information gathering
in linear underwater networks: A deep reinforcement learning approach,’’
IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13129–13138, Dec. 2021,
doi: 10.1109/TVT.2021.3117536.

[50] M. Samir, C. Assi, S. Sharafeddine, D. Ebrahimi, and A. Ghrayeb, ‘‘Age of
information aware trajectory planning of UAVs in intelligent transportation
systems: A deep learning approach,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 11, pp. 12382–12395, Nov. 2020, doi: 10.1109/TVT.2020.3023861.

[51] T. O. Ayodele, ‘‘Introduction to machine learning,’’ in New Advances
in Machine Learning, Y. Zhang, Ed. Rijeka, Croatia: InTech, 2010.
[Online]. Available: http://www.intechopen.com/books/new-advances-in-
machine-learning/introduction-to-machine-learning

[52] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduc-
tion,’’ IEEE Trans. Neural Netw., vol. 9, no. 5, p. 1054, Sep. 1998, doi:
10.1109/TNN.1998.712192.

[53] Z. Meng, Y. Hu, and C. Ancey, ‘‘Using a data driven approach to predict
waves generated by gravity driven mass flows,’’ Water, vol. 12, no. 2,
p. 600, Feb. 2020, doi: 10.3390/w12020600.

[54] D. Zhu, C. Tian, B. Sun, and C. Luo, ‘‘Complete coverage path planning
of autonomous underwater vehicle based on GBNN algorithm,’’ J. Intell.
Robot. Syst., vol. 94, no. 1, pp. 237–249, Apr. 2019, doi: 10.1007/s10846-
018-0787-7.

[55] J. Ni, X. Li, M. Hua, and S. X. Yang, ‘‘Bioinspired neural network-
based Q-learning approach for robot path planning in unknown environ-
ments,’’ Int. J. Robot. Autom., vol. 31, no. 6, pp. 464–474, 2016, doi:
10.2316/Journal.206.2016.6.206-4526.

[56] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. Maida, ‘‘Deep learning in spiking neural networks,’’ Neural Netw.,
vol. 111, pp. 47–63, Mar. 2019, doi: 10.1016/j.neunet.2018.12.002.

[57] Basic Guide to Spiking Neural Networks for Deep Learning. Accessed:
Aug. 30, 2022. [Online]. Available: https://cnvrg.io/spiking-neural-
networks/

[58] M. J. Skocik and L. N. Long, ‘‘On the capabilities and computational costs
of neuron models,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 8,
pp. 1474–1483, Aug. 2014, doi: 10.1109/TNNLS.2013.2294016.

[59] B. C. Love, ‘‘Comparing supervised and unsupervised category learn-
ing,’’ Psychonomic Bull. Rev., vol. 9, no. 4, pp. 829–835, Dec. 2002, doi:
10.3758/BF03196342.

[60] M. Chen and D. Zhu, ‘‘A workload balanced algorithm for task assignment
and path planning of inhomogeneous autonomous underwater vehicle
system,’’ IEEE Trans. Cogn. Develop. Syst., vol. 11, no. 4, pp. 483–493,
Dec. 2019, doi: 10.1109/TCDS.2018.2866984.

[61] D. Zhu, X. Cao, B. Sun, and C. Luo, ‘‘Biologically inspired self-organizing
map applied to task assignment and path planning of an AUV system,’’
IEEE Trans. Cogn. Develop. Syst., vol. 10, no. 2, pp. 304–313, Jun. 2018,
doi: 10.1109/TCDS.2017.2727678.

[62] D.-Q. Zhu, Y. Qu, and S. X. Yang, ‘‘Multi-AUV SOM task allocation algo-
rithm considering initial orientation and ocean current environment,’’Fron-
tiers Inf. Technol. Electron. Eng., vol. 20, no. 3, pp. 330–341, Mar. 2019,
doi: 10.1631/FITEE.1800562.

[63] F. Zou, G. G. Yen, L. Tang, and C. Wang, ‘‘A reinforcement learning
approach for dynamic multi-objective optimization,’’ Inf. Sci., vol. 546,
pp. 815–834, Feb. 2021, doi: 10.1016/j.ins.2020.08.101.

[64] Z. Cao, D. Yang, S. Xu, H. Peng, B. Li, S. Feng, and D. Zhao, ‘‘Highway
exiting planner for automated vehicles using reinforcement learning,’’
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 990–1000, Feb. 2021,
doi: 10.1109/TITS.2019.2961739.

[65] C. Wang, X. Yang, and H. Li, ‘‘Improved Q-Learning applied to
dynamic obstacle avoidance and path planning,’’ IEEE Access, vol. 10,
pp. 92879–92888, 2022, doi: 10.1109/ACCESS.2022.3203072.

[66] P. Lou, K. Xu, X. Jiang, Z. Xiao, and J. Yan, ‘‘Path planning in an unknown
environment based on deep reinforcement learning with prior knowledge,’’
J. Intell. Fuzzy Syst., vol. 41, no. 6, pp. 5773–5789, Dec. 2021, doi:
10.3233/JIFS-192171.

[67] S. Zhang, Y. Li, and Q. Dong, ‘‘Autonomous navigation of UAV in
multi-obstacle environments based on a deep reinforcement learning
approach,’’ Appl. Soft Comput., vol. 115, Jan. 2022, Art. no. 108194, doi:
10.1016/j.asoc.2021.108194.

[68] J. Gao, W. Ye, J. Guo, and Z. Li, ‘‘Deep reinforcement learning for indoor
mobile robot path planning,’’ Sensors, vol. 20, no. 19, p. 5493, Sep. 2020,
doi: 10.3390/s20195493.

[69] R. Wu, F. Gu, and J. Huang, ‘‘A multi-critic deep deterministic policy
gradient UAV path planning,’’ in Proc. 16th Int. Conf. Comput. Intell.
Secur. (CIS), Nov. 2020, pp. 6–10, doi: 10.1109/CIS52066.2020.00010.

[70] Y. Zhao, X. Wang, R. Wang, Y. Yang, and F. Lv, ‘‘Path planning for
mobile robots based on TPR-DDPG,’’ inProc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2021, pp. 1–8, doi: 10.1109/IJCNN52387.2021.9533570.

[71] L. Sun, J. Yan, and W. Qin, ‘‘Path planning for multiple agents in
an unknown environment using soft actor critic and curriculum learn-
ing,’’ Comput. Animation Virtual Worlds, vol. 34, no. 1, Jan. 2023,
Art. no. e2113, doi: 10.1002/cav.2113.

[72] C. Zhou, B. Huang, and P. Fränti, ‘‘A review of motion planning algorithms
for intelligent robots,’’ J. Intell. Manuf., vol. 33, pp. 387–424, Feb. 2022,
doi: 10.1007/s10845-021-01867-z.

[73] W. Li, D. Chen, and J. Le, ‘‘Robot patrol path planning based on
combined deep reinforcement learning,’’ in Proc. IEEE Int. Conf Par-
allel Distrib. Process. Appl., Ubiquitous Comput. Commun., Big Data
Cloud Comput., Social Comput. Netw., Sustain. Comput. Commun.
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), Dec. 2018, pp. 659–666,
doi: 10.1109/BDCloud.2018.00101.

[74] R. U. Hameed, A. Maqsood, A. J. Hashmi, M. T. Saeed, and R. Riaz,
‘‘Reinforcement learning-based radar-evasive path planning: A compara-
tive analysis,’’ Aeronaut. J., vol. 126, no. 1297, pp. 547–564, Mar. 2022,
doi: 10.1017/aer.2021.85.

[75] Z. He, L. Dong, C. Sun, and J. Wang, ‘‘Asynchronous multithreading
reinforcement-learning-based path planning and tracking for unmanned
underwater vehicle,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 5,
pp. 2757–2769, May 2022, doi: 10.1109/TSMC.2021.3050960.

[76] S. Li and Y. Guo, ‘‘Neural-network based AUV path planning in estu-
ary environments,’’ in Proc. 10th World Congr. Intell. Control Autom.,
Jul. 2012, pp. 3724–3730, doi: 10.1109/WCICA.2012.6359093.

[77] A. Guerrero-Gonzalez, F. García-Córdova, and J. Gilabert, ‘‘A biologi-
cally inspired neural network for navigation with obstacle avoidance in
autonomous underwater and surface vehicles,’’ in Proc. OCEANS IEEE
Spain, Jun. 2011, pp. 1–8, doi: 10.1109/Oceans-Spain.2011.6003432.

[78] X. Cao and J. Peng, ‘‘A potential field bio-inspired neural network control
algorithm for AUV path planning,’’ in Proc. IEEE Int. Conf. Inf. Autom.
(ICIA), Aug. 2018, pp. 1427–1432, doi: 10.1109/ICInfA.2018.8812348.

[79] X. Cao, D. Zhu, and S. X. Yang, ‘‘Multi-AUV target search based
on bioinspired neurodynamics model in 3-D underwater environments,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2364–2374,
Nov. 2016, doi: 10.1109/TNNLS.2015.2482501.

[80] J. Ni, L. Wu, P. Shi, and S. X. Yang, ‘‘A dynamic bioinspired neural
network based real-time path planning method for autonomous underwater
vehicles,’’ Comput. Intell. Neurosci., vol. 2017, pp. 1–16, Feb. 2017, doi:
10.1155/2017/9269742.

[81] B. Yoo and J. Kim, ‘‘Path optimization for marine vehicles in ocean
currents using reinforcement learning,’’ J. Mar. Sci. Technol., vol. 21, no. 2,
pp. 334–343, Jun. 2016, doi: 10.1007/s00773-015-0355-9.

[82] P. Bhopale, F. Kazi, and N. Singh, ‘‘Reinforcement learning based obstacle
avoidance for autonomous underwater vehicle,’’ J. Mar. Sci. Appl., vol. 18,
pp. 228–238, Apr. 2019, doi: 10.1007/s11804-019-00089-3.

[83] Z. Wang, S. Zhang, X. Feng, and Y. Sui, ‘‘Autonomous underwater vehicle
path planning based on actor-multi-critic reinforcement learning,’’ Proc.
Inst. Mech. Eng. I, J. Syst. Control Eng., vol. 235, no. 10, pp. 1787–1796,
Nov. 2021, doi: 10.1177/0959651820937085.

[84] Y. Sun, X. Luo, X. Ran, and G. Zhang, ‘‘A 2D optimal path planning
algorithm for autonomous underwater vehicle driving in unknown under-
water canyons,’’ J. Mar. Sci. Eng., vol. 9, no. 3, pp. 1–27, 2021, doi:
10.3390/jmse9030252.

24906 VOLUME 11, 2023

http://dx.doi.org/10.1109/ICRA.2012.6225364
http://dx.doi.org/10.1109/jiot.2020.2988285
http://dx.doi.org/10.1002/ett.4225
http://dx.doi.org/10.1109/TVT.2022.3176819
http://dx.doi.org/10.1109/TVT.2021.3117536
http://dx.doi.org/10.1109/TVT.2020.3023861
http://dx.doi.org/10.1109/TNN.1998.712192
http://dx.doi.org/10.3390/w12020600
http://dx.doi.org/10.1007/s10846-018-0787-7
http://dx.doi.org/10.1007/s10846-018-0787-7
http://dx.doi.org/10.2316/Journal.206.2016.6.206-4526
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1109/TNNLS.2013.2294016
http://dx.doi.org/10.3758/BF03196342
http://dx.doi.org/10.1109/TCDS.2018.2866984
http://dx.doi.org/10.1109/TCDS.2017.2727678
http://dx.doi.org/10.1631/FITEE.1800562
http://dx.doi.org/10.1016/j.ins.2020.08.101
http://dx.doi.org/10.1109/TITS.2019.2961739
http://dx.doi.org/10.1109/ACCESS.2022.3203072
http://dx.doi.org/10.3233/JIFS-192171
http://dx.doi.org/10.1016/j.asoc.2021.108194
http://dx.doi.org/10.3390/s20195493
http://dx.doi.org/10.1109/CIS52066.2020.00010
http://dx.doi.org/10.1109/IJCNN52387.2021.9533570
http://dx.doi.org/10.1002/cav.2113
http://dx.doi.org/10.1007/s10845-021-01867-z
http://dx.doi.org/10.1109/BDCloud.2018.00101
http://dx.doi.org/10.1017/aer.2021.85
http://dx.doi.org/10.1109/TSMC.2021.3050960
http://dx.doi.org/10.1109/WCICA.2012.6359093
http://dx.doi.org/10.1109/Oceans-Spain.2011.6003432
http://dx.doi.org/10.1109/ICInfA.2018.8812348
http://dx.doi.org/10.1109/TNNLS.2015.2482501
http://dx.doi.org/10.1155/2017/9269742
http://dx.doi.org/10.1007/s00773-015-0355-9
http://dx.doi.org/10.1007/s11804-019-00089-3
http://dx.doi.org/10.1177/0959651820937085
http://dx.doi.org/10.3390/jmse9030252


C. E. Okereke et al.: Overview of Machine Learning Techniques in Local Path Planning for AUVs

[85] J. Yuan, H. Wang, H. Zhang, C. Lin, D. Yu, and C. Li, ‘‘AUV obstacle
avoidance planning based on deep reinforcement learning,’’ J. Mar. Sci.
Eng., vol. 9, no. 11, p. 1166, Oct. 2021, doi: 10.3390/jmse9111166.

[86] S. Vibhute, ‘‘Adaptive dynamic programming based motion control
of autonomous underwater vehicles,’’ in Proc. 5th Int. Conf. Con-
trol, Decis. Inf. Technol. (CoDIT), Apr. 2018, pp. 966–971, doi:
10.1109/CoDIT.2018.8394934.

[87] S. Liang, Q. Zhi-Ming, and L. Heng, ‘‘A survey on route planning methods
of AUV considering influence of ocean current,’’ in Proc. IEEE 4th Int.
Conf. Control Sci. Syst. Eng. (ICCSSE), Aug. 2018, pp. 288–295, doi:
10.1109/CCSSE.2018.8724676.

[88] Z. Zeng, A. Lammas, K. Sammut, F. He, and Y. Tang, ‘‘Shell space
decomposition based path planning for AUVs operating in a vari-
able environment,’’ Ocean Eng., vol. 91, pp. 181–195, Nov. 2014, doi:
10.1016/j.oceaneng.2014.09.001.

[89] Y. Sun, X. Ran, G. Zhang, H. Xu, and X. Wang, ‘‘AUV 3D path planning
based on the improved hierarchical deep Q network,’’ J. Mar. Sci. Eng.,
vol. 8, no. 2, p. 145, Feb. 2020, doi: 10.3390/jmse8020145.

[90] R. N. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and
G. S. Sukhatme, ‘‘Planning and implementing trajectories for autonomous
underwater vehicles to track evolving ocean processes based on predic-
tions from a regional ocean model,’’ Int. J. Robot. Res., vol. 29, no. 12,
pp. 1475–1497, Oct. 2010, doi: 10.1177/0278364910377243.

[91] Z. Zeng, H. Zhou, and L. Lian, ‘‘Exploiting ocean energy for improved
AUV persistent presence: Path planning based on spatiotemporal current
forecasts,’’ J. Mar. Sci. Technol., vol. 25, no. 1, pp. 26–47, Mar. 2020, doi:
10.1007/s00773-019-00629-0.

[92] L. Ye, S. Li, and Z. Huang, ‘‘An improved neural Q-learning approach for
dynamic path planning of mobile robots,’’ Int. J. Sci., Basic Appl. Res.,
vol. 30, no. 1, p. 246264, 2016.

[93] C. Yan, X. Xiang, and C. Wang, ‘‘Towards real-time path planning
through deep reinforcement learning for a UAV in dynamic environments,’’
J. Intell. Robot. Syst., Theory Appl., vol. 98, no. 2, pp. 297–309, 2020, doi:
10.1007/s10846-019-01073-3.

CHINONSO E. OKEREKE received the B.Eng.
degree in computer engineering form Covenant
University, Nigeria, in 2012, and the M.Sc. degree
in advanced computer science(computer systems
engineering) from the University of Manchester,
U.K., in 2015. He is currently pursuing the Ph.D.
degree in computing with Universiti Teknologi
Malaysia, Johor Bahru, Malaysia. He was a Grad-
uate Assistant at Covenant University, in 2013, and
a Lecturer, from 2016 to 2020. His current research

interests include autonomous underwater vehicles, path planning algorithm
development, machine learning, and artificial intelligence.

MOHD MURTADHA MOHAMAD received the
B.E. degree in computer fromUniversiti Teknologi
Malaysia (UTM), in 2000, and the M.S. degree
in embedded system engineering and the Ph.D.
degree in electrical engineering from Heriot-Watt
University, U.K., in 2007. He started his career
as a Tutor at UTM. He is an Associate Professor
with the Faculty of Engineering, School of Com-
puting, Universiti Teknologi Malaysia. His current
research interests include underwater wireless sen-

sor networks, underwater acoustic sensor networks, autonomous underwater
vehicles, application development, assembly language, programming, and
indoor positioning. In 2001, he received a scholarship from the Department
of Public Service (JPA) for his M.S. degree.

NUR HALIZA ABDUL WAHAB received the
B.E. degree in electric and electronic and the
M.E. degree in electric from Universiti Teknologi
Malaysia, Johor Bahru Campus, and the Ph.D.
degree from Universiti Teknologi Malaysia,
KL Campus. She was an Assistant Professor at
Universiti Tunku Abdul Rahman (Kampar Cam-
pus), from 2018 to early 2020. She also have
experience as a Lecturer at Management and Sci-
ence University. She has been a Senior Lecturer

with the Faculty Engineering, School of Computing, Universiti Teknologi,
since 2020. She is with the Department of Computer Science. Her research
interests include blockchain, the Internet of Things (IoT), indoor localization,
internet protocol version 6 (IPv6), and augmented reality ranging from theory
to design to implementation.

OLAKUNLE ELIJAH (Member, IEEE) received
the B.Eng. degree from the Federal University of
Technology Minna, Minna, Nigeria, in 2003, the
M.Sc. degree in micro-electronics and comput-
ing from Bournemouth University, Poole, U.K.,
in 2008, the postgraduate degree in advancemicro-
electronics from Bolton University, Bolton, U.K.,
in 2010, and the Ph.D. degree from Univer-
siti Teknologi Malaysia, Johor Bahru, Malaysia,
in 2018. He was a Field Engineer at Kuyet Nigeria

Ltd., Lagos, Nigeria, in 2006. From 2011 to 2013, he was the MD/CEO at
Mircoscale Embedded Ltd., Abuja, Nigeria. He was a Postdoctoral Fellow
with the Wireless Communication Centre, Faculty of Engineering, School
of Electrical Engineering, UTMMalaysia. He is currently the CEO of Olak-
Elij Engineering Services, Kaduna, Nigeria. His current research interests
include embedded systems, wireless communication, massive MIMO, inter-
ference mitigation, heterogeneous networks, the IoT with data analysis,
and 5G.

ABDULAZIZ AL-NAHARI received the B.Sc.
degree in information technology from Al-Balqa
Applied University, in 2005, the M.Sc. degree in
computer science from The University of Jordan,
in 2009, and the Ph.D. degree in computer science
from the School of Computing, Faculty of Engi-
neering, Universiti Teknologi Malaysia (UTM),
in 2018. He has been with the Programming Unit,
Sana’a Community College, Sana’a, since 2009.
He has been a Senior Lecturer withUNITARGrad-

uate School, UNITAR International University, Malaysia, since June 2021.
His research interests include computer networks, routing protocols in ad hoc
networks, machine learning, and data analytics.

S.ZALEHA.H received the bachelor’s degree
in software engineering with multimedia from
Limkokwing University, in 2012, and the master’s
degree in computer science from University Putra
Malaysia, in 2017. She is currently pursuing the
Ph.D. degree in computer science majoring in arti-
ficial intelligence (AI) withUniversity Technology
Malaysia, Johor Bahru, Malaysia.

In 2013, she was a Corporate Executive at
Limkokwing University, where, she was a Lec-

turer teaching IT programming subject for civil engineering student,
from 2014 to 2016. Due to her outstanding passion in teaching, she got the
opportunity to teach computer science at UiTM Jasin, from 2017 to 2019.
In 2021, she became a part-time Teaching Assistant at UTM and also a full-
time Data Scientist with Synapse Innovation Sdn. Bhd., Johor Bahru.

VOLUME 11, 2023 24907

http://dx.doi.org/10.3390/jmse9111166
http://dx.doi.org/10.1109/CoDIT.2018.8394934
http://dx.doi.org/10.1109/CCSSE.2018.8724676
http://dx.doi.org/10.1016/j.oceaneng.2014.09.001
http://dx.doi.org/10.3390/jmse8020145
http://dx.doi.org/10.1177/0278364910377243
http://dx.doi.org/10.1007/s00773-019-00629-0
http://dx.doi.org/10.1007/s10846-019-01073-3

